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Advancing mortality rate 
prediction in European population 
clusters: integrating deep learning 
and multiscale analysis
Yuewen Shen 1, Xinhao Yang 1*, Hao Liu 1 & Ze Li 2

Accurately predicting population mortality rates is crucial for effective retirement insurance and 
economic policy formulation. Recent advancements in deep learning time series forecasting (DLTSF) 
have led to improved mortality rate predictions compared to traditional models like Lee-Carter 
(LC). This study focuses on mortality rate prediction in large clusters across Europe. By utilizing 
PCA dimensionality reduction and statistical clustering techniques, we integrate age features from 
high-dimensional mortality data of multiple countries, analyzing their similarities and differences. To 
capture the heterogeneous characteristics, an adaptive adjustment matrix is generated, incorporating 
sequential variation and spatial geographical information. Additionally, a combination of graph neural 
networks and a transformer network with an adaptive adjustment matrix is employed to capture the 
spatiotemporal features between different clusters. Extensive numerical experiments using data from 
the Human Mortality Database validate the superiority of the proposed GT-A model over traditional 
LC models and other classic neural networks in terms of prediction accuracy. Consequently, the GT-A 
model serves as a powerful forecasting tool for global population studies and the international life 
insurance field.

With the continuous improvement of modern medical care and human well-being, the overall human mortality 
rate has been showing a decreasing trend, which is closely related to social insurance institutions, life insur-
ance pricing and national pension payment, including current and future mortality. Time series analysis is an 
effective tool for capturing the evolution of mortality rates over time and will provide valuable insights into the 
underlying trends1.

Traditional time series forecasting methods utilize historical data to build mathematical models that capture 
features and patterns, enabling predictions of future observations. These methods include moving average, 
exponential smoothing, ARMA, ARIMA, SARIMA, exponential smoothing state space models, and others. Time 
series forecasting finds applications in economics, finance2, sales3, weather, and traffic flow prediction4, aiding 
decision-making by providing accurate forecasts for resource allocation, strategy formulation, and informed 
decision-making. Time series forecasting techniques play a crucial role in understanding and predicting mortality 
rates, these methods analyze historical data to identify patterns, trends, seasonality, cycles, and even anomalies. 
By decomposing these components, time series forecasting models can capture the underlying structure of how 
mortality rates change over time and make accurate predictions for future outcomes5. The widely used Lee-
Carter model6 assumes a common stochastic trend for the evolution of age-specific mortality rates over time. 
Its simplicity and effectiveness have made it popular in demographic statistics and population forecasting. The 
model has also inspired various improvements and extensions, including the airns-Blake-Dowd (CBD) model7, 
the Booth-Maindonald-Smith (BMS) model8 and the Hyndman-Ullah model9 , and many others.

Although initially, these models are used to describe only one population, in various situations, it is useful 
and even necessary to model the mortality of multiple populations simultaneously. Lee10 argued that national 
mortality trends should be analyzed in a broader international context. Factors such as geographic location, 
transportation, and trade between countries all have an impact on individuals, making it reasonable to study 
mortality in the larger cluster of countries. Li and Lee11 suggested the use of multi-population models for mortal-
ity prediction studies, which eliminated the effect of heterogeneity by analyzing data in homogeneous clusters. 
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Therefore, there is a growing need to develop models that capture multiple group dynamics simultaneously 
and incorporate a wider range of relevant factors, see for example Schnürch and Kleinow12, Hatzopoulosa and 
Haberman13, Cairns14 and Chen et al.15.However, commonly used human mortality data sets often contain hun-
dreds of age-related characteristics, presenting challenges in integrating the information shared among multiple 
regions. Moreover, these characteristics frequently exhibit random temporal variations. Hence, a key focus of 
our work is to address the question of how to effectively model such complex data.

