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Machine learning prediction 
of Gleason grade group upgrade 
between in‑bore biopsy and radical 
prostatectomy pathology
Kaan Ozbozduman 1*, Irem Loc 1, Selahattin Durmaz 2, Duygu Atasoy 3, Mert Kilic 4, 
Hakan Yildirim 5, Tarik Esen 4,6, Metin Vural 5 & M. Burcin Unlu 7,8

This study aimed to enhance the accuracy of Gleason grade group (GG) upgrade prediction in prostate 
cancer (PCa) patients who underwent MRI‑guided in‑bore biopsy (MRGB) and radical prostatectomy 
(RP) through a combined analysis of prebiopsy and MRGB clinical data. A retrospective analysis of 95 
patients with prostate cancer diagnosed by MRGB was conducted where all patients had undergone 
RP. Among the patients, 64.2% had consistent GG results between in‑bore biopsies and RP, whereas 
28.4% had upgraded and 7.4% had downgraded results. GG1 biopsy results, lower biopsy core count, 
and fewer positive cores were correlated with upgrades in the entire patient group. In patients with 
GG > 1 , larger tumor sizes and fewer biopsy cores were associated with upgrades. By integrating 
MRGB data with prebiopsy clinical data, machine learning (ML) models achieved 85.6% accuracy in 
predicting upgrades, surpassing the 64.2% baseline from MRGB alone. ML analysis also highlighted 
the value of the minimum apparent diffusion coefficient ( ADC

min
 ) for GG > 1 patients. Incorporation of 

MRGB results with tumor size, ADC
min

 value, number of biopsy cores, positive core count, and Gleason 
grade can be useful to predict GG upgrade at final pathology and guide patient selection for active 
surveillance.

Prostate cancer is the second most frequent cancer diagnosed in men, and despite many improvements in 
detection and treatment, it is still one of the leading causes of cancer-related  mortality1. Histology from needle 
biopsy is crucial for risk stratification and proper selection of treatment options tailored to the characteristics 
of each tumor and patient. Historically, samples for histopathology have been obtained by standard transrectal 
ultrasound (TRUS)-guided biopsy using a systematic scheme. However, TRUS-guided prostate biopsy has long 
been known to result in undersampling, and the other diagnostic uncertainty of this technique is discordance 
between needle biopsy and RP histologic  grading2,3, which might lead to under or overtreatment.

In recent years, mp-MRI and subsequent MRI-targeted biopsy techniques have proven to be a highly accurate 
pathway for detecting clinically significant PCa while simultaneously decreasing the detection of clinically insig-
nificant  cancers4. The three common MRI-targeted biopsy techniques include visual registration of MRI images 
with real-time ultrasound images, software-assisted fusion of MRI images and real-time ultrasound images, and 
MRI-guided in-bore biopsy. MRI-guided in-bore biopsy technique by using ADC maps for fine manual adjust-
ments during the procedure and real-time feedback for needle placement can help to obtain an adequate fraction 
of the tumor to reach higher concordance between biopsy and final  pathology5,6. Although there is increased 
concordance between MRI-targeted biopsy and final pathology from RP, upgrades of the Gleason grade group 
(GG) are still important, especially for patients with GG1, who are candidates for active surveillance. Active sur-
veillance is a management strategy for low-risk PCa patients designed to avoid overtreatment and the potential 
side effects of  surgery7. High Prostate Imaging Reporting and Data System (PI-RADS) scores and/or large tumor 
sizes on mp-MRI were reported to be predictive factors of upgrading GG1  lesions8.
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In this retrospective study, an analysis of the clinical variables of patients who underwent MRI-targeted in-
bore biopsy and subsequent RP was conducted, with two primary objectives: (i) to identify the clinical variables 
that were pertinent to the upgrade of GG in the final pathology and (ii) to investigate the possibility of predict-
ing GG upgrade through the utilization of machine learning methods on an individual patient basis, thereby 
providing a foundation for personalized treatment planning.

Methods
Patients
Following the internal review board approval of Koc University, a retrospective examination was conducted on 
the datasets of 400 men who underwent mp-MRI and subsequent MRI-targeted in-bore biopsy at American 
Hospital (Istanbul, Turkiye) between 2012 and 2022, with the high likelihood target, i.e. PI-RADS 4 and 5. The 
research was carried out adhering to the principles outlined in the Declaration of Helsinki. Among the patients 
who were diagnosed with PCa, 95 of them (median age 64, range 42-78) underwent RP as a definitive treatment. 
Of these, 20 patients were diagnosed with GG1 PCa based on the in-bore biopsy results. Although GG1 patients 
normally do not require active treatment and are actively surveilled, the shared decision for definitive treatment 
took into account the following criteria: History of prostate cancer in the father or brother, International Prostate 
Symptom Score(IPSS)> 19 , tumor positivity of 2 cores or more, and PI-RADS 4 or PI-RADS 5 lesions bigger 
than 10 mm. The time interval between in-bore biopsy and RP was less than 6 months for most of the patients. 
None of the patients had received either radiotherapy or hormone therapy before RP. All biopsy cores and radical 
prostatectomy specimens were evaluated by a dedicated uropathologist with 16 years of experience, according 
to the recommendation of the International Society of Urological Pathology (ISUP).

