
1

Vol.:(0123456789)

Scientific Reports |         (2024) 14:6614  | https://doi.org/10.1038/s41598-024-56409-3

www.nature.com/scientificreports

Data‑driven simulations 
for training AI‑based segmentation 
of neutron images
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Neutron interferometry uniquely combines neutron imaging and scattering methods to enable 
characterization of multiple length scales from 1 nm to 10 µm. However, building, operating, and 
using such neutron imaging instruments poses constraints on the acquisition time and on the number 
of measured images per sample. Experiment time‑constraints yield small quantities of measured 
images that are insufficient for automating image analyses using supervised artificial intelligence 
(AI) models. One approach alleviates this problem by supplementing annotated measured images 
with synthetic images. To this end, we create a data‑driven simulation framework that supplements 
training data beyond typical data‑driven augmentations by leveraging statistical intensity models, 
such as the Johnson family of probability density functions (PDFs). We follow the simulation 
framework steps for an image segmentation task including Estimate PDFs → Validate PDFs → Design 
Image Masks → Generate Intensities → Train AI Model for Segmentation. Our goal is to minimize 
the manual labor needed to execute the steps and maximize our confidence in simulations and 
segmentation accuracy. We report results for a set of nine known materials (calibration phantoms) 
that were imaged using a neutron interferometer acquiring four‑dimensional images and segmented 
by AI models trained with synthetic and measured images and their masks.
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Neutron  imaging1 (NI), small-angle neutron  scattering2,3 (SANS) and ultra-small-angle neutron  scattering4 
(USANS) modalities are used respectively for micro and meso-scale material characterization. Neutron inter-
ferometric microscopy of small forces and hierarchical structures (INFER) uses 2-grating interferometry to 
combine the benefits of both  modalities5,6. With INFER, the autocorrelation length is varied by changing the 
moire period and wavelength while maintaining a constant sample-detector distance. This is different than 
conventional Talbot-Lau interferometers (TLIs) which have a fixed period and operating wavelength. TLIs have 
a lower range of a few 10 nm, whereas in the INFER project we expect 1 nm to be the low range and 10 µm 
the high range, without a varying geometric blur. This range of autocorrelation lengths is possible because the 
2-grating far field interferometer allows one to vary the moire period by varying the separation of the two phase 
gratings. There is significant visibility (high contrast) over several orders of magnitude in grating  separation7.

NIST has been working on a prototype instrument that is capable of measuring this range of scales. The 
applications of multi-scale hierarchical characterization by INFER are wide-ranging, for example, measuring 
samples of civil engineering structures (e.g.,  cement8),  polymers9, additive  manufacturing10,11,  steels12 and mag-
netic  domains13, chemistry of complex systems (e.g.,  batteries14,15 and fuel  cells16,17), and complex hierarchical 
structures (e.g.,  wood18 and  bones19) as well as in  geology20 and food  science21.

Building, operating, and using neutron interferometers requires large amounts of resources, which imposes 
constraints on the acquisition time and on the number of measured images per sample. Segmentation of these 
measured images is valuable for performing automated and enhanced multi-modal analysis, understanding com-
plex systems, as well as improving modeling and simulation. However, a very small number of measured images 
is insufficient for the training of supervised artificial intelligence (AI) models. While scientists are interested in 
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measuring many samples, segmentation of measured images by hand becomes very time consuming and almost 
labor prohibitive. These constraints on measurements and analyses introduce a trade-off between the number of 
measured images per sample and the cost of each measurement associated with the instrument time in addition 
to manual segmentation labor. The motivation of our work is to minimize the cost associated with the manual 
segmentation labor.

The measured four-dimensional (4D) INFER data consist of spatial x and y, autocorrelation length ( ξ ), and 
attenuation (H0) and 1st imaging mode (H1) dimensions defined according to the nomenclature in H.  Wen22. 
Dark-Field (DF), which is valuable in understanding microstructure of samples, is derived from H0 and H1 (see 
Section “Materials and data” for more information). For a measured (4D) INFER image collection, our objective 
is to automate an image segmentation task into accurate and semantically meaningful 2D regions along the x- 
and y-dimensions, where the region labels correspond to material types. In addition, the segmentation method 
should (ideally) generalize to images of other samples and computationally scale to the throughput of the INFER 
instrument (about 2 terabytes (TB) of tomographic projections per day).

Our approach is to use supervised AI models trained on data-driven synthetic images for image segmenta-
tion. The experimental and computational workflow consists of the steps illustrated in Fig. 1. First, phantom 
(reference) materials are prepared, imaged using the INFER instrument, and geometrically corrected and nor-
malized (steps 1 and 2). Next, the measured images are manually segmented into regions of interest (ROIs) that 
correspond to unique materials (step 3). From measured images and their masks, data-driven model parameters 
are estimated per ROI in step 4 and re-generated for statistical validation in step 5. In step 6, a set of masks 
(containing ROIs with unique labels) is generated and then populated with intensity values according to the 
extracted data-driven model per label (step 7). Finally, the intensity images and masks are used for training 
an AI segmentation model by presenting intensity images as inputs and masks as outputs. The methodology 
is validated by applying the trained AI model to measured images and evaluating accuracy of segmented ROIs 
against the manually created mask in step 3. This can then be iteratively tested against an unknown sample (e.g. 
granite  block20).

The novelty of this work is in leveraging the Johnson family of PDFs in designing a methodology based on 
the following steps: Estimate PDFs → Validate PDFs → Design Image Masks → Generate Intensities → Train 
AI Model for Image Segmentation. The contributions lie in utilizing a statistical data-driven model for neutron 
beam imaging, designing simple scene masks for training segmentation models, and training AI segmentation 
models for neutron imaging experiments using the data-driven simulations.