Due to the typical time series characteristics displayed in mortality data, recent techniques in time series 
forecasting have roots in the use of Artificial Neural Networks (ANN)16, which contain non-linear functions, 
enabling them to outperform classical algorithms17. In the prediction of time-series data of human mortality, neu-
ral networks have also shown excellent predictive performance. For example, Ronald et al.18 successfully applied 
the long-short-term memory (LSTM) and gated recurrent unit (GRU) in the recurrent neural network (RNN) 
to the Swiss population mortality time series data modeling. Wang et al.19 proposed a novel neighbor mortality 
rate prediction model that combined CNN to capture complex nonlinear structures, including neighborhood 
effects, surpassing classical models. Perla et al.20 incorporated RNN and convolutional neural network (CNN) 
into a network model for large-scale mortality rate prediction, which showed better predictive performance 
compared to the Lee-Carter model. Scognamiglio21 embed an individual LC model into a neural network, lev-
eraging mortality data from all populations to jointly estimate the classical LC parameters, which have shown 
that neural networks enhance forecasting performance, especially for smaller populations, yielding smooth and 
robust parameter estimates. Perla and Scognamiglio22 employed Multilayer Perceptron (MLP) for large-scale 
mortality forecasting based on the assumption of locally-coherence of the mortality forecasts and successfully 
simulated mortality rates of multiple populations. Similarly, Salih et al.23 employed the backpropagation training 
algorithm to predict the number of deaths in northern Iraq, utilizing a multilayer perceptron neural network to 
gain insights into community characteristics and future planning. Compared to traditional mortality models, 
these classical neural network models demonstrate improved accuracy and robustness, highlighting their poten-
tial in mortality prediction. Therefore, in line with the studies conducted by Perla20 and Wang24, we incorporated 
LSTM, RNN, and 1D-CNN as comparative models for mortality rate prediction in our research.

In recent years, Transformer25 has achieved remarkable progress in time series prediction26. Its core model 
is good at processing end-to-end sequences and capturing long-term dependencies and interactions, leading to 
impressive results in time series modeling. Therefore, a large number of studies using transformers for various 
sequence predictions have emerged, such as power load forecasting27, traffic flow forecasting28, stock forecasting29, 
etc. In the human mortality data, the geographic information between countries is also an important feature 
that should not be ignored30. Therefore, Graph convolutional neural networks (GCN) may also have unexpected 
performance31, in time series data with spatial information. GCN is a feature extractor widely used to extract 
spatial information and perform prediction and classification tasks32,33. In the task of predicting the number 
of confirmed cases and deaths in COVID-1934,35, by selecting different adjacency matrices, GCN will extract 
feature information from irregular data structures within large clusters and sequences. The feature information 
include Euclidean and non-Euclidean distances, which are used to analyze and describe the relative positions and 
relationships between nodes in a graph, as well as their similarities and differences across different dimensions36. 
Therefore, for multi-cluster mortality prediction research, we propose a combined GCN and Transformer with 
Adaptive Adjustment Matrix (GT-A).

The main work and innovations of this research are divided into the following points: Firstly, in dealing with 
high-dimensional data from a single country, we utilized PCA dimensionality reduction technique to derive a 
unified representation that encompasses information from multiple features. To effectively integrate the low-
dimensional representations of individual countries, we introduced a homogeneous clustering algorithm that 
explored spatial distance and non-Euclidean distance, resulting in a dynamic adjacency matrix. Furthermore, 
for the purpose of modeling mortality rates across multiple countries and age groups, we put forth an innovative 
approach that harnessed the power of graph convolutional networks to capture spatial information, along with 
an enhanced Transformer architecture to capture temporal sequencing.

Finally, our experiments compare our model with traditional recurrent neural networks (LSTM, RNN, 
1D-CNN) and GCN-Transformer for spatio-temporal data modeling, and show that our model outperforms 
these traditional models.

The sections of this paper are organized as follows: In section results, we have presented a substantial volume 
of experimental findings, accompanied by a comprehensive comparison and analysis of these results across 
various dimensions. In section Numerical Application, we provide a detailed description of the experiments, 
including data processing, parameter setting and the construction of the adaptive matrix. In section Discussion, 
we summarize our findings and offer insights for future research. The Method section describes the experimental 
process, including time series clustering and the construction of our model framework.

Methods
Our model GT-A (GCN and Transformer Network with Adaptive Adjustment Matrix) is introduced in this 
chapter, as well as the framework structure of mortality prediction model based on GCN and Transformer and 
the prediction principle of the model. Here is a Table 1 summarizing the meanings of certain symbols used in 
the paper:

GT‑A framework
The framework of my GT-A model is shown in Fig. 1, which is mainly composed of two components, GCN layer 
and encoder layer of Transformer network. The GCN layer aims to capture the spatial information based on the 
relationships between different countries and the correlation information between mortality series. Then the 
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output of the GCN layer is fed to the Encoder layer of the transformer to capture individual countries’ mortality 
trends and correlations over time. We utilize multiple linear layers instead of Decoder layer to further cluster 
spatio-temporal information and features. This design may project the hidden dimension to the desired output 
dimension, achieving end-to-end sequence prediction. Among them, the adjustment module adaptively adjusts 

Table 1.   Definitions of the variables.