Our study focused on per index lesion level. All high-likelihood lesions (PI-RADS 4 and 5) detected on mp-
MRI were targeted by in-bore biopsy. Index lesions were depicted according to PI-RADS version 2  guideline9. 
All index lesions detected on mp-MRI and sampled by in-bore biopsy were confirmed at whole-mount step-
section specimens after RP. Since non-index lesions were not clinically related to patient outcomes, they were 
not  analyzed10–13.

Multiparametric MRI and measurements
All multiparametric-MRI examinations were conducted on a 3.0 Tesla MRI Scanner (Magnetom Skyra, Siemens 
AG, Germany) with sixteen-channel body coil. Butlyscopolamine were used to suppress bowel peristalsis during 
the examination. The MRI protocol included T2-weighted imaging in axial, coronal and sagittal planes, diffusion-
weighted imaging (DWI), and dynamic contrast-enhanced pulse sequences (Table 1).

Tumor size, tumor location and PI-RADS scores were interpreted in consensus by three radiologists. ADC 
values were measured by two radiologists who were blinded to clinical variables and pathology results. The 
ADCmean values were obtained by drawing a regions of interest (ROIs) that cover the largest tumor area excluding 
the tumor edges. While the ADCmin values were obtained by drawing an ROI on the area that visually depicts the 
lowest ADC value within the tumor (Fig. 1). The interobserver agreement regarding the ADC measurements was 
assured with 79.3% and 67.7% correlations for mean and min values, respectively. The pathologic interpretation 
was the same as our previous  publication14.

In‑bore biopsy technique
In-bore biopsy was performed in an outpatient setting on the same 3 T MRI scanner. All biopsy procedures were 
carried out by a single radiologist [M.V.] who had more than 15 years of experience in urogenital radiology and 
interventions.

During the biopsy, the patients were positioned in the prone position. The needle guide, lubricated with 2% 
lidocaine gel, was inserted into the rectum and attached to a commercially available biopsy device (DynaTRIM, 
Invivo). To adjust the needle guide placement, sagittal T2W turbo spin-echo images were acquired and trans-
ferred to a workstation (DynaCAD, Invivo) in the first place. Subsequently, the software then calculated the 

Table 1.  Multiparametric MRI protocol.

Parameter Axial T2-WI TSE Sagittal T2-WI TSE Coronal T2-WI TSE DWI DCE T1-WI

TR (ms) 5290 5670 3800 4800 9 445

TE (ms) 111 113 105 98 1.76 9.80

Field of view (mm) 200× 200 200× 200 200× 200 260× 260 260× 260 300× 400

Matrix size 512× 297 320× 224 384× 230 192× 154 192× 155 384× 297

Slice thickness (mm) 3/0.6 2.5/0 2.5/0 3.6/0 3.6/0 6/1.2

Flip angle ( ◦) 180 180 180 180 15 120

Scan time (mins) 03:23 02:46 02:11 05:38 04:38 1:16

Temporal res. (s) – – – – 8 –

B value ( s/mm2) - – – 1600 – –
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target’s rough coordinates relative to the needle guide’s tip, which was manually adjusted toward the target. ADC 
maps were also utilized during the manual needle adjustments to guide the needle to the area with the lowest 
ADC values (Fig. 1).

Following the initial adjustments, repeat sagittal and multiplanar reconstructed axial and coronal T2-weighted 
images were obtained for further fine manual adjustments until the needle guide was accurately pointed to the 
designated target (Fig. 2). Biopsy cores were obtained using an MRI-compatible, 18-gauge biopsy gun with needle 
lengths of 150 or 175 mm (In vivo, Gainesville, FL). To ensure accurate sampling of the targeted lesion, the fired 
needle was left deployed in the prostate, and sagittal and reconstructed T2-weighted images were acquired. Only 
the suspicious target detected on pre-biopsy mpMRI was sampled without performing a complementary system-
atic biopsy. During the course of our study, we increased the number of biopsy cores in relation to the growing 
evidence that focal saturation can improve the compatibility of needle biopsy with whole-mount specimen 
pathology. On a case-by-case basis, the number of biopsy cores was also affected by the patient’s comorbidities, 
the history of previous negative biopsy, the size and location of the target, and feedback from needle-in images. 
The number of biopsy cores that were obtained per each lesion ranged from 2 to 5.