Figure 1.  Overall approach for training AI models (1) Phantom (reference) materials are prepared. (2) INFER 
images of phantom are acquired. (3) Reference ROIs are annotated in a mask image. (4, 5) Model parameters 
are estimated and regenerated for validation. (5, 6) Scene masks are designed and populated with intensities 
generated1 following the data-driven model. (7) Sets of designed masks and corresponding generated intensity 
images are split for training and validating an AI segmentation model. (8) AI models are trained on these 
datasets.
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This paper is organized as follows. Section “Related work” presents related work to each component of our 
overall approach shown in Fig. 1. Section “Experimental results” contains the experimental results. The results 
are discussed in Section “Discussion” and conclusions can be found in Section “Conclusions and future work”. 
Section “Methods” outlines the details of the methodology. In addition, Supplementary sections include Figures, 
Tables, and Discussion related to the many facets of the data-driven simulation approach.

Related work
We divided related work into image simulations and AI model training because the scope of our work is based 
on novel image simulation model and on automating an image segmentation task by a trained AI model with 
annotated intensity images. Due to the limited measured data, we explore simulation methods for creating inten-
sity images and annotation masks, validating the quality of simulated images, manually annotating measured 
images, and integrating simulated and measured data into a training dataset for AI models.

Image simulations
Each pixel of the INFER images extracted along the autocorrelation length dimension produces a correlogram, 
which is related to small-angle scattering through a Hankel transform and can be considered a real space version 
of a SANS curve. With the billions of pixels to be analyzed per experiment, it is infeasible to efficiently analyze 
the data using manual inspection. At the same time, this amount of training data remains insufficient to train a 
supervised segmentation model to accurately automate the data analysis.

Methods for expanding image datasets for AI training
The problem of insufficient training data has been addressed in the past by using (a) augmentation techniques, (b) 
generative adversarial networks (GANs), and (c) transfer learning from pre-trained AI  models23. Augmentation 
methods have been surveyed in a  review24 as they have shown success in training deep learning algorithms and 
have support in the Albumentations Python  library25. In the case of INFER data, the low signal-to-noise ratio 
(SNR) poses a significant challenge to the effective application of augmentation methods. GANs are known to 
suffer from instability (i.e., optimizing the min-max cost function) and dependency on model  initialization26.

The success of transfer learning techniques depends on the overlap of image characteristics between the 
images used for a pre-trained AI model and INFER images. It has been demonstrated experimentally that the 
overlap between Common Objects in Context (COCO)27 images used in a pre-trained AI model and an INFER 
image is  minimal28. Scientific data such as INFER images often are different in composition and nature to the 
COCO dataset. Thus, transfer learning is not expected to be beneficial when using pretrained models. Based 
on these considerations, our work is pursuing the option of expanding small training datasets using scene 
simulations.

Simulation methods
Simulation methods can be divided into physics-based and data-driven methods. There exist several physics-
based simulation models for already well-established neutron scattering instruments, such as spin echo small-
angle neutron scattering (SESANS)29, micromagnetic  SANS30, and a library of physics-based models integrating 
Monte Carlo simulations and Molecular Dynamics simulations in the  SasView31 software. Given that a simulation 
model for the INFER instrument is still in development, none of these existing simulation models could be used 
at this point.

In addition, one has to consider trade-offs between physics-based and data-driven simulation models. The 
physics-based models need to have foreknowledge of the hierarchical geometry, materials, and their interactions 
with neutron beams. The predicted intensities are accurate under the assumptions of the physics model and of 
the exact knowledge of the experimental setup and variability (noise) sources. In practice, sources of variability 
are not known, for instance, detector granularity, variations arising from non-parallel wave direction, blurring, 
instrument design, and others are not known a priori.

The data-driven simulations are limited to the knowledge gained from specific measured datasets and there-
fore may not extrapolate very well to samples that have not been presented to the data-driven model. Data-driven 
simulations can learn the variability in the data that is missing in physics-based simulations. Simulating intensi-
ties based on data-driven models is typically less computationally expensive than simulating intensities based 
on physics-based models. The summary of these trade-offs (including an augmentation approach) is provided 
in Table 1. In this work, we pursue the data-driven modeling approach.

AI model training
Simulated or synthetic data can be used to overcome challenges, such as labeling cost and  accuracy32, generat-
ing large volumes of data, managing privacy and security concerns while allowing usability and transparency 
of data (e.g., Federal Census  data33), addressing unbalanced datasets (e.g., Synthetic Minority Oversampling 
 Technique34), and generating data that would be unsafe to collect experimentally (e.g., self-driving car accident 
simulations for training accident-avoidance35). A recent press release from Gartner predicts that by 2024, 60 % 
of the data used for the development of AI and analytics projects will be synthetically  generated36. By using syn-
thetic data, our work addresses challenges, such as labeling cost, insufficient training data, and class imbalance.

Relationship to segmenting hyperspectral images
2D intensity images along the autocorrelation dimension in INFER data is similar in structure to hyperspec-
tral images. This implies that the INFER data can be segmented using segmentation methods developed for 
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hyperspectral images. AI models for hyperspectral image segmentation include 2D or 3D Convolutional Neural 
Networks (CNNs), Recurrent 2D or 3D CNNs as recommended by Yang et al37. Hyperspectral segmentation 
approaches have been categorized into Object/Superpixel segmentation, Decision fusion, and Feature  fusion38. 
Feature fusion methods have generally been shown to be superior but require larger training sample sizes. We 
leverage the hyperspectral nature of INFER data by using a 2D CNN feature extractor with the  Deeplab5039 
CNN model architecture.

