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Genetic and molecular 
characterization of metabolic 
pathway‑based clusters 
in esophageal squamous cell 
carcinoma
Ze Wang 1,2, Yuan Zhang 1, Xiaorong Yang 1, Tongchao Zhang 1, Zhen Li 1,2, Yang Zhong 1,2, 
Yuan Fang 1,2, Wei Chong 3, Hao Chen 1* & Ming Lu 1,2*

Esophageal squamous cell carcinoma (ESCC) is one of the most aggressive types of squamous cell 
carcinoma and represents a significant proportion of esophageal cancer. Metabolic reprogramming 
plays a key role in the occurrence and development of ESCC. Unsupervised clustering analysis was 
employed to stratify ESCC samples into three clusters: MPC1‑lipid type, MPC2‑amino acid type, 
and MPC3‑energy type, based on the enrichment scores of metabolic pathways extracted from 
the Reactome database. The MPC3 cluster exhibited characteristics of energy metabolism, with 
heightened glycolysis, cofactors, and nucleotide metabolism, showing a trend toward increased 
aggressiveness and poorer survival rates. On the other hand, MPC1 and MPC2 primarily involved lipid 
and amino acid metabolism, respectively. In addition, liquid chromatography‒mass spectrometry‑
based metabolite profiles and potential therapeutic agents were explored and compared among ESCC 
cell lines with different MPCs. MPC3 amplified energy metabolism markers, especially carnitines. In 
contrast, MPC1 and MPC2 predominantly had elevated levels of lipids (primarily triacylglycerol) and 
amino acids, respectively. Furthermore, MPC3 demonstrated a suboptimal clinical response to PD‑L1 
immunotherapy but showed increased sensitivity to the doramapimod chemotherapy regimen, 
as evident from drug sensitivity evaluations. These insights pave the way for a more personalized 
therapeutic approach, potentially enhancing treatment precision for ESCC patients.

Esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC) are two histological sub-
types of esophageal cancer (EC) but exhibit significant differences at the molecular and pathological  levels1. 
ESCCs represent approximately 90% of all ECs, and Eastern to Central Asia has a particularly heavy disease 
 burden2,3. However, the prognosis of ESCC patients is poor, and the overall 5-year survival rate is low. Even 
with the advances of surgery, chemotherapy, and radiotherapy, the 5-year overall survival rate is only 15.3% in 
advanced  stages4. Therefore, achieving the goal of effective treatment remains challenging.

Metabolic reprogramming is crucial to tumor initiation, progression, and  metastasis5,6. Cancer cells need to 
increase glucose uptake and fermentation of glucose to lactate to meet the needs of growth, survival, proliferation, 
and long-term  maintenance7. Moreover, heterogeneity is evident between cancers from different  patients8. This 
phenotypic diversity, marked by distinct cell surface markers, genetic abnormalities, and other cancer hallmarks, 
can influence prognostic variations and lead to failures in uniform  treatments9. Tumor individuals have highly 
heterogeneous metabolic profiles, and precise classification enables the identification of sophisticated targeted 
therapies to enhance their  efficacy10.
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Much effort has been devoted over the past decade to classifying ESCC into several molecular subtypes. 
Moreover, distinct mutational profiles, genomic alterations and biological process stratifications could guide 
treatment decisions, with the prognosis  improved11–14. Moreover, there is growing appreciation that circulating 
metabolite dysregulation is frequently observed in ESCC  patients15,16. In the metabolic process of ESCC, a num-
ber of metabolites are differentially distributed and involved in glycolysis, anaerobic respiration, the tricarboxylic 
acid cycle, and protein and lipid  metabolism17. Lactic acid, citrate, glucose and valine are the main reported 
metabolites involved in modulating ESCC progression and prognosis.

However, there is a lack of studies focusing on metabolic pathway-based stratification, which could provide 
insight into the metabolic dysregulation and inherent heterogeneity in ESCC. Given that metabolic reprogram-
ming is a recognized hallmark of cancer, pinpointing the metabolic status of tumors holds utmost significance. 
Our study performed a comprehensive metabolic transcriptional clustering analysis of ESCCs based on metabolic 
pathway profiles. We successfully identified three distinct clusters, each correlated with specific clinical charac-
teristics and metabolic pathways. Our analysis showcased the metabolic heterogeneity of ESCC tissues, laying 
the foundation for the development of personalized therapies customized to individual tumor metabolic profiles.

Methods
Transcriptomic expression and clinical data
The transcriptomic expression profiles of ESCC patients in the TCGA-ESCA cohort (The Cancer Genome Atlas-
Esophageal Carcinoma, N = 182) were obtained from the cBioPortal (https:// www. cbiop ortal. org/). Clinical infor-
mation, including age, sex, clinical stage, TNM stage, and survival time, was also retrieved. Patients categorized 
as EAC type, of unknown type, or without survival data were omitted. This filtering resulted in 90 patients being 
selected for our study. cBioPortal preprocessed these data, including quality control, data cleaning, standardiza-
tion, to ensure the accuracy and comparability of the data. During RNA-Seq processes in ESCC tissues or the 
conversion of raw data to RSEM format in cBioPortal, certain genes or transcripts may have incomplete or una-
vailable sequencing data due to technological limitations. The missing values of the RNA-seq data were imputed 
by using the knnimputation function of the R package ‘DMwR2’ (v.0.0.2).