Clinical parameters
Pre-biopsy clinical variables include patient age, prostate volume, prostate specific antigen (PSA), PSA density 
(PSAD), tumor size, tumor location (either in peripheral zone (PZ) or transition zone (TZ)), assigned PI-RADS 
score, mean and minimum ADC values acquired by diffusion weighted images. Biopsy records include number 
of biopsy cores, number of positive biopsy cores, the ratio of positive cores to total number of cores, total biopsy 
core length (CL), total biopsy tumor length (TL), TL/CL ratio, and biopsy-assigned GG. Table 2 shows the char-
acteristics of the patients that are involved in this study.

Statistical and machine learning analysis
In order to identify clinical parameters that are predictive for GG upgrade, univariate statistics and multivari-
ate machine learning (ML) analyses were performed. For the univariate statistical tests logistic regression was 
employed. Odds ratio (OR) with confidence interval (CI) that excludes 1 and p < 0.05 are considered significant.

The baseline prediction accuracy was calculated by comparison of in-bore biopsy and radical prostatectomy 
Gleason grades, which was used as the benchmark to evaluate the performance of ML models. ML studies were 
conducted by selecting algorithms that are robust to overfitting for relatively small datasets such as ours, namely, 
support vector machine (SVM) with linear and radial basis function (RBF) kernels, least absolute shrinkage and 
selection operator (LASSO) regression, and ridge regression. To assess the performances of the ML algorithms, 
we used sensitivity, specificity, the area under the receiver operator characteristic (ROC) curve (AUC)15, and 
the Youden  index16 metrics. Our analyses employed 3 different grouping strategies for the patient cohort: (i) we 
included all patients and studied all patients with a GG upgrade, (ii) we included GG > 1 patients and studied all 
patients with a GG upgrade, and (iii) we included all patients and studied only those with clinically significant 
upgraded cases, from GG1 to GG > 1.

The evaluation of performance metrics was conducted through a rigorous process involving 100 randomly 
selected train-test splits across the dataset, ensuring a comprehensive examination of the model’s robustness and 
consistency. We adhered to a train-test split ratio of 80% for training data and 20% for testing data. Furthermore, 
to assess the model’s generalizability and mitigate the risk of overfitting, we employed a 3-fold cross-validation 
strategy.

Figure 1.  ADC images demonstrate a PI-RADS 5 lesion in the left peripheral zone, which was subsequently 
confirmed as prostate cancer (Gleason grade 3). The mean ADC and minimum ADC values were measured as 
shown in Figure (A) and (B), respectively.
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Informed consent
This retrospective observational study was approved by our Institutional Review Board and the requirement for 
informed written consent was waived by the Koc University School of Medicine ethics committee. All experi-
ments including the study protocol study followed approved institutional guidelines.

Results
In our study cohort, concordance between biopsy and final pathology GG was recorded in 61 (64.2%) patients. 
Overall upgrading was recorded in 27 (28.4%) patients, whereas 7 (7.4%) patients were downgraded. Six down-
grading men were lowered to the preceding GG, whereas a single case was downgraded by 2 Gleason grade 
groups (from GG4 to GG2). Among 27 upgraded men, 21 (77.8%) patients’ Gleason grade group were increased 
by 1 grade. Upgrades by 2 (n=3) and 3 (n=3) grades were also observed equally in 6 cases in total. Among 75 
men with biopsy GG > 1 , 10 (13.3%) upgraded cases were observed whereas 58 (77.3%) cases were concord-
ant. Table 3 shows GG distribution obtained by in-bore biopsy versus RP where diagonal elements represent 
concordance. The upper and lower diagonal elements represent the cases with GG upgrades and downgrades, 
respectively. All of the upgraded cases from clinically insignificant to clinically significant PCa (17.9% in our 
study cohort) consisted of upgrades from GS 3+3 to 3+4, whereas downgrading to clinically insignificant PCa 
did not occur. We focused on the statistics of GG upgrade only due to the lack of downgraded cases. Table 2 gives 
a comparative account of clinical variable characteristics in men whose GG upgraded after RP in comparison 
to the men whose GG did not upgrade.

Figure 2.  A 57-year-old patient presented with an elevated level of prostate-specific antigen (PSA) measuring 
8.9 ng/ml, accompanied by suspicious findings on digital rectal examination. Multiparametric magnetic 
resonance imaging (mp-MRI) identified a PI-RADS 5 lesion in the left peripheral zone. Subsequently, an MRI-
guided in-bore biopsy was performed and the diagnosis of prostate cancer (Gleason Group 4) was established. 
Sagittal (A) and axial (B) T2-weighted images, axial ADC image (D) showing biopsy needle positioning. Axial 
ADC image (C) taken during in-bore biopsy.
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Table 2.  Patient characteristics comparison for GG upgraded vs non-upgraded cohorts.