Symbol Description

m Number of countries

n Optimal number of clusters

T Input sequence length

TL Total sequence length

d The age dimension

Aada Adaptive adjustment matrix

ADTW The similarity between the first principal components of mortality in different countries

Alng−lat Actual distance matrix

Xi Input sample

Ci the i-th cluster

headi The i-th attention head

Q Query matrix

K Key matrix

V Value matrix

softmax Soft version of max activation function

dk The dimension of K
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Figure 1.   The framework of the GT-A
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the data distribution distance within the cluster through internal features, which will be described in the next 
section.

GCN layers
Assume that our input mortality data is X = (Xi , i = 1, 2, . . . ,m) , where Xi ∈ R

T×d , Xi denotes the mortality 
rates in different countries, m is the number of countries included in the multi-cluster studied , T is length of 
time series and d is the dimension of ages. The input of GCN network is not only mortality data, but also an 
adjacency matrix A ∈ R

m×m used to describe the distribution characteristics of data. The adjacency matrix A is 
designed to be composed of two parts multiplied by ADTW ∈ R

m×m and ALng−Lat ∈ R
m×m , where ADTW is the 

similarity between the first principal components of mortality in different countries, and calculates the Dynamic 
Time Warping (DTW)37 distances between m principal component sequences respectively. Matrix ALng−Lat is 
the actual distance between countries, based on the latitude and longitude of each capital. In the task of real-
izing the simultaneous prediction of mortality in multiple countries, adding the prior conditions of the trend 
change of different clusters will improve the accuracy of the model38. Therefore, we categorize countries into the 
best-performing classes, as outlined in detail in section Numerical Application, and combine all countries into 
adjacency matrix, so that the internal relations of the same cluster are closer. We set up an adaptive adjustment 
matrix Aada to automatically adjust the correlation within clusters and between different clusters.

We define a correlation vector [α1,α2, . . . ,αn,β] to help measure the correlation between national mortal-
ity data, where n is the optimal number of clusters, α ∈ [0, 1] under each cluster is used to reduce the distance 
between elements in n clusters, and β ∈ [1,∞] is used to appropriately enlarge the distance between elements 
in different clusters. In Fig. 1, Aada has three cluster regions and one uncorrelated region. After performing the 
point-wise multiplication between the reference adjacency matrix and the adaptive adjustment matrix, it is placed 
into the model along with the original data. The propagation formula between the network layer and the layer 
of graph convolution neural network is as follows:

where A = (ADTW · ALng−Lat · Aada) ∈ Rm×m (“· ” is the Hadamard product) is the adjacency matrix finally input 
by the model, I ∈ Rm×m is the unit matrix, and D̂ ∈ Rm×m is the pairwise angle matrix of ˜A , Pl is the feature 
matrix of the lth layer, Wl and bl are the weight matrix and the parametric matrix respectively.we present the 
detailed description of the algorithm used in our study. As shown in algorithm 1:

Algorithm 1.    Adaptive Adjustment Matrix. 

Transformer layer
The Transformer model has shown remarkable ability in modeling long-term dependencies and interactions in 
time series data39. In this article, we have focused on utilizing only the encoder component of the Transformer 
model40. We adopt a sliding window with size t and step size s to predict mortality. The encoder part of the model 
primarily consists of a multi-headed attention mechanism, which will be expressed as follows:

where Q ∈ R
T×dmodel is query item matrix, K ∈ R

T×dmodel is key item matrix , V ∈ R
T×dmodel is value item that 

needs to be weighted averaged. The Q, K, V matrix are obtained by multiplying each input vector of the encoder 
by three weight matrices Wq ∈ R

dmodel×dk , Wk ∈ R
dmodel×dk , Wv ∈ R

dmodel×dv , where dk = dv = dmodel/h . Wq , Wk , 
Wv are the parameters that the network needs to learn and train. The Q vector and the K vector are multiplied 
to obtain the attention score and determine the attention distribution. The standardized attention scores are 