The other two ESCC datasets (GSE53625, N = 358 and GSE121931, N = 125) were procured from the NCBI 
Gene Expression Omnibus (GEO) database (https:// www. ncbi. nlm. nih. gov/ geo/). The GSE53625 dataset was 
utilized for exploratory analysis because it met our criteria: (1) contained human esophageal tissue samples, (2) 
contained at least 100 samples, (3) provided gene symbol annotations, and (4) had prognostic information. This 
cohort, consisting of 179 ESCC samples, was the most extensive dataset in our study, establishing it as the primary 
dataset for discovery and analyses. The GSE121931 dataset was another GEO dataset comprising 125 patients, 
specifically chosen to validate our metabolic pathway stratification. The raw data of the two GEO datasets were 
processed by the robust multiarray averaging (RMA) algorithm with ‘affy’ package and the duplicate probes 
were merged via median number.

Metabolic pathway‑based classification
To investigate the metabolic heterogeneity in ESCC, we manually selected 82 metabolic pathways (Table S1) from 
the Reactome Pathway Database (https:// react ome. org/). We used gene set variation analysis (GSVA) with the R 
package ’GSVA’ (v.1.42.0) to calculate the enrichment scores of metabolic pathways in each sample. The relevance 
of the pathways was explored with Pearson correlation. To investigate the metabolic heterogeneity within the 
ESCC tumors, the unsupervised clustering nonnegative matrix factorization (NMF) method was utilized for 
consensus clustering of metabolic pathway-based clusters (MPCs). The R packages ‘NMF’ (v.0.23.0) and ‘doMPI’ 
(v.0.2.2) with the Lee algorithm were adopted to stratify the samples. The optimal number of clusters was deter-
mined according to cophenetics, consensus matrices and silhouette coefficients. The most suitable rank value was 
determined by identifying the point where the cophenetic value exhibited the most significant change in response 
to variations in the cluster count. To enhance the validity of our judgments, we employed supplementary tools 
such as heatmaps. These visual aids provided a clear snapshot of the data, enabling a more precise evaluation. 84 
metabolic pathways extracted from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database (http:// 
www. kegg. jp/) were used to validate cluster characteristics (Table S2).

PPI network analysis of the integrated DEGs
We identified differentially expressed genes (DEGs) related to metabolism by pairwise comparisons of clusters 
using the ’limma’ R package (v.3.50.3) and considered the union set of these comparison results as the DEGs 
among the three  MPCs18. The metabolic-related DEGs were further filtered by intersection with DEGs between 
tumor and normal tissues. The normalized gene expression data were subsequently analyzed with the lmFit and 
eBayes functions to calculate expression statistics. The significance criterion for DEGs was a false discovery rate 
(FDR) less than 0.001.

The Search Tool for the Retrieval of Interacting Genes/Proteins database (STRING, https:// string- db. org/) 
was used to investigate and visualize the gene interactions. The DEGs obtained above were submitted to the 
STRING database to determine their protein‒protein interactions (PPIs). We imported the PPIs into Cytoscape 
software (v.3.9.0) to construct a network and exclude nodes without betweenness. The PPI network ultimately 
contained 174 filtered DEGs (Table S3). Gene Ontology (GO) enrichment analysis was used to explore the 
potential biological processes, cell compositions and molecular functions of the filtered DEGs with the R pack-
age ‘clusterProfiler’ (v.4.2.2)19.

https://www.cbioportal.org/
https://www.ncbi.nlm.nih.gov/geo/
https://reactome.org/
http://www.kegg.jp/
http://www.kegg.jp/
https://string-db.org/
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Genomic mutations and mutational signature analysis
Mutation and copy number alteration (CNA) data in mutation annotation format (MAF) from the TCGA 
cohort were also obtained from the cBioPortal. Mutational landscape depiction and signature extraction were 
both applied in the ‘maftools’ package. The ExtractSignatures function based on Bayesian variant nonnegative 
matrix factorization factorizes the mutation portrait matrix into two nonnegative matrices, ‘signatures’ and 
‘contributions’, where ‘signatures’ represent mutational processes and ‘contributions’ represent the correspond-
ing mutational  activities20. The SignatureEnrichment function automatically determines the optimal number 
of extracted mutational signatures and assigns them to each sample based on mutational activity. The extracted 
mutational portraits of CRC were compared and annotated by cosine similarity analysis against the Catalog of 
Somatic Mutations in Cancer (COSMIC) database.

Immune cell infiltration analysis
CIBERSORT (http:// ciber sort. stanf ord. edu/), a deconvolution algorithm based on transcriptome data, was used 
to estimate the composition and abundance of immune cells in complex tissues. The method provided a known 
dataset of gene expression features for 22 immune cell subsets downloaded from the study by Ali et al.21. xCell 
(https:// xcell. ucsf. edu/) is another computational method based on single-sample GSEA (ssGSEA). The method 
transforms gene expression profiles into enriched fractions of 64 immune and stromal cell types across samples. 
The relative abundance of each immune cell type was represented by an enrichment score. The two methods 
were combined to explore differences in immune infiltration among MPCs.