Continuous features (unit)

All (N=95)

Upgrade (N=27) No upgrade (N=68)

Mean (Std)

Median [range (IQR)]

Age (years)
63.0 (6.6) 61.4 (7.9) 63.6 (5.9)

64 [42-78 (58-67)] 61 [42-72 (56-67)] 64 [53-78 (59-67)]

PSA (ng/ml)
6.5 (4.3) 5.4 (3.1) 7.0 (4.7)

5.4 [1.5-26.0 (4.0-7.0)] 5.0 [1.5-16.0 (3.9-6.0)] 5.7 [2.1-26.0 (4.1-7.2)]

Prostate volume (ml)
46.8 (22.6) 46.0 (20.9) 47 (23.5)

42.0 [16.0-151.0 (30.0-58.0)] 48 [19-110 (28.2-56.9)] 42 [16-151 (30.7-58)]

PSAD (ng/ml/ml)
0.15 (0.11) 0.14 (0.07) 0.15 (0.12)

0.12 [0.00-0.71 (0.09-0.17)] 0.14 [0.04-0.27 (0.09-0.18)] 0.12 [0.0-0.71 (0.09-0.16)]

ADCmean

774 (184) 769 (190) 776 (182)

754 [322-1203 (646-882)] 759 [322-1129 (691-877)] 742 [401-1203 (631-882)]

ADCmin

634 (163) 639 (199) 632 (148)

639 [185-955 (531-772)] 664 [185-934 (550-782)] 628 [350-955 (524-712)]

Tumor size (mm)
12.3 (6.7) 14.7 (8.8) 11.4 (5.4)

11.0 [4.0-40.0 (8.0-15.0)] 12.0 [5-40 (9-19.5)] 11 [4-33 (7-13)]

Total biopsy core length (mm)
41.1 (15.0) 38.8 (15.8) 42.0 (14.7)

40 [10-79 (31-52)] 36 [12-73 (27-48.5)] 40 [10-79 (32.5-50.5)]

Total biopsy tumor length (mm)
20.6 (12.1) 17.7 (10.9) 21.8 (12.4)

18 [0.3-66 (12.2-26)] 16 [0.3-40 (11.5-23)] 19 [3-66 (13-27.5)]

TL/CL
0.50 (0.23) 0.46 (0.26) 0.52 (0.21)

0.5 [0.03-1.0 (0.34-0.64)] 0.44 [0.03-0.95 (0.34-0.59)] 0.50 [0.07-1.0 (0.35-0.66)]

Positive biopsy core ratio
0.91 (0.19) 0.90 (0.23) 0.91 (0.18)

1.0 [0.25-1.0 (1.0-1.0)] 1.0 [0.25-1.0 (1.0-1.0)] 1.0 [0.25-1.0 (0.94-1.0)]

 Categorical features Value(%)

PI-RADS 4 (62.1%), 5 (37.9%) 4 (48.1%), 5 (51.9%) 4 (67.6%), 5 (32.4%)

Prostate zone PZ (85.3%), TZ (14.7%) PZ (85.2%), TZ (14.8%) PZ (85.3%), TZ (14.7%)

Number of biopsy cores
2 (11.6%), 3 (41.1%) 2 (25.9%), 3 (51.9%) 2 (5.8%), 3 (36.8%)

4 (42.1%), 5 (5.2%) 4 (22.2%) 4 (50.0%), 5 (7.4%)

Number of positive biopsy cores

1 (6.3%), 2 (15.8%) 1 (11.2%), 2 (29.6%) 1 (4.4%), 2 (10.3%)

3 (47.4%), 4 (25.3%) 3 (44.4%), 4 (14.8%) 3 (48.5%), 4 (29.4%)

5 (5.2%) 5 (7.4%)

Biopsy Gleason grade

1 (21.1%), 2 (42.1%) 1 (63.0%), 2 (25.9%) 1 (4.4%), 2 (48.5%)

3 (20.0%), 4 (12.6%) 3 (7.4%), 4 (3.7%) 3 (25.0%), 4 (16.2%)

5 (4.2%) 5 (5.9%)

Table 3.  Confusion table of Gleason grades by MRI-guided in-bore biopsy versus RP pathology. Diagonal 
elements indicate GG concordance. Upper- and lower-diagonal elements indicate GG upgrade and downgrade 
cases, respectively.
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Statistical analysis
Univariate analyses were conducted using logistic regression, and the results are shown in Table 4. Biopsy GG1 
stands out as the most significant predictive factor for a GG upgrade at RP (95% CI 0.06–0.32, p < 0.0001 ), 
such that 17 of the 20 patients with GG1 were upgraded. A smaller number of biopsy cores (95% CI 0.3–0.76, 
p = 0.002 ) and fewer positive biopsy cores (95% CI 0.35–0.87, p = 0.011 ) were found to be independent predic-
tive clinical factors by univariate analysis.