Validation of trained AI models
In a 2018 special issue on synthetic  data40, the editors observed that “There is no free lunch and using synthetic 
data trades off the manual data acquisition and labeling costs for other generation challenges and a ‘sim2real’ 
domain gap ”.

The research in the field has been advancing to close the ‘sim2real’ domain gap with better simulation models 
and augmentation techniques. Domain  randomization41 is an approach for dealing with this ‘sim2real’ gap via 
randomization of the properties of each image. This may include greatly varying scene lighting, image quality, 
object shape and surface properties, as well as the content in the background of the image. In some cases of 
randomization, performance has been shown to be even better than real data  (BDD100K42 using structured 
domain  randomization43).

A previous study of image-based vehicle  detection44 explored the viability of training AI models on synthetic 
images. In this case, synthetic images were created using a physics-based model (i.e., a first-principles ray-tracing 
model and materials properties defined in terms of their Bidirectional Reflectance Distribution Functions) and 
used for training the AlexNet CNN model that was pretrained using the ImageNet  dataset45. In our work, we 
evaluate similar combinations of train-validation datasets to the reported 2 × 2 combinations, train on {real data, 
simulated data} × test on {real data, simulated data} by the authors of the vehicle detection  system44.

In general, many trained AI models suffer from a domain shift problem, which occurs when the validation 
distribution is different from the training distribution leading to model accuracy  decrease46. Training on synthetic 
data and testing on real data (and vice versa) can be viewed as an example of a possible domain shift problem, 
which is evaluated in our work.

Experimental results
Our experimental results are divided into (1) validation of data-driven simulations, (2) accuracy evaluations of 
AI segmentation models, and (3) applicability of data-driven simulations for training AI segmentation models.

To validate statistical data-driven simulations, we first generate a synthetic intensity image using a reference 
measured mask and estimated parameters. We then perform estimation from this synthetic image. The difference 
in the parameters estimated from the original versus the simulated images indicates the quality of repeatable 
data-driven simulations.

To evaluate AI models, we analyze 96 {model, dataset} combinations. We train AI models using measured 
or synthetic intensity images as inputs and corresponding segmentation masks as outputs. We refer to the seg-
mentation masks as the ground truth (GT). We focus on model accuracy, speed of model training convergence, 
and model stability. These evaluations aim at choosing optimal input sets and hyperparameters. We also look at 
whether the models trained on synthetic data are generalizable to measured data and vice-versa.

Data‑driven simulations
Data-driven simulations are evaluated in terms of (a) sufficient dimensionality of the 1D statistical model for 
modeling 2D images and (b) accuracy of estimated statistical model parameters.

Sufficiency of one‑dimensional statistical model
Given the end-goal of simulating 2D images, we explored the 1D versus 2D statistical distributions of intensity 
values in INFER datasets. We verified that 1D cross-sections of the material-specific ROIs had similar probability 
density functions (PDFs) of intensity values regardless of each 1D cross-section’s orientation. Due to the very 

Table 1.  Summary of trade-offs for a variety of approaches to expanding training datasets. Four approaches 
for generating synthetic/simulated data are compared based on their data generating workflows and attributes 
(pros and cons).

Approach Workflow generating training data Pros Cons

Manual image segmentation Collect measurements → annotate ROIs Authentic measurements + experts’ knowledge High cost of significant experts’ time + labor 
efforts

Physics-based image simulations
Design physics models → prepare geometry 
& material of sample & scene→ generate 
intensity

Low cost of annotation labor Limited by known physics, approximations, & 
experimental validation

Augmentations of existing data Leverage known invariance of image acquisi-
tion to generate augmentations Low cost of augmentations Very limited dataset expansions due to 

required a priori knowledge

Data-driven image simulations
Collect reference measurements → design 
estimation and generation models per class → 
prepare geometry of sample & scene → gener-
ate intensity

Small cost per sample simulation in compari-
son to real imaging + Dataset expansion space 
is large in comparison to augmentations

Limited by existing class models and instru-
ment settings, parameter estimation accuracy, 
& validation of generated intensity
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small 2D spatial variation in INFER images for samples such as the one used in this work, a 1D PDF is sufficient 
for representing intensity statistics that characterize a material ROI. Therefore, neutron INFER data can be 
simulated by measuring a 1D PDF per 2D ROI. Figure 2a shows comparison of distributions for a selected ROI 
between measured and generated images. See Supplementary Section 1 for more details.

Validation of parameter estimation and image generation during data‑driven simulations
To evaluate the accuracy of the data-driven simulations, we computed the delta values according to Eq. (6). 
The relative error values [see Eq. (7)] are shown in Fig. 2b as a function of the autocorrelation length ( ξ ) shown 
on the horizontal axis and the region of interest (ROIs) shown on the vertical axis. The calculation method is 
described in Section “Data-driven image simulations”. We can see clearly that except for a few outliers in the ROI 
corresponding to material class/label, parameter values of � , η , and ǫ are very close to the values estimated from 
the original measured images. The value of γ appears to be quite different for all images. However, this can be 
attributed to the fact that the values of γ , relating to the horizontal translation of the distribution, are very small 

Figure 2.  Validation: Data-driven simulations (a) Illustration of PDF distributions for the ROI with the 
label = 4 (the ROI labels are associated with materials in Supplementary Table S2), H1 imaging mode, and 
autocorrelation = 41.6416 nm acquired by the INFER instrument. The mean and standard deviation values 
for the measured and generated histograms are (49944.6, 407.6) and (49929.7, 419.8) respectively ; (b) The 
four plots show a relative error of statistical model parameters (i) � ,(ii) η , (iii) ǫ , and (iv) γ as a function of 
autocorrelation length (horizontal axis) and ROI index (vertical axis). The majority of delta values are close to 
zero. The gamma parameter shows higher variability on simulated data.
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(close to 0) in the original estimates and, hence, the normalization by small values causes large fluctuations of 
the relative metric.