We also used the R package ‘IOBR’ (v.0.99.9)22 to analyze the whole landscape of immune cell signatures. 
The package integrates eight published methods for quantifying the percentage of signatures and gathers the 
results for all methods. The ssGSEA method was also used for our analysis. In addition to analyzing immune 
signatures, this package is equipped to analyze the tumor environment, m6A status, metabolism, exosomes, and 
microsatellite instability (MSI) status, providing a comprehensive overview of the results.

Functional enrichment analysis
The GSVA method was also used to explore the biological pathways extracted from the RNA-seq data. The Hall-
mark gene sets, which represent clearly defined biological states and processes, were obtained from the Molecular 
Signatures Database (MSigDB, http:// www. gsea- msigdb. org/ gsea/ msigdb/ colle ctions. jsp). Gene set enrichment 
analysis (GSEA) was also applied to identify the gene sets that were significantly enriched among the MPCs. The 
R package ‘limma’18 was used to evaluate the differential expression of more than 20,000 genes in samples from 
different groups. Genes sorted according to logFC values produced by limma were used as inputs for GSEA with 
the R package ‘clusterProfiler’ (v.4.2.2)19 against the KEGG pathways; these data were also downloaded from the 
MSigDB as reference gene sets.

Metabolite profile analysis
We utilized cell lines to explore the relative levels of metabolites in the Cancer Cell Line Encyclopedia (CCLE) 
database. The metabolome landscape of esophageal cancer cell lines was collected from Li et al.  study23. We 
selected 27 esophageal cancer cell lines with ESCC annotations. The transcriptome data were downloaded from 
the Dependency Map (DepMap) portal. The cell lines were stratified by the NMF algorithm using the same 
analysis pipelines used in this study. A total of 225 metabolites profiled by liquid chromatography–mass spec-
trometry (LC–MS) were retained in 26 available cell lines. Finally, we compared the metabolite levels among 
the three MPCs.

Drug sensitivity analysis
We used the R package ‘oncoPredict’ (v.0.2)24 to construct the drug sensitivity prediction procedure. The imputa-
tions were performed based on the expression matrix of a training set with known drug treatment information 
against the Genomics of Drug Sensitivity in Cancer (GDSC) database. The phenotypes (drug sensitivity scores) 
of the samples were calculated using ridge regression with bulk RNA-seq data.

Immunotherapy cohort analysis
An immunotherapeutic cohort of patients with advanced squamous  cancer25 treated with atezolizumab (anti-
PD-L1 mAb) was utilized to further explore the immunotherapeutic outcomes based on our NMF classifica-
tion method. The transcriptome profiles and detailed clinical annotations with immune response information 
were downloaded from the R package ‘IMvigor210CoreBiologies’ (v.1.0.0), with 295 patients enrolled in our 
analysis. We acquired enrichment scores based on metabolic pathway enrichment via the GSVA method. The 
samples were also classified as MPCs by NMF using the Lee algorithm based on enrichment scores. Given the 
association between tumor neoantigen burden and immunotherapy efficacy, we retained a total of 214 samples 
that contained neoantigen burden information to probe differences among the clusters. Each MPC subtype was 
subsequently segmented into high- and low- neoantigen burden groups based on the median count and labeled 
HMPC or LMPC, respectively.

Statistical analysis
Statistical analysis was performed using R software (v.4.1.3). For normally distributed variables, Student’s t test 
and one-way ANOVA were separately used to perform the group comparisons of two groups and more than two 
groups, respectively. Otherwise, the Wilcoxon rank-sum test or Kruskal‒Wallis test was used as a nonparamet-
ric test. The χ2 test or Fisher’s exact test was used to analyze categorical variables. K‒M survival analysis and a 

http://cibersort.stanford.edu/
https://xcell.ucsf.edu/
http://www.gsea-msigdb.org/gsea/msigdb/collections.jsp
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Cox proportional hazards model were used to analyze the association between the MPCs and patient prognosis 
with the R packages ‘survival’ (v. 3.2.13) and ‘survminer’ (v.0.4.9). Cox multivariate regression was performed 
with the R package ‘ezcox’ (v.1.0.2). Unless otherwise mentioned, P < 0.05 was considered to indicate statistical 
significance.

Results
Three distinct MPCs in ESCC tissues based on NMF analysis
Previous studies have demonstrated heterogeneity in metabolic gene expression within tumors and across differ-
ent cancer  types26. In this study, we aimed to investigate this heterogeneity using transcriptomic data. The overall 
workflow of the metabolic stratification is shown in Fig. 1A. Correlation analysis of the 82 pathway enrichment 
scores identified clusters of pathways that were either coactivated or corepressed across the dataset (Fig. S1A). 
The gene set enrichment scores of the extracted metabolic pathways were calculated with the GSVA algorithm 
for each sample. After conducting an NMF rank survey analysis with group numbers K ranging from two to 
seven, we determined that the optimal clustering number was three. The consensus matrices of different ranks 
in the three datasets and the mixture coefficients of rank three are illustrated in the heatmap (Fig. S1B–E). This 
determination arose from the significant decrease in the cophenetic correlation coefficient observed when the 
clustering number was set to three. This dip indicated a more distinct and meaningful clustering pattern com-
pared to other values of K, thus suggesting that three clusters best represented the underlying structure in the 
data (Fig. S2). Additional NMF rank survey indices supported our classification approach. The silhouette analysis 
further confirmed the appropriateness of our clustering configuration by revealing a high value for the objects 
assigned to cluster three. We integrated the distinct pathways from the two exploration datasets (GSE53625 and 
TCGA) to characterize the metabolic profiles of the different MPCs (labeled MPC1, MPC2, and MPC3), and 
verified the characteristic identification using the validation dataset (GSE121931). Overall, the relative scores 
of metabolic pathways among the MPCs exhibited unique patterns (Figs. 1B, S3A). MPC1 can be classified as a 
lipid type and includes glycosphingolipid, heparin, triglyceride and linoleic acid. MPC2 was characterized by the 
upregulation of amino acid metabolism, especially that of selenoamino acids. MPC3 was identified as an energy 
metabolism cluster that upregulates glucose metabolism and nucleotide metabolism, with concurrent upregula-
tion of vitamin and cofactor metabolism. To further validate the metabolic profiles of our clusters, we reanalyzed 
the enrichment score among clusters using the KEGG database, and found that the metabolic pathways with 
statistically significant differences of MPCs were consistent with the results via Reactome database (Fig. S3B).