The fact that the majority of upgraded patients (17 out of 27) in our study had biopsy GG1 poses the risk 
that this bulk would saturate our statistics and prevent us from identifying other important upgrade risk fac-
tors. Therefore, we repeated the statistical analysis for biopsy GG > 1 patients only, where increasing tumor size 
(95% CI 1.07–3.54, p = 0.028 ) and decreasing number of biopsy cores (95% CI 0.36–0.97, p = 0.038 ) were the 
statistically significant predictive factors. Furthermore, we studied the clinically significant upgraded cases (from 
GG1 to GG > 1 ), yet none of the clinical parameters turned out to be significant indicators.

The most significant cutoff thresholds for the statistically significant parameters were found by binarizing 
the parameters using various thresholds and minimizing the p-value. The results indicate that the number of 
biopsy cores and positive biopsy cores should at least be equal to or larger than 3 and 2, respectively, to decrease 
the likelihood of GG upgrade. In addition, for the GG > 1 subgroup, a tumor size equal to 20 mm stands out as 
the best diagnostic criterion.

Machine learning
The baseline prediction acuracy set by the in-bore biopsy GG was 64.2% for all patients and 77.3% for the patients 
with biopsy GG > 1 . We aimed to improve this model by introducing clinical variables. To select the optimum 
clinical features that maximize the performance of the ML models, we first scaled all clinical variables to the 
[0, 1] range and then ordered all clinical variables according to their chi-square statistics to GG upgrade. First, 
machine learning models were trained using only the most correlated feature. Then, at each step, we added the 
next feature in order and observed its effect on the model performance, measured by the Youden index. At a 
certain point, the ML models reached a maximum Youden index, and we kept the feature set at that point as 
our predictive variables. Figure 3a shows the performance of SVM with linear and RBF kernels and LASSO and 
ridge regressions as a function of the clinical feature set, including the overall patient cohort, after 100 random 
train-test split iterations. The most favorable results were obtained using an SVM with an RBF kernel (Youden 
index: 0.575± 0.013 , accuracy: 0.856± 0.004 , sensitivity: 0.621± 0.013 , specificity: 0.953± 0.003 , and AUC: 
0.865± 0.007 ) with two predictive clinical features: total number of cores and in-bore biopsy GG.

The same procedure was repeated for biopsy GG > 1 patients (see Fig. 3b), where ridge regression yielded 
optimum results (Youden index: 0.590± 0.024 , accuracy: 0.904± 0.005 , sensitivity: 0.652± 0.023 , specificity: 
0.938± 0.004 , and AUC: 0.944± 0.005 ) with 10 predictive clinical features, namely, the total number of cores, 
PI-RADS score, tumor size, ADCmin , PSAD, in-bore biopsy GG, number of positive cores, prostate volume, core 
length, and PSA. The steepest improvement in ML model performances was caused by ADCmin to feature set for 

Table 4.  Results of the univariate statistical analysis, given for three different patient groupings: (i) entire 
cohort, (ii) biopsy GG > 1 subgroup patients, (iii) the entire cohort where clinically significant upgraded cases 
(from GG1 to GG > 1 ) considered only. Statistically significant results are marked by an asterisks. Significant 
values are in bold.

All patients Biopsy GG > 1 patients
Clinically significant GG 
upgrade cases

 Total population N = 95 N = 75 N = 95

 Upgraded cases N = 27 N = 10 N = 17

 Clinical features OR (CI) P val. OR (CI) P val. OR (CI) P val.

Age 0.75 (0.50–1.14) 0.181 1.04 (0.66–1.64) 0.855 0.69 (0.45–1.05) 0.085

PSA 0.75 (0.48–1.17) 0.210 0.90 (0.57–1.42) 0.653 0.80 (0.52–1.23) 0.306

Prostate volume 0.97 (0.65–1.45) 0.866 0.95 (0.61–1.50) 0.841 1.00 (0.67–1.49) 0.994

PSAD 0.92 (0.61–1.38) 0.677 0.99 (0.63–1.56) 0.974 0.91 (0.60–1.36) 0.633

ADCmean 0.98 (0.66–1.46) 0.920 0.80 (0.51–1.28) 0.354 1.22 (0.81–1.83) 0.344

ADCmin 1.03 (0.69–1.54) 0.879 0.79 (0.50–1.26) 0.322 1.29 (0.86–1.95) 0.220

Tumor size 1.50 (0.95–2.37) 0.079 1.95 (1.07–3.54)* 0.028* 0.93 (0.62–1.40) 0.734