Evaluation of AI‑based image segmentation
We used three evaluation metrics for AI-based image segmentation including accuracy, convergence, and stability 
as defined in Section “AI model-based image segmentation”.

AI model accuracy evaluations
We evaluated AI model accuracy as a function of a set of imaging mode sets, learning rate, epoch index, and 
model pretraining. Figure 3 shows that the most accurate models have a learning rate of 0.01. The most accurate 
models are close to each other with Dice scores close to 0.999. Note that the Dice coefficient is more reliable 
evaluation metric than cross-entropy (CE) due to it being calculated on different sets of imaging modes (differ-
ent input data dimensionality) as well as being interpretable metrics for measuring segmentation quality. The 
results of the highest Dice coefficient among evaluations of 48 hyperparameter combinations over 100 epochs 
of training are shown in Fig. 3. It shows the Dice index of the optimal model as a function of imaging mode sets.

Given the results, we made three observations. First, Fig. 3a shows that learning rates have a significant 
impact on the model accuracy obtained during any training. Note that the most accurate model is selected also 
across all epochs. Learning rate of 0.01 was the most optimal during our runs, very closely followed by 0.001. 
Second, Fig. 3b shows that choosing a different set of imaging modes does not significantly change the average 
across different learning rates and pretraining states. This implies that any combination of imaging modes in 
our experimental design is appropriate for segmentation. Third, in terms of an epoch index, the epoch for the 
highest accuracy model usually occurs in the 90-100 epoch range consistently. Between the set of imaging modes 
chosen, the values of the Dice coefficients appear to be very close to each other with {H0,H1} and {DF} since 
they are mathematically related DF = −ln(H1/H0).

Finally, the accuracy values between pretrained models on the COCO dataset and randomly initialized 
DeepLab50 model coefficients are statistically not significant (see Supplementary Fig. S6c) due to very limited 
commonalities between COCO and INFER datasets.

AI model convergence speed evaluations
We explored the AI Model convergence speed as a function of the set of imaging modes combinations, learning 
rate values, and model initialization {pretrained, random}. The first two functions are documented in Figure 4.

First, in our experiments, the set of imaging modes combination {H0, H1} appears to have the most epochs 
under the CE loss value of five for both train and validation subsets. This combination shows consistently higher 
convergence rates regardless of the choice of a CE loss threshold. This indicates that models using {H0, H1} 
imaging modes as inputs converge the fastest regardless of pretraining or learning rates. Second, regarding the 
learning rates, model convergence speed increased while learning rates are changing from 10−6 up to 10−4 before 
decreasing for increasing learning rates larger than 10−4 . Finally, pretraining the AI model DeepLab50 using 
the COCO dataset had no discernible effect on the AI model convergence speed (see Supplementary Fig. S5a).

Figure 3.  Model accuracy comparison (a) : Impact of learning rates (lr) on the AI segmentation model 
accuracy across all sets of imaging modes and pretraining states. AI segmentation models with maximum Dice 
score are plotted. They are segregated by set of imaging modes. Each point represents a model with a specific 
pretrained state and learning rate. The model with optimal Dice coefficient is highlighted in red. According to 
the Mann–Whitney test (See “AI model-based image segmentation” (b)), the learning rate pairs {0.1,0.00001} 
and {0.1, 0.0001} do not exhibit significant differences, while all other pairs are significantly different to each 
other.
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AI model stability evaluations
Model stability was calculated with respect to the set of imaging modes, learning rates, and pretraining state 
according to Section “AI model-based image segmentation”. For each calculation, data were also split along one 
of the three parameters (sets of imaging modes, learning rates, pretrained models) to obtain insights.

First, when comparing the set of imaging modes, the residuals follow similar trends to model accuracy evalu-
ations. As can be seen from Supplementary Fig. S6b, no significant difference is observed between the different 
sets of imaging modes based on the Mann–Whitney statistical test. Second, AI model stability is higher for 
lower learning rates as expected. Residuals are very small for low learning rates and go up as much as 14 orders 
of magnitudes for high learning rates. This is primarily due to a few outliers in the CE loss values. For example, 
a single outlier value where CE = 1016 causes the entire shift in average residual. While only a handful of such 
outliers exists in these high learning rate models, we can see in Supplementary Fig.  S6a the trend observed as 
a function of learning rate remains consistent. Finally, pretraining an AI model on the COCO dataset did not 
significantly change the model stability metric as can be seen in Fig. S6c.

Applicability of data‑driven simulations for training AI segmentation models
The overarching goal of this work is to use data-driven simulations for training an AI model that will accurately 
infer image segmentation of measured images. To fully evaluate the performance of a trained AI model, we 
conducted experiments with four combinations of training and validation (evaluations) on data-driven and 
measured image sets. Table 2 shows the experimental results of the four conducted experiments.

In the four experiments, we trained 48 AI segmentation models on simulated data and 48 models on measured 
data using the same AI model architecture. We used all measured image tiles for training since the measured data 
were limited to 1924× 1924 pixels. For the comparisons, both the generated data-driven and measured datasets 
for the same values of autocorrelation and imaging mode sets were assembled.

While the accuracy results for the overarching goal are satisfactory (train on data-driven and evaluate on 
measured), the accuracy values for “train on measured and evaluate on data-driven” are surprisingly low. We 
observe qualitatively that for the CNN model trained on measured data and evaluated on synthetic checkerboard 
data, the model predicts large connected regions as learned from the measured training data. We hypothesize 
that the CNN model has learned from measured data that the single-label regions are much larger than simulated 
checkers. To confirm the hypothesis, a micro-average Dice score was calculated for predicted segmentation masks 
per AI model—see the Dice Eq. (8) in the “Methods” section.