The PPI network helps identify significant DEGs associated with tumor metabolism
To explore the impact of metabolic heterogeneity and differences between tumor and normal tissues, we con-
ducted an interaction analysis of DEGs. We identified a total of 2696 DEGs between tumor and normal samples. 
In addition, 4371 DEGs were found to be related to metabolic pathways and had a false discovery rate (FDR) 
of less than 0.001. The DEGs mentioned above were all obtained by intersecting data from the GSE53625 and 
TCGA cohorts.

We subsequently overlapped the two sets of DEGs, culminating in a consolidated list of 368 genes. After 
removing isolated nodes and genes with zero betweenness, 174 genes were identified and utilized to construct a 
protein‒protein interaction (PPI) network (Table S3). E2F1 was the gene with the most pronounced difference 
in betweenness centrality, highlighting its critical role within the network (Fig. 1C). Notably, E2F1 exhibited 
higher expression levels of MPC3 and MPC2 than did MPC1, suggesting its potential role in the metabolic het-
erogeneity observed among the metabolic pathway clusters. Furthermore, we identified seven genes that showed 
prognostic significance, namely, BCAR1, HLA-B, PDLIM2, PML, PSMB10, SLC25A44 and TCF3 (Fig. S3C). We 
also analyzed the association between survival and lncRNAs in the GSE53625 dataset using univariate Cox regres-
sion. A total of 162 lncRNAs were significantly associated with overall survival (OS) (Table S4 and Fig. S3D). 
Additionally, we observed differential expression of two negatively correlated prognostic lncRNAs (LINC01867 
and CTBP1-AS) and four positively correlated prognostic lncRNAs (TTTY3, TPM1-AS, LINC01132, and VIM-
AS1) among the MPCs (Fig. S3E).

To further investigate the biological function of the combined 174 DEGs in the PPI network, we performed 
GO pathway enrichment analysis. The results suggested that the DEGs were mainly enriched in nucleotide 
and ubiquitination metabolic processes with changes in DNA replication processes and chromosomal regions 
(Fig. 1D), indicating that energy metabolism plays a part in the source of genome instability and is a feature of 
cancerous cells. Collectively, these results suggested that abnormal gene expression relevant to metabolism in 
tumors might promote tumor heterogeneity.

Comparison of clinical features in patients with MPC
The three MPCs also exhibited different clinical characteristics. These genes were associated with OS in both 
the TCGA (log-rank test P = 0.019) and GSE53625 (log-rank test P = 0.039) cohorts (Fig. 2A). Notably, patients 
in the MPC3 exhibited poorer OS than patients in the other two clusters did. The clinical annotations and com-
prehensive statistical descriptions are shown in Figs. 2B and S3F, respectively. For MPC1, the middle section 
was the predominant location for cancer cells, whereas the upper part also contributed significantly to MPC2 
and MPC3 expression. Univariate Cox regression showed that tumor stage and MPC were significantly differ-
ent between the two cohorts (Fig. S3G). Multivariate Cox regression also revealed that MPC3 predicted a worse 
survival outcome after adjusting for age, sex, and TNM stage, with MPC1 used as a reference (P = 0.01 and 0.03, 
respectively; Fig. 2C). Associated with the characteristics of MPCs, tumors with higher rates of energy metabo-
lism dysregulation may be more aggressive than tumors with a high level of lipids and amino acids in ESCC.
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Figure 1.  Metabolic pathway-based clustering results and identification of genes differentially expressed with 
respect to tumor metabolism in ESCC samples. (A) Workflow of metabolic pathway-based stratification. (B) 
Heatmap showing normalized enrichment scores of the three MPCs in the TCGA and GSE53625 cohorts. The 
significant metabolic pathway enrichment scores acquired from both datasets are plotted. (C) Construction of a 
protein‒protein interaction (PPI) network with 174 filtered DEGs. The size and color of nodes were associated 
with betweenness. Annotations in red indicate prognosis-related genes. (D) Dot plot presenting the results of 
Gene Ontology (GO) functional enrichment analysis of 174 filtered DEGs in the PPI network.
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Association of MPCs with tumor genomic alteration profiles
We investigated the somatic mutational profile and compared the mutational frequency among the three MPCs 
in the TCGA dataset (Fig. S4A,B). We found that the base mutations consisted largely of C > A and were associ-
ated with transition (Ti) > transversion (Tv) in our patients. The waterfall plot showed that TP53 was the most 
common mutational gene (accounting for 89%) in ESCC (Fig. 3A), which was consistent with the findings of 
previous  studies27. Among the top 20 mutated genes, ZNF750 was differentially expressed among the three MPCs 
and had the highest mutation rate in MPC3 (Fisher’s exact test, P = 0.048). These findings are consistent with 
the notion that multifaceted oncogenic regulation of energy metabolism is associated with increased numbers 
of mutations and has enormous biological significance.