Total biopsy core length 0.84 (0.56–1.26) 0.407 0.80 (0.51–1.27) 0.351 0.98 (0.65–1.46) 0.907

Total biopsy tumor length 0.76 (0.50–1.15) 0.191 1.00 (0.63–1.57) 0.989 0.71 (0.46–1.09) 0.116

TL/CL 0.82 (0.54–1.23) 0.332 1.11 (0.71–1.75) 0.651 0.72 (0.47–1.09) 0.115

PI–RADS 1.39 (0.92–2.10) 0.112 1.44 (0.91–2.29) 0.121 1.05 (0.70–1.57) 0.813

Tumor zone 1.00 (0.67–1.49) 0.990 1.05 (0.67–1.66) 0.820 0.94 (0.63–1.41) 0.774

Number of biopsy cores 0.48 (0.30–0.76)* 0.002* 0.59 (0.36–0.97)* 0.038* 0.71 (0.47–1.08) 0.111

Number of positive biopsy cores 0.56 (0.35–0.87)* 0.011* 0.69 (0.42–1.11) 0.121 0.71 (0.47–1.09) 0.115

Positive biopsy core ratio 0.96 (0.64–1.44) 0.858 1.03 (0.66–1.63) 0.881 0.91 (0.61–1.37) 0.649

Biopsy GG 1 0.14 (0.06–0.32)* <0.001*



7

Vol.:(0123456789)

Scientific Reports |         (2024) 14:5849  | https://doi.org/10.1038/s41598-024-56415-5

www.nature.com/scientificreports/

GG > 1 patients. The number of biopsy cores and tumor size also significantly improved the model performance 
for the entire cohort and biopsy GG > 1 patients, respectively. Table 5 shows the overall results of the feature 
selection study with the means and standard errors of the model performance metrics.

The performance of the machine learning models was also evaluated by receiver operating characteristic 
(ROC) curves, where the area under the curve (AUC) was used for performance assessment. Figure 4a shows 
the ROC curves for the four classifier models used. The mean AUC was obtained using 100 random train-test 
splits on the overall patient group. The RBF SVM model outperformed by achieving AUC: 0.865± 0.007 . Fig-
ure 4b shows the ROC curves computed from biopsy GG > 1 patients only. Compared to those of the previous 
case, the model performances were enhanced. Ridge regression and linear SVM were favored, with an AUC of 
0.944± 0.004.

The use of ML algorithms significantly increased the predictability of GGs at RPs. The final pathological GG 
estimation accuracy of the ML models reached 0.856± 0.004 and 0.904± 0.005 for the entire cohort and biopsy 
GG > 1 patient groups, respectively. Compared to the baseline accuracy established by in-bore biopsy alone, 
these values indicate 21.4% and 13.1% accuracy enhancement for the two cohorts.

Discussion
Adverse pathology after RP can have serious management consequences, and men with clinically significant 
disease may be undertreated. Conversely, an overestimated GG would result in overtreatment and hence a reduc-
tion in the quality of life of the patient. Therefore, it is of utmost importance to determine the relevant clinical 
variables that affect GS concordance.

Gleason grade concordance in the literature ranges from 38 to 63%17–20. Upgraded cases occur at a rate of 
25% to 56%17–20, significantly outweighing downgrading cases in the majority of the studies, which range from 
8% to 16%18,19,21. Although the upgrades in our GG1 group (17 to 20) are remarkable, Costa et al. reported a 
66.7% upgrade in the GG1  group22. Liu et al. also reported significant upgrade potential in the GG1  subgroup18. 

Table 5.  Metrics of the best performing ML models in feature selection. The mean scores and their standard 
deviations of randomly selected 100 train-test splits of (a) all patients and (b) biopsy GG > 1 patients only. 
Significant values are in bold.