The resulting micro-averaged Dice scores are the highest for the three background labels, and to a lesser extent 
for the quartz sample holder. One can also observe in Fig. 5 that the background labels are over-represented 
in predicted segmentation masks when an AI model trained on measured data is evaluated on simulated data. 
These biases may be occurring because of (a) an imbalance in material classes when training on measured data 
and (b) the 12 × smaller size of measured dataset than the size of the simulated dataset.

Figure 4.  Model convergence speed metrics (a) Convergence speed evaluation using the number of epochs 
with lower CE than a threshold as a function of the set of imaging modes (1) or a set of learning rates (2). The 
threshold refers to the value for CE loss (both Train and Validation) according to Eq. (9) (b) Train vs Validation 
loss (CE). Inset: Magnified view of CE Validation loss and CE Train loss in the range of [0,5]. Blue lines indicate 
thresholds below which number of models were counted.
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Discussion
We briefly discuss the lessons learned from the experimental results and the applicability limits of the presented 
approach. A choice of a set of imaging modes did not appear to impact the accuracy of AI-based segmentation 
in a statistically significant way. We anticipated that {H0, H1}, {DF}, or {H0, DF} input sets would improve seg-
mentation accuracy since the inputs contain more information than the {H0} mode. It turned out that the cur-
rent sample contained microstructures characterized by the attenuation model H0. In general, we do not know 
whether a sample has microstructures distinguishable only using the first imaging mode H1 or not. Therefore, the 
optimal input set would be expected to be{DF} since it combines information from H0 and H1 and has a minimal 
cardinality of the sets. Instead, learning rates were found to have the highest impact on model convergence speed 
and accuracy with optimal values being 0.001 and 0.0001 for the experimental setup.

Initializing AI models with a COCO pretrained model did not improve the accuracy of AI-based segmenta-
tion in a statistically significant way. This result implies that the segmentation class characteristics in INFER 

Figure 5.  Train-evaluation pairs for optimal models. Segmentation masks obtained with the most accurate 
AI model for each train/evaluate pair. The row with the Reference Mask shows GT masks for synthetic and 
measured images. The four images below the masks at the intersection of Train rows and Evaluate columns 
correspond to the four combinations of training and evaluation datasets and should be compared with the 
reference masks.

Table 2.  Segmentation quality metrics. Comparison of Dice and IoU scores for the best (highest Dice score) 
model when trained on data-driven or measured and tested on data-driven or measured datasets. Best models 
selected using the highest Dice score.

Evaluate

Synthetic Measured

Dice

 Train
Synthetic 0.9995 0.8572

Measured 0.1842 0.8365

IoU score

 Train
Synthetic 0.9989 0.7811

Measured 0.1040 0.7739
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images do not overlap with the class characteristics in COCO images (person, bicycle, tree, road, etc.). A similar 
result was obtained for pretrained models  previously28. The optimal configuration was found to be a random 
initialization of an AI model.

An interesting observation from Fig. 5 is that samples with index 4 and 11 appear on the quartz holder border; 
this can be explained from the fact that index 4 is empty quartz holder control and is, therefore, very similar to the 
quartz holder. This shows that many instances of mislabeling by the model are explainable. Another observation 
is in the prediction of index 2 where we see layers with different labels. This was found to be due to creaming in 
the sample with large size ( d = 1000 nm ) of polystyrene beads. Creaming is the migration of dispersed phase 
of an emulsion under the effect of buoyancy which forms a gradient of concentrations. The AI model segments 
the region into discrete labels appearing as layers. Although the AI model appears to be mislabeling a single GT 
region, it is actually capturing a phenomenon that was not planned before the experiment. It shows that the GT 
labels for ROI 2 were not correct. Unfortunately, the model cannot discriminate between labels assigned due to 
size variation versus concentration gradient, but it can highlight the creaming phenomenon during segmentation 
quality inspection. Further analysis on creaming can be found in Supplementary Section 7.

The computational workflow shown in Fig. 6 is fully automated except for creating a segmentation mask for 
measured images. We have validated that the Johnson family of 1D PDFs successfully captured statistics of 2D 
INFER images. However, we observed that the Johnson family is not suitable for modeling uncorrected images 
with Moiré fringes acquired using the 2-grating far field interferometer nor for modeling the periodic patterns 
in extracted differential phase contrast ( φ ) images (angle of neutrons passing through the grating). If a sample/
scene segmentation task were needed to leverage the uncorrected or φ images, then the underlying data-driven 
model would have to change.

The numerical results indicate that using data-driven simulations for training an AI model is a viable option 
for accurately inferring image segmentation of measured images. An interesting outcome of this work is that 
checkerboard patterns as scene simulations yielded a more accurate trained AI models than augmented scene 
simulations as well as measured data. Due to the lack of measured data, we have only been able to validate the via-
bility with one experimental setup, which limits the evaluation robustness. In the future, segmentation accuracy 
validations with other experimental setups will improve our quantitative understanding of the approach viability.

Conclusions and future work
We designed data-driven simulations for neutron interferometry and evaluated accuracy of AI-based segmenta-
tion models trained on data-driven simulations and measured datasets. We concluded that data-driven simula-
tions of neutron INFER imaging data improve accuracy of a trained AI model for image segmentation tasks 
and can be employed when there is a scarcity of measured data. Furthermore, simulations and pretrained AI 
segmentation models can also assist in steerable experiments. In our experiments, training AI models using 
data-driven simulations outperformed training AI models using measured data by mitigating spatial biases 
inherently encoded in limited measurements.