We further investigated the mutational process in ESCC by extracting mutational signatures. The cophenetic 
metric indicated that the total mutation profiles matched four mutational signatures and were best matched to 
COSMIC_13, COSMIC_16, COSMIC_1, and COSMIC_4 from the COSMIC database against cosine similarity 
(Fig. S4C–E). These signatures were annotated as APOBEC cytidine deaminase, drinking, spontaneous deamina-
tion of 5-methylcytosine and exposure to tobacco (smoking) mutagens (Fig. S4F). Nevertheless, upon conducting 
mutant signature enrichment analysis across different MPC groups, we observed some inconsistencies. Specifi-
cally, COMSIC_16 was exclusively enriched in MPC3, whereas COMSIC_5 (potentially linked to aging, tobacco 
smoking, or nucleotide excision repair deficiency) was enriched in both MPC1 and MPC2 (Figs. S4G, 3B).

We identified 11, 7, and 8 cooccurring mutated gene pairs in the MPC1, MPC2 and MPC3 (Fig. 3C). Only 
one mutually exclusive mutated gene pair (KMT2D and TP53) was found in MPC1. Moreover, ZNF750 muta-
tions cooccured with those of TG and TF in MPC1. Moreover, in MPC3, ZNF750 mutations coincided with 
mutations in PKHD1L1 and DNAH3 (P < 0.01). These findings enabled us to depict the effect of metabolic cluster 
stratification on genomic variation more comprehensively and to reveal the potentially complex interactions 
between individual somatic mutations and metabolic heterogeneity.

Characterization of the immune landscapes of MPCs in ESCC
We utilized the CIBERSORT algorithm to characterize immune cell infiltration in the normalized expression 
matrices of the ESCC dataset (GSE53625 and GSE121931). The proportions of 22 immune cells in ESCC are 

Figure 2.  Comparison of clinical features across metabolic pathway-based clusters (A) K‒M curves of overall 
survival (OS) in the three clusters. (B) Clinical annotations of the MPCs. (C) Forest plot of the hazard ratio 
(HR) determined by multivariate Cox regression after adjusting for age, sex and tumor stage showing the 
prognostic value of the MPCs.
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shown in Fig. S5A. The infiltration of seven types of immune cells significantly differed across the clusters 
(Figs. 4A, S5B). Changes in resting CD4 memory T cells and resting mast cells were particularly pronounced in 
MPC3. Two types of immune cells, CD4 naïve T cells and CD8 T cells, were less abundant in the MPC3 popula-
tion. The remaining four types were highly enriched in MPC1. We further examined differences in immune infil-
tration with the xCell method. There were notable differences in the presence of mesenchymal stem cells (MSCs) 
and smooth muscle across the MPCs. Specifically, MSCs were abundant in MPC1, while smooth muscle was 
notably diminished in this cluster (Fig. 4B). Several other cell types, such as granulocyte monocyte progenitors 

Figure 3.  Mutational landscape among metabolic pathway-based clusters of ESCC. (A) Oncoplot depicting the 
distribution of somatic mutation (SNV/indel) and copy number variation (CNV) events affecting frequently 
mutated genes in ESCC among the MPCs. (B) Annotations of curated mutational signatures across MPCs. (C) 
Somatic interactions of the top mutated genes in the MPCs. * means P < 0.05.
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(GMPs), hematopoietic stem cells (HSCs) and pericytes, were also enriched in MPC3. The M2 macrophage in 
the MPC3 was greater than that in the other clusters in both GEO datasets (Fig. S5C).

We further compared comprehensive oncology-immune signatures derived from the IOBR package among 
the three MPCs (Figs. 4C, S5D). Genomic instability-related biological processes, such as mismatch repair, 
homologous recombination, and DNA replication, were found to be highly expressed in MPC1. The abundances 
of CD8+ T cells, Tregs and mast cells were consistent with the results of CIBERSORT and xCell. The presence 
of TNF-β family members, m6A and exosomes varied among the clusters. The analyses above confirmed that 
immune infiltration differed greatly in many respects among the clusters.

Molecular biological states and oncogenic processes in ESCC
Several tumor hallmarks, such as mTORC1, PI3K-AKT-mTOR and KRAS, were activated in MPC3, and other 
tumor biological processes, including hypoxia, peroxisomes, MYC targets and oxidative phosphorylation, were 

Figure 4.  Immune cell and signature landscape among metabolic pathway-based clusters in ESCC patients. 
The fraction of tumor-infiltrating immune cells in the three clusters determined using the CIBERSORT (A) and 
xCell (B) algorithms. (C) Comparison of IOBR-based inferred immune signature infiltration levels based on 
bulk RNA-seq data. Within each group, the scattered dots represent TME cell expression values. The bottom and 
top of the boxes are the 25th and 75th percentiles (interquartile ranges), respectively. * means P < 0.05; ** means 
P < 0.01; *** means P < 0.001.