AUC Accuracy Sensitivity Specificity Youden index

(a) All patients

 Linear SVM 0.859± 0.005 0.800± 0.005 0.416± 0.013 0.958± 0.006 0.374± 0.013

 RBF SVM 0.865± 0.007 0.856± 0.004 0.621± 0.013 0.953± 0.003 0.575± 0.013

 LASSO 0.859± 0.005 0.802± 0.004 0.452± 0.014 0.946± 0.006 0.399± 0.012

 Ridge 0.858± 0.005 0.796± 0.005 0.449± 0.014 0.939± 0.007 0.388± 0.012

(b) Biopsy GG > 1 patients only

 Linear SVM 0.944 ± 0.004 0.901± 0.005 0.637± 0.023 0.936± 0.004 0.573± 0.024

 RBF SVM 0.894± 0.007 0.878± 0.004 0.445± 0.024 0.936± 0.004 0.381± 0.023

 LASSO 0.930± 0.005 0.895± 0.005 0.613± 0.024 0.933± 0.005 0.545± 0.023

 Ridge 0.944 ± 0.005 0.904 ± 0.005 0.652± 0.023 0.938± 0.004 0.590± 0.024

Figure 3.  Feature selection by four machine learning models using Youden index as performance metric. 
Results are shown for (a) overall patient cohort and (b) only biopsy GG > 1 group. Error bars indicate standard 
error of the mean Youden index.
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In our study, the GG upgrade rate was comparable to that in recent studies executed with MRI-targeted biopsy 
techniques and significantly lower than that in studies with TRUS-guided systematic  biopsy23–25.

A discordant GG between needle biopsy and final pathology is associated with interobserver variability 
among different pathologists, borderline grades, and more significantly sampling  errors26. In support of these 
arguments, Maruyama et al. reported that GG concordance improved by 6.2% after second-opinion  pathology27.

In the literature, multiple clinical variables are reported to be predictive for GG discordance, where GG 
upgrade indicators include older  age20, higher  PSA20, lower prostate  volume28, higher  PSAD28, higher PI-RADS 
 score27, and higher tumor percentage in biopsy  cores29.

In our study, univariate analysis revealed that age, prostate volume, PSA, PSAD, PI-RADS score, total biopsy 
core length, total biopsy tumor length, and tumor percentage in biopsy cores were nonsignificant variables for 
GG upgrade, whereas the number of biopsy cores, number of positive biopsy cores, Gleason grade, and tumor 
size were found to be significant predictors of GG upgrade. Although the ADCmean and the ADCmin values were 
found to be irrelevant variables for GG upgrades in univariate analysis, in the GG > 1 patient group, multivariate 
machine learning analysis found the ADCmin value as a useful variable for predicting GG upgrades.

Although the diagnosis of PCa is shifting to targeted biopsy, no agreement has been reached on optimum 
number of cores. Recent studies showed that more than two biopsy cores had no incremental value in determin-
ing the  GG30,31, however there are some contrary publications suggesting that additional cores from sextants 
adjacent to designated target (so called focal saturation) can increase biopsy yield and the concordance between 
needle and final pathology by excluding the effect of GS  heterogeneity32. According to Tracy et al. the likelihood of 
GG upgrade decreases with an increase in the number of targeted  cores33. Our study results also revealed inverse 
correlation between number of total and positive cores and GG upgrade likelihood at final pathology. Compared 
to our study with corresponding 28.4% and 17.9% rates, and 3.4± 0.8 cores taken, Ahdoot et al. reported 30.9% 
and 8.7% rates and Costa et al. reported 13% and 4.4% rates for any GG upgrading and clinically significant 
upgrading at final pathology with 5.8± 2.7 and average 3.2 MRI-targeted cores,  respectively22,23.

Intratumoral heterogeneity of tumors is a well known concept and increase in fraction of heterogeneous 
genetic fusion parallel to tumor size is reported in prostate  cancer34. Langer et al. showed that peripheral zone 
prostate cancer is heterogeneous in nature and 36% percent of tumors consists of scattered few malignant glands 
intermixed with healthy tissue and classified as sparse  tumors35. To our knowledge, the effect of tumor size on 
GG upgrade was not studied in literature. Our study showed that tumors with larger sizes were upgraded more 
than tumors with smaller size, which is statistically significant for GG > 1 subgroup ( p = 0.028 ). Our analysis 
revealed 20 mm as a threshold for GG > 1 group, and showed that tumors over 20 mm have a higher possibility 
to upgrade after biopsy. Due to size criteria of PI-RADS 2.136, our threshold with 20 mm falls into PI-RADS 5 
category. The correlation between PI-RADS scores and Gleason grades is well  known37–39, besides that in accord-
ance with our results, the correlation with upgrades of GG and PI-RADS score was demonstrated by Alqahtani 
et al.40. Meta-analysis about active surveillance stated precautious results with active surveillance of PI-RADS 
4 and 5, which can be related to our finding with high upgrade ratios in GG1  group41. In addition to that, our 
model stated that tumor size has a value for predicting upgrade after in-bore prostate biopsy, which is a novel 
finding. This finding, if supported by future research with larger series, may have important implications for 
clinical practice, including considering focal saturation in tumors with large dimensions.