Our work poses several interesting future directions in terms of mixing physics-based and data-driven 
approaches and physics-informed neural networks, as well as exploring other data-driven models. Additional 

Figure 6.  Data-driven simulation workflow. Dashed green lines indicate validation. Blue lines indicate the 
process starting from phantom measurement to generation of mask-intensity image pairs.
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exploration of data-driven simulations for the intra- or inter-sample image comparisons at the same or differ-
ent neutron beam locations will help in better understanding the limitations of data-driven simulations. The 
discovery of a phenomenon like creaming, that the model is not trained on, opens up questions about sensitivity 
of the data and the AI models to variability in spatial distribution of correlograms. Finally, as illustrated with 
our clustering results in the Supplementary Section 6, future work will explore measurement baselines that can 
identify any experimental deviations from theoretically expected characteristics of reference materials.

Methods
In this work, we designed a methodology based on data-driven simulations and image segmentation methods. 
The data-driven simulations are beyond typical image augmentations used for expanding datasets during AI 
model training. It is assumed that at least one measurement with known segmentation into semantically mean-
ingful classes is available for training an AI segmentation model.

The data-driven simulation method is based on a statistical model for intensity distributions. The use of a 
statistical model in our work consists of four steps: (a) model parameter estimation from measured images and 
their corresponding material-specific image masks, (b) generate simulated image masks representing geometri-
cally perturbed distributions of materials, (c) generate intensities over image masks based on parameterized 
statistical models, and (d) evaluate the simulation error by comparing estimated statistical model parameters 
from simulated images and the initially estimated model parameters from measured images.

The image segmentation method is based on supervised AI models designed for image segmentation tasks. 
In addition to standard training and validation steps in AI-based modeling, our segmentation workflow includes 
(a) optimization over sets of INFER imaging modes and (b) evaluations of segmentation accuracy, training 
convergence, and model stability for AI models trained on simulated or measured images.

Materials and data
The materials used in our experiments are well-characterized polystyrene (PS) suspensions in Deuterium Oxide 
( D2O ). The diameter size of PS beads is varied while keeping the scale/volume fraction constant. Each of the nine 
rectangular quartz cuvettes has a pathlength of 2 mm. Out of nine samples, two control samples: one with pure 
D2O solution and another with an empty quartz cuvette, are also present. Supplementary Fig. S2 and Table S2 
describe the samples in more detail (Supplementary Section 2).

In order to develop and verify our data-driven simulation, we imaged well-characterized materials (i.e., 
measurement phantoms) using the CG-1D47 neutron beamline at the Oak Ridge National Laboratory (ORNL) 
High Flux Isotope Reactor (HFIR). Data are obtained as 16-bits per pixel grayscale images stored in the Tiff file 
format. The acquisition protocol and the instrument setup are described by Kim et al.48. Images are obtained for 
two imaging modes and 84 autocorrelation lengths based on the method described by Wen et al.22. We denote 
H, � , X, Y as the four dimensions of the acquired data, where imaging mode (H), autocorrelation length ( � ) , 
and spatial coordinates (X and Y) refer to each dimension. The segmentation problem can be described math-
ematically as a mapping from the input dataset (H, � , X, Y) to (X, Y) where values in the H and � dimensions 
are replaced with a semantic class label according to value similarities and spatial proximity (see Eq. 1 below), 
where v refers to grayscale values and c to semantic classes.

When validating our data-driven simulations, we denote the measured image Imeas
h,ξ  and the simulated image 

Isimh,ξ  , where I is the image intensity, h ∈ H is the imaging mode along the H dimension, and ξ ∈ � is the autocor-
relation length along the � dimension. The superscript meas and sim indicate measured and simulated images, 
respectively.

To correct raw image data for geometric and optical distortions, our reconstruction approach is based on 
Kim et al.48 and we adopt the nomenclature therein. Imaging mode H0 is intensity, and H0 normalized to the 
open beam signal it becomes transmission. H1 is the Visibility and −ln(H1/H0) is Dark-Field (DF). One can 
view the input dataset as a hyperspectral cube with dimensions ( � ∪H , X, Y) by concatenating values along the 
autocorrelation and imaging mode dimensions. These 3D data become the input to our AI model for a semantic 
segmentation task.

Data‑driven image simulations
First, we present the statistical model for estimating and generating intensities and the data-driven simulation 
framework. Next, we overview the image mask creation for which intensities are simulated. Finally, we validate 
the simulated images against the original images using statistical model parameters.

Statistical model for estimating and generating intensities
The statistical model represents image intensities with the Johnson  family49 of probability density functions 
(PDFs) defined in Eq. (2) below. In this equation, variable x represents Isimh,ξ  and the four parameters are estimated 
from the original intensities, Imeas

h,ξ  . The PDF model is based on a set of transformations from a normal probability 
distribution. The four parameters can be viewed as offset γ , scale η , shift ǫ , and spread � . The Johnson family of 
PDFs can be interpreted as a set of basis functions τ defined in Aupplementary Table S1.

(1)(H ,�,X,Y)v → (X,Y)c

(2)x = γ + η ∗ τ

(

z − ǫ

�

)

; z ∼ N(0, 1)
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A data‑driven simulation workflow
Based on the statistical model, Fig. 6 describes the data-driven image simulation workflow. The simulation 
workflow starts with creating a segmentation mask for measured phantom samples (GT Mask in Fig. 6) by using 
 ImageJ50. The mask creation is described in Supplementary Section 2. In our work, the mask of material-specific 
ROIs was created manually from the H0 imaging mode (transmission) because the H0 images had the highest 
contrast. The mask delineates ROIs for three background types, two control, and eight material samples. The 
quality of the mask was inspected visually by multiple experts.