9

Vol.:(0123456789)

Scientific Reports |         (2024) 14:6200  | https://doi.org/10.1038/s41598-024-56391-w

www.nature.com/scientificreports/

upregulated in MPC3 (Fig. 5A). Similar significant hallmark gene sets (e.g., mTORC1 and the process of oxida-
tive phosphorylation) were also found in the TCGA dataset (Fig. S6A).

We utilized the DEGs among the MPCs ranked by log2-fold changes to perform GSEA of the KEGG pathways. 
Compared to those of MPC1, MPC2 and MPC3 were significantly enriched in gene transcription elements such 
as ribosomes, spliceosomes, proteasomes and polymerases (Fig. 5B,C). Moreover, the activities related to the 
biological processes of cell growth and proliferation, such as DNA replication and oxidative phosphorylation, was 
markedly lower in MPC1. According to the TCGA cohort, the differences in MPC2 and MPC3 were apparent, 
and ribosomes were still meaningful between the two clusters (Fig. S6B–D).

Comparison of metabolite levels among MPCs
Metabolic reprogramming can accompany alterations in intracellular and extracellular  metabolites6. We employed 
an identical approach to classify the 26 human ESCC cell lines from the CCLE database. The cophenetic count in 
the NMF rank survey also revealed that the most common cluster rank number was three (Fig. S7A). We then 
categorized the cell lines into three clusters and further analyzed the differences in metabolite profiles between 
the clusters. A large number of amino acid metabolites were enriched in MPC2. Other functional substances, 
such as urate, were also abundant in MPC2. MPC1 contained a large quantity of lipids, mainly triacylglycerol 
(TAG), which was consistent with the aforementioned stratification. MPC3 was enriched in carnitine, associ-
ated with energy metabolism (Fig. 6A). We extracted significant metabolites across clusters and summarized the 
characteristics according to the relative intensity levels. The metabolite discrimination among MPCs was also 
noteworthy (Fig. 6B). MPC2 exhibited higher consumption of valine compared to MPC3. The major form of 
cellular signaling involves the reversible phosphorylation of proteins at tyrosine, serine, or threonine  residues28, 
and our analysis revealed such trails in MPC2. The levels of palmitoylcarnitine and oleylcarnitine were the high-
est in MPC3, which was significantly different between the other two clusters. Carnitine palmitoyltransferase I 
might be a suppressive factor and emerging therapeutic target in cancer treatment. We also examined the levels 
of a representative lipid, C50:2 TAG, which were significantly different between MPC1 and MPC2. Meanwhile, 
the cell line expression levels of C38:2 PC (phosphatidylcholine) was also upregulated in MPC1 and MPC3. 

Figure 5.  The biological pathways involved across metabolic pathway-based clusters in ESCC. (A) Heatmap 
showing normalized enrichment scores of hallmark pathways significantly differentiated among the three 
clusters. GSEA plot showing significantly upregulated and downregulated pathways with KEGG pathways in 
MPC1 versus MPC2 (B) and MPC1 versus MPC3 (C).
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Furthermore, we examined the seven prognostic genes from the PPI network in the context of metabolites. 
Notably, there were positive correlations between carnitine abundance in MPC3 cells and the abundance of 
certain risk genes, specifically between hexanoylcarnitine and PSMB10, as well as between butyrobetaine and 
SLC25A44 (Fig. 6C). In essence, our study delved into the metabolite profiles of ESCC cell lines and contrasted 
the metabolite abundances across clusters.

Drug sensitivity analysis of MPCs
We also utilized transcriptome data to predict potential drug sensitivity against the GDSC database. The sen-
sitivity scores of each drug were quantified for each sample and compared among the three MPCs (Fig. 7A). 
We found that 57 drugs, including five commonly used chemotherapy drugs, exhibited statistically significant 
differences among the three MPCs. Specifically, the sensitivity scores to 5-fluorouracil (an inhibitor of DNA 
and RNA synthesis), paclitaxel (a microtubule disassembly inhibitor), docetaxel (a microtubule disassembly 
inhibitor), and ulixertinib (a MEK1/2 inhibitor) were significantly lower for MPC1, while doramapimod (a p38 
MAPK inhibitor) had the lowest sensitivity score for MPC3 (Fig. 7B). Additionally, SB505124 (a TGF-β signaling 
pathway inhibitor) and NU7441 (a DNA-PK inhibitor) were more sensitive to MPC2, while BI-2536 (a PLK1 
inhibitor) was also sensitive to MPC3.

Associations between MPC subtyping and immune response
The metabolic profiles of an independent anti-PD-L1 immunotherapy cohort derived from bladder cancer tis-
sue (also squamous carcinoma tissue) were also classified into three clusters with NMF based on RNA-seq data. 
These results might provide insight into the immunotherapy efficacy of MPCs in ESCC. The NMF rank survey 
indices were also plotted (Fig. S7B). Tumors in MPC1 had a high neoantigen burden (Fig. 8A), which predicted 
a better therapeutic response to immune checkpoint  inhibitors29. The Kaplan‒Meier curve and TMB landscape 
are shown in Fig. S7C and D. We combined clusters and neoantigen burden statuses to establish an elaborate 
classification system for survival analysis and found significant differences among the subgroups (P = 0.015; 
Fig. 8B). We found that the survival outcomes varied greatly among patients with different MPC1 subtypes. 