Diffusion weighted imaging is a key component of mp-MRI that contributes to tumor detection, as well as 
to the assessment of tumor aggressiveness. Tissue microstructure such as dense cellularity or atrophic glands 
can result in distinct imaging findings. Hambrock et al. showed a high discriminatory performance can be 
achieved in the differentiation of low, intermediate, and high-grade PCa by ADC  value42. In active surveillance 
patient group, ADC value was identified as an independent predictor of both upgrading on repeat biopsy and 

Figure 4.  ROC curves for the machine learning models used. Model performances, assessed by AUC metric, 
using (a) overall patient cohort and using (b) only biopsy GG > 1 cases are compared. Shaded regions denote 
standard error of the mean ROC curves obtained by 100 iterations.
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time to radical  therapy26,43,44. Park et al. reported a significant inverse correlation between the ADCmean and the 
ADCmin values and the possibility of GG upgrade in a patient group of  GG145. In our study, statistical analysis 
revealed no significant correlation between the ADCmean and ADCmin values and GG upgrade in both groups 
of patients whereas in ML studies ADCmin value was found to be useful in the prediction of GG upgrade in the 
GG > 1 patient group. This discrepancy between ADCmin and ADCmean can be explained by the heterogeneous 
nature of PCa.

Various ML algorithms previously used for GG upgrade prediction are logistic  regression18, LASSO 
 regression18,46,  SVM18,47, k-Nearest Neighbours (kNN)46, decision  trees46, and random  forests18,46. Due to the 
lack of large datasets, medical problems pose a particular challenge for ML models. Many machine learning 
algorithms require a considerable amount of data. Otherwise, the ML model may overfit the training data and 
generate poor results on the tests. For this reason, ML models such as decision tree and random forest that require 
massive datasets are not suitable candidates for our problem, agreed by the former studies in  literature18,46. SVM, 
Ridge and LASSO models were used in this study as they are less prone to overfitting for relatively small datasets.

Our results show ML-assisted GG estimation accuracy was increased by 21.4% for the overall patient group, 
surpassing the 13.1% enhancement for upgrade estimations among GG > 1 cases, in line with the literature 
where Liu et al.18 showed ML application improved the prediction accuracy from 39.2% to 71.2%. These accuracy 
enhancements indicate ML models are useful tools to utilize clinical records for personalized treatment planning. 
Moreover, ML models unraveled the significance of more clinical features than revealed by statistics alone such 
as ADCmin (see Fig. 3b), outlining the power of ML concept, where features considered statistically insignificant 
can be utilized for predictive models.

The potential limitations of this study are retrospective design, small sample size that affects both statisti-
cal and ML studies, and possible increase in selection bias due to recruitment of patients over 8 years of time. 
Biopsy GG1 patients upgraded at RP pathology more often compared to other biopsy Gleason grade groups. 
The reason for this may be due to bias in data collection, as most low-risk GG1 patients are assigned to active 
surveillance rather than RP. Additionally, even though a 3-fold cross-validation strategy was employed in our 
study, an external validation is crucial for confirming the model’s effectiveness and applicability in different clini-
cal settings. Future studies should aim to incorporate such validation to ensure the model’s reliability and utility 
in the clinical management of prostate cancer, enhancing its potential contribution to personalized patient care.

Our study pioneers the application of machine learning methodologies to predict upgrades in MRI-guided 
in-bore biopsy patients, boasting the second-largest study population, which compares MRI-guided in-bore 
biopsy and radical prostatectomy  results48. Overall, our study suggests that a combination of clinical factors (the 
number of biopsy cores, the number of positive biopsy cores, Gleason grade, tumor size and ADCmin value) and 
machine learning models may be valuable in predicting the likelihood of GG upgrade following RP and could 
potentially improve patient outcomes.

Conclusion
Determining the relevant clinical variables that affect GS concordance in MRI-targeted biopsy is of utmost impor-
tance in the era of MRI pathway. Univariate statistics revealed the number of biopsy cores, number of positive 
biopsy cores, and Gleason grade were statistically significant GG upgrade indicators and inversely correlated to 
GG upgrade possibility. Machine learning analysis found the ADCmin value as a useful variable in the prediction 
of GG upgrade. As a novel finding, tumor size measured by mpMRI is shown to be positively correlated with 
GG upgrade likelihood for GG > 1 subgroup. Tumor size and ADCmin can be useful markers to assess risk of 
upgrade prior to biopsy, so biopsy number and patient selection for active surveillance can be decided in terms 
of these markers. The findings of our study contribute to identifying patients predisposed to GG upgrade during 
RP. By comparing patient characteristics with our documented outcomes, we can pinpoint high-risk cases for 
GG upgrade and potentially adjust the threshold for performing RP in such cases.

Data availability
The data that support the findings of this study are available upon reasonable request from the corresponding 
author.
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