In Fig. 6’s “Model parameter estimator” the statistical model parameters are estimated for each ROI in each 
image and stored in a file. For our measured dataset, there are 252 sets of four parameters estimated for 84 
autocorrelation lengths and two imaging modes and a derived ratio of modes (Dark-Field or {DF} ) per ROI.

In “Parametrized data-driven generator” shown in Fig. 6, an image mask is loaded and populated with 
intensity values per ROI by using the data-driven model and the label assigned to each ROI. Each mask label is 
associated with a unique triplet (material type, H0 and H1 imaging modes, auto-correlation value). The mask 
label is used as an index to retrieve parameters of a statistical model. The intensity values are trimmed to mini-
mum and maximum values in the measured ROIs.

Design of simulated scenes (image masks)
Geometric configurations of imaged physical samples are denoted as imaged scenes. They can be represented 
by image masks or 2D image projections consisting of ROIs associated with unique labels that correspond to a 
unique material type. The designed image masks or “Designed Masks” as shown in 6 can be created using three 
approaches: (1) permutation of materials and perturbation of ROIs in measured images, (2) designing anticipated 
geometric configurations of physical samples, and (3) imposing a class balancing constraint (an equal class label 
representation) on simulated scenes to avoid class prediction bias in trained AI models.

Image mask design by material permutations and spatial location perturbations: (1) material permutations are 
achieved by randomly assigning labels to existing ROIs. These permutations reduce the chance of learning any 
association between ROI and material type. (2) location perturbations are introduced by randomly translating 
ROIs in any direction for up to a given maximum value. These perturbations encode translational invariance in 
an AI model. Supplementary Fig. S3a shows an example of a generated mask using permutations and perturba-
tions. This scene design approach assumes that future experiments will analyze similar geometric configurations 
of imaged samples to the one already measured.

Image mask design based on anticipated geometric configurations of physical samples: A scene is designed 
by placing a set of primitive shapes representing ROIs according to composition rules that mimic the anticipated 
physical sample composition. Supplementary Fig. S3b shows two examples of image masks simulating a sample 
as a container with a grid of beads made from unique materials (left) and with randomly fused beads of varying 
diameters and material types (right). This scene design approach assumes that future experiments will analyze 
samples with known materials and anticipated spatial deviations from the measured sample composition.

Image mask design with a class balancing constraint: a scene is designed by forming a checkerboard pattern 
of ROIs in a mask image and class label assignment to ROIs so that mask sub-regions contain equal numbers of 
pixels from all classes. The size of checkers is selected based on the following objectives: (a) a mask sub-region 
with its corresponding intensity subregion must fit into the random access memory (RAM) of the graphics 
processing unit (GPU) used for AI model training, (b) all class labels must be uniformly represented in a mask 
sub-region, and (c) predicted mask sub-regions must be visually simple to compare with simulated GT mask 
(i.e., pattern granularity is sufficiently large).

In order to meet the constraints, the class labels are selected uniformly. The size of checker D and the batch 
size Sbatch must be chosen to satisfy these constraints. Equation (3) provides a relationship for each tile to contain 
each label at least once (on average). The equation variables refer to image sub-region (tile) size ( STile ), number 
of classes (C), and checker width (D).

For our work, C = 13 and STile = 192 , which gives:

For visual verification, the choice of D is subject to D ≥ 10 (selected subjectively). Our checker width is 50, 
which fulfills these criteria. On the scale of the entire checkerboard, the number of checkers for each label were 
measured to be in the range 78–120, averaging exactly 100.

To choose ( Sbatch ), the Eq. (5) below provides a relationship between the GPU RAM size ( SGPU_RAM ), batch 
size ( Sbatch ), bits per pixel (BPP) for mask ( BPPmask ) and intensity ( BPPintensity ), and the number of imaging 
modes ( NH ). As the model architecture size and the computational code occupy some RAM, our batch size varied 
to maximize the GPU RAM usage SGPU_RAM (in our case, SGPU_RAM = 80 Gb ). This requirement is modified 
slightly when considering low amounts of data, when dividing data into appropriate sized parts takes prec-
edence—due to which the value is 20 for training on measured data to allow 80–20 division when total tiles = 100.

(3)D ≤

⌊

√

STile

C

⌋

(4)D ≤

⌊

√

192x192

13

⌋

= ⌊53.2512⌋ i.e., D ≤ 53

(5)SGPU_RAM ∝ Sbatch ∗ STile(BPPmask + NH ∗ BPPintensity)
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Supplementary Fig. S4 shows two examples of image mask designs with a material class balancing constraint. 
Both masks in Figure 3 satisfy the constraint and differ by random locations and neighboring relationships of 
material class labels. This scene design approach assumes that the segmentation task can be simplified to a clus-
tering task with intensity dependencies constrained to a small spatial neighborhood.

Validation of data‑driven simulation
The validation of data-driven simulations is performed by comparing estimated parameters from simulated 
and measured images using the same image mask that was created for the measured images. The evaluations 
compare Johnson’s family type mismatch and the deltas for all parameter values. The absolute and relative deltas 
are the difference between the parameters obtained from intensity values of Isimh,ξ  and Imeas

h,ξ  . They are defined in 
Eqs. (6) and (7) below, where, Var can be any of the parameters: γ (gamma), η (eta), ǫ (epsilon), � (lambda). The 
�Var values reflect the quality of simulated intensities according to the estimated PDFs from measured data.

AI model‑based image segmentation
First, we describe a feature extractor to accommodate variable input dimensions and introduce AI model hyper-
parameters to be optimized during AI model training. Next, we overview the space of evaluation configurations 
and present evaluation metrics.