Figure 6.  Metabolite profiles among metabolic pathway-based clusters. (A) Heatmap showing the relative 
intensity levels of metabolites significantly different among the three clusters. (B) Distribution of metabolite 
relative levels of lipids, amino acids, carnitine and other representative metabolites (urate and thyroxine). 
(C) Correlation diagram illustrating the relationship between hexanoylcarnitine and PSMB10 and between 
butyrobetaine and SLC25A44. * means P < 0.05; ** means P < 0.01; *** means P < 0.001.
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HMPC1 had a far better OS than LMPC1. These clinical findings indicated that patients with a high abundance 
of the neoantigen burden in MPC1 might have a favorable immune response that is beneficial for survival. 
Moreover, compared with MPC1 and MPC2, MPC3 had the worst immune response (P < 0.001, Fig. 8C). The 
immune-excluded type accounted for a large proportion of the MPC1 subgroup, and the immune-inflamed type 
accounted for a high proportion of the MPC3 subgroup (Fig. 8D). These results confirmed our findings that the 
cancer cells harboring MPC1 had high PD-L1 expression (Fig. 8E).

Discussion
Advances in diagnostic or therapeutic techniques are accompanied by the discovery of new markers or 
 classifications30. In ESCC, previous studies have investigated the molecular subtypes of m6A RNA methyla-
tion modulator expression and mutated genes and revealed mutational signatures, prognostic proteins, and 
cell-in-cell (CIC) structure  profiles12,13,31. Metabolic heterogeneity classification can also help to interpret the 
variations in ESCC  patients32, and it has been studied in several other types of  cancer33–35. These studies also 
focused on several metabolites, such as palmitic acid (PA), tyrosine and metabolite complexes, and studied the 
downstream mechanism of these metabolites and the prediction of patient prognosis in  ESCC36,37. However, 
previous classifications of gene expression were based on conventional transcriptomic data. In our study, we 
processed the transcriptomics data to obtain enrichment scores for metabolic pathways. The metabolic pathways 
used for classification could clearly express the metabolic characteristics of ESCC. In addition, previous studies 
have rarely addressed metabolic classification in ESCC, and our stratification might provide new implications 
for targeted therapy.

Tumor tissues not only require nutrient uptake but also demand specific ways for  use6. We found that the 
energetic cluster (MPC3) was correlated with worse disease outcomes in ESCC patients. The characteristic high 
glycolytic expression of MPC3 was also identified in another hallmark gene set. Tumor tissues require high 
energy consumption to meet the needs of cell growth and proliferation. Upregulated glycolytic activities could 
adapt to these features and supply additional  energy38. Cofactor metabolism in cancer could enable NADPH to 
participate in reductive biosynthesis and redox homeostasis, and upregulated de novo nucleotide metabolism 
enables cells to proliferate  rapidly39,40. In addition, the metabolic intermediates of glycolysis play a crucial role in 
macromolecular biosynthesis. These compounds can promote the generation of NADPH and ribose-5-phosphate. 

Figure 7.  Drug sensitivity comparison across metabolic pathway-based clusters in ESCC patients (A) 
Workflow of the drug sensitivity prediction procedure. (B) Distribution of the estimated drug sensitivities 
of 5-fluorouracil, paclitaxel, docetaxel, ulixertinib, SBS05124, NU7441, doramapimod and BI-2536. * means 
P < 0.05; ** means P < 0.01.
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The production of NADPH enables cancer cells to maintain reduced levels of glutathione (GSH), which might 
protect tumor cells against antineoplastic and chemotherapeutic  agents41. In addition, Peng et al. reported that 
upregulated vitamin and cofactor metabolism was associated with poor prognosis in a cohort of 9,125 TCGA 
samples across 33 cancer  types42.

The DEGs identified from the PPI network were related to metabolic heterogeneity and protein expression 
in ESCC tissues. The core gene E2F1 regulates metabolism in cancer cells by enhancing glycolysis and has been 
shown to regulate oxidative metabolic genes in muscle and fat. These functions can contribute to the reprogram-
ming of energy metabolism in tumor cells, which is required for proliferation and cancer progression under 
hypoxic and nutrient-deprived  conditions43. We also found that the lncRNAs TPM1-AS and LINC01132 were 
highly expressed in MPC3. TPM1-AS is a natural antisense lncRNA that plays a crucial role in regulating the 
alternative splicing of TPM1. Moreover, TPM1-AS is also implicated in TPM1-mediated filopodium formation 
and the migration of cancer  cells44. A previous study also demonstrated that LINC01132 overexpression promoted 
cell growth, proliferation, invasion and metastasis in vitro and in vivo45. Loss of the P53 gene may lead to dys-
regulation of NER, which is an important and necessary event in the pathogenesis of BRCA1-mutated  tumors46. 
BRCA1 was also identified as a prognostic gene in the PPI network. ZNF750 is a novel significantly mutated gene 
in ESCC that is significantly mutated in MPC3. It may act as a tumor suppressor by directly repressing SNAI1 
(an oncogene) and inhibiting the epithelial–mesenchymal transition (EMT) process in ESCC and other types 
of  SCC47. Additionally, ZNF750 exhibited comutational associations with several cilia function-related genes, 
namely, DNAH3 and HYDIN, meriting further exploration. Moreover, MPC3 had a greater mutational burden, 
which might be associated with poor OS. Liu et al. investigated whether patients with a lower TMB had longer 
OS in some cancer  types48. In terms of the extracted mutational signatures, a previous study revealed that the 
APOBEC cytidine deaminase signature was significant in 14 other cancer types. This finding might also reveal 
one of the probable processes of carcinogenesis in ESCC. This process converts cytosine to uracil during RNA 
editing and retrovirus or retrotransposon  restriction49. The COMSIC SBS16 signature, which is predominantly 
enriched in MPC3, has been found to be associated with alcohol  consumption50. This distinct pattern is typically 
associated with EC, suggesting that MPC3 might more accurately reflect the mutational landscape of  ESCC51.

We also found upregulation of resting mast cells and regulatory T cells (Tregs) and downregulation of CD8+ T 
cells in the MPC3 population. A higher proportion of CD8+ T cells was associated with better patient outcomes, 
whereas a high mast cell density was related to the progression of ESCC and poor disease  outcome13,52. A high 
concentration of Tregs in ESCC can lead to immune escape and promote tumor  progression53. Several common 

Figure 8.  Immune response characteristics of patients in the anti-PD-L1 cohort with MPCs in ESCC. (A) 
Violin plot illustrating the tumor neoantigen burden in samples across MPCs. (B) K‒M curves of OS in 
patients according to the integrated neoantigen burden and cluster subgroup. Bar plot showing the proportions 
of patients with an immune response (C) and immune phenotype (D) in the three clusters. (E) Violin plot 
demonstrating PD-L1 expression in samples across MPCs. * means P < 0.05.
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oncogenic pathways, such as the MTORC1, PI3K-AKT-MTOR and KRAS signaling pathways, as well as pathways 
related to hypoxia status, MYC targets and oxidative phosphorylation, were enriched in MPC3. The biological 
processes or statuses verified the aggressiveness of MPC3.

The MPC2 cell lines exhibited increased uptake of amino acids, including serine and valine. Amino acid 
derivatives contribute to epigenetic regulation and immune responses linked to tumorigenesis and  metastasis54. 
Other metabolites, such as thyroxin and urate, were also highly consumed by the MPC3 cell lines. Patients with 
higher serum uric acid (SUA) levels may have an unfavorable survival probability, and numerous studies sug-
gest that triiodothyronine and thyroxin have cancer-stimulating  effects55,56. MPC3 was characterized by high 
expression of acylcarnitines (palmitoylcarnitine, oleylcarnitine, etc.). The cofactor carnitine allows fatty acid acyl 
moieties to enter the mitochondrial matrix, where these molecules are oxidized via the β-oxidation  pathway57. 
Mitochondria are the powerhouses of cells and provide energy, greatly affecting lifespan. TAGs were found to be 
significantly highly expressed in MPC1. Fatty acids (FAs) are implicated in the synthesis of phospholipids and 
TAGs. A mixed outcome of upregulation and downregulation of saturated and unsaturated FAs in both tissue 
and serum was demonstrated. UFAs are related to a reduced risk of  ESCC58. Furthermore, SLC25A44 expression 
was positively associated with carnitine levels. SLC25A44 mediates the transport of branched-chain amino acids 
into mitochondria, which helps control energy  homeostasis59.

Several drugs (paclitaxel, platinum, 5-fluorouracil, capecitabine, tegafur, etc.) are commonly used for ESCC 
chemotherapy. The commonly utilized antitumor drugs demonstrated marked sensitivity to MPC1, as evidenced 
by the low scores. In contrast, doramapimod exhibited elevated sensitivity, specifically in the context of MPC3. 
Doramapimod is an anti-inflammatory compound that acts through p38 MAPK inhibition and is a potent inhibi-
tor of TNF-α and IL-1β to combat inflammation, showing great potential in MPC3  therapy60. In addition, MPC3 
had the worst immune response, and MPC1 might be sensitive to anti-PD-L1 drugs, which could provide clues 
for precision therapy. The patients in whom MPC1 had a low neoantigen burden had a worse OS than did the 
other patients, which also indicates the great clinical significance of anti-PD-L1 therapy for MPC1.

Although we have made significant progress in understanding the metabolic heterogeneity of ESCC, there are 
a few limitations in our study. First, the tumor samples included in our study were retrieved from retrospective 
datasets, and a prospective cohort of ESCC patients is needed to validate our findings. Second, it is necessary 
to further expand the sample size to explore the mutational and hallmark profiles of ESCC in future research. 
Third, in the present study, the anti-PD-L1 immunotherapy cohort was collected from patients with squamous 
cell carcinoma of the bladder, and the potential role of MPCs in guiding immunotherapy was revealed. Finally, 
our conclusions are based on the results of bioinformatic analysis of datasets, which need to be further verified 
in clinical studies.

Overall, metabolic heterogeneity was analyzed by analyzing transcriptome data enriched in metabolic path-
ways in ESCC patients. We divided the ESCC patients into three metabolically characterized clusters. The three 
clusters showed distinct features in terms of immune status, mutation status, prognosis, and metabolites. The 
main characteristics of the MPCs are summarized in Table S5. These differences could help us make more precise 
clinical decisions for therapy.
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