Feature extractor for variable input dimensions
According to the neutron  physics6, the Dark-Field values DF = −ln(H1/H0) combine the discriminatory power 
of the H0 and H1 imaging modes for material characterization. To understand the value of imaging modes for 
image segmentation tasks, our study also investigated the accuracy of trained AI models as a function of com-
binations of the H0 and H1 imaging modes. We constructed the set of {H0, H1}, {DF}, {H0, DF}, and {H0} of 
inputs into AI model training, where {H0} was included as a baseline.

Our investigation of sets of one or two imaging modes introduced a varying number of inputs into AI model 
training. Furthermore, specific autocorrelation lengths and their total numbers vary across experiments and must 
be considered when preparing inputs for AI model training. To address this variability of inputs, we designed a 
feature extractor step to map data from 1× 84 ({1 imaging mode} × {84 autocorrelation lengths} = 84) or 2× 84 
({2 imaging modes} × {84 autocorrelation lengths}) dimensional inputs to a 1× 3 dimensional inputs depending 
on the set of imaging modes included in {H0}, {H0,H1}, {DF}, and {H0,DF}. We add an extra model parameter, 
which allows us to change the number of inputs depending on which element of the set is considered.

Hyperparameter optimization of AI segmentation models
For the 1× 3 dimensional inputs after feature extraction, we  previously28 empirically evaluated 6 AI CNN archi-
tectures available in the  PyTorch51 library: DeepLab 50, DeepLab 101, MobileNetV3-Large, LR-ASPP-Mobile-
NetV3-Large, FCN ResNet 50 and FCN ResNet 101. Based on our observations, we selected the DeepLab50 
architecture in this work. In addition to exploring 4 combinations of H0 and H1 input modes in a set of {H0, H1}, 
{DF}, {H0, DF}, and {H0}, we sampled the learning rate and the random or  COCO27 pretrained initialization of 
the AI models. The following learning rates were tested for optimization: { 10−6, 10−5, 10−4, 10−3, 10−2, 10−1 } 
with the Adam Optimizer.

See Fig. 7 for a summary of experimental configurations tested. A simulated data test set was generated using 
15 different checkerboards. Validation set used during training is always of the same type, for example, when 
training on simulated data, validation set is also simulated data. Inference was run on Test set for all combina-
tions of parameters, thus allowing us to compare the methods.

Measured vs simulated evaluations of AI segmentation models
In order to establish the value of data-driven simulations, we explored four combinations of AI models: (1) 
trained on measured data and evaluated on measured data, (2) trained on data-driven simulation and evaluated 
on measured data, (3) trained on measured data and evaluated on data-driven simulation data, (4) trained on 
data-driven simulation and evaluated on data-driven simulation. In cases where the measured training data are 
severely constrained, the minimum number of tiles per batch must be greater or equal than the number of tiles 
available for validation. In our case, we choose the batch size to be 20 tiles due to the limited number of measured 
tiles equal to 100 and their split to 4*20 train and 20 validation tiles.

Evaluation metrics of AI segmentation model
We evaluate trained AI segmentation models based on model segmentation accuracy, training convergence, and 
model stability for the four combinations of AI models trained on simulated or measured images.

(6)�Var = Var
(

Isimh,ξ

)

− Var
(

Imeas
h,ξ

)

(7)relative(�Var) =

∣

∣

∣

∣

∣

∣

�Var

Var
(

Imeas
h,ξ

)

∣

∣

∣

∣

∣
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Model accuracy To find the most accurate models, we use the Dice  coefficient52 since it measures directly the 
quality of the predicted segmentation mask. The definition of Dice score is shown in Eq. (8). The most accurate 
model is recorded over 100 epochs of training.

where TPij , TNij , FPij and FNij are abbreviations for True Positive, True Negative, False Positive and False Negative 
respectively and subscripts i and j indicate tile i and label j.

Model training convergence We calculate a root-mean-squared error (RMSE) metric over training and testing 
CE errors shown in Eq. (9):

Minimizing the RMSE metric over all epochs provides an insight into the convergence speed of each model 
training. Furthermore, we can analyze the number of epochs when a model was contained in magnitude-con-
strained regions as illustrated in Fig. 4. If many models represented by train and validation CE loss lie within a 
magnitude-constrained region, then the model was able to reach CE losses below the magnitude threshold at an 
earlier epoch and, hence, converged faster. Figure 4 shows the CE loss constrained regions by values 1, 2, 3, 4, 
and 5 (delineated by the blue lines). The color-coded points correspond to the AI models at each epoch contained 
by these regions for the four sets of imaging modes as inputs.

Model stability Due to the complexity of the non-linear functions relating inputs and outputs in a model, 
optimization may yield a highly accurate model that is very unstable as the parameters change. To measure model 
stability, we assume that a stable model would have a linear dependency between train and validation CE loss. 
We calculate the residual/error of the least squares linear fit to CE train vs CE validation losses as a measure of 
model stability. The higher the residual, the lower the fit quality. In general, a higher stability or lower residual 
should be preferred.

Statistical significance of metrics Model metrics for varying inputs are compared with each other using the 
Mann–Whitney U  test53. This Mann–Whitney statistical U-test evaluates the hypothesis that the probability 
distribution of a randomly drawn observation from one group versus the one from the other group is the same. 
When comparing values, such as model CE loss, distributions are non-normal and occasional spikes in model 
training add outliers. We selected the Mann–Whitney U-test because it does not assume normality of CE loss 
data. It is also robust to outliers as it relies on ranks unlike the t-test.

Data availability
The Datasets are available from https:// isg. nist. gov/ deepz oomweb/ data/ infer Segme ntati on.
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