(1)pl+1
= f (Hl ,A) = σ(D̂−

1
2 ˜AD̂−

1
2 PlWl

+ bl), ˜A = A+ I ,

(2)Attention(Q,K ,V) = softmax

(
QKT

√

dk

)
V ,
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compared with each multiplied V vector, which are obtained by passing the attention scores through the softmax 
layer. The higher the score, the greater the multiplied value, and the more attention it receives. The following 
equation represents the formula for the multi-headed attention mechanism:

Numerical application
data
Referring to the benchmark papers we selected20, we select the mortality data of 16 European countries with the 
satisfaction time of 1950 ≤ TL ≤ 2016 and the age of 0 ≤ d ≤ 100 from the human mortality database41. This is 
also consistent with the suggestion given by the Human Mortality Database that the data after 1950 is relatively 
stable because the Second World War ended in 1945. Mortality data during the world wars are not informative. 
In the mortality database, there are 41 countries. Among them, 16 European countries meet the span of 1950-
2016. During data preprocessing, we take the average mortality rate of all countries at the same time and age 
instead of missing values. In order to train and evaluate our model, the proposed model is trained from 1950 to 
2000 and the mortality from 2001 to 2016 is predicted. Figure 2 shows the natural logarithmic mortality trend 
of four selected countries: Sweden in northern Europe, Switzerland in central Europe, Britain in western Europe 
and Spain in southern Europe. Due to the limitation of time span, eastern European countries are not included.

As shown in the Fig. 2, with the passage of time, the mortality rate of European countries in the four different 
geographical regions has generally shown a downward trend, while countries from different geographical regions 
have their own unique mortality curve characteristics. Therefore, by clustering and analyzing the mortality rate 
of the 16 European countries, we group them into different clusters and assign the same adaptive parameters 
to the countries within each cluster. This approach helps determine the distribution of adaptive parameters in 
the matrix Aada.

(3)
MultiHead(Q,K ,V) = Concat(head1, · · · , headh)Wo,

headi = Attention(QW
Q
i ,KW

K
i ,VW

V
i ).
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Figure 2.   Log-mortality rates over time for each age in four countries.
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Adjacency matrix
The input adjacency matrix A of GCN is introduced in this section, which is obtained by multiplying three 
matrices Aada , ADTW and ALng−Lat , in which ADTW and ALng−Lat are obtained by calculating the DTW distance 
and geographical distance between countries respectively. For the distribution of adaptive parameters in the 
adaptive adjustment matrix Aada , we get the best number of clusters by analyzing and clustering the data, and 
give the same adaptive parameters as the countries in the same cluster.

Dynamic time warping
To measure the similarity between sequences, the DTW algorithm is employed, which calculates the distance 
between two sequences as a measure of their similarity. The steps of the DTW algorithm are as follows: Firstly, 
calculate the distance matrix between the points of two sequences. Secondly, find a path from the upper left 
corner to the lower right corner of the matrix to minimize the sum of elements on the path. Finally, the distance 
between two time series A and B is the sum of the minimum values of all possible paths.

Defining two time sequences of length n as A and B, M(i, j) =
∣∣A(i)− B(j)

∣∣ is the distance matrix between 
the two sequences , where i ≥ 1 , j ≤ n . In the distance matrix, the path length from the top left corner to the 
bottom right corner is equal to sum of the path length of its step and the current element size, where the previ-
ous element of the element ai,j on the path should be bi,j−1 , ci−1,j , di−1,j−1 . Then in the recursive algorithm, the 
minimum value Lmin(i, j) of the cumulative distance will be expressed as follows:

PCA analysis of age dimension in each country
Before clustering the data, we use principal component analysis (PCA) to reduce the dimension. The 
mortality series of each country is composed of several age groups, and each time point has multidi-
mensional variables, so it is necessary to replace the overall variables with a few variables from the multi-
dimensional time series, while retaining most of the information in the data. For individual country mor-
tality data Xi = (x1i , x2i , . . . , xdi)

T
∈ R

T×d where T is length of time series and d is the dimension of ages, i 
is the ith country. So that the mean vector is µi = E(Xi) = (µ1i ,µ2i , . . . ,µdi)

T , and the covariance matrix 
� = Cov(Xi ,Xi) = E[(Xi − µi)(Xi − µi)

T
] . Considering the linear transformation of the d-dimensional vari-

able Xi to the variable yi = (y1i , y2i , . . . , ydi)
T:

where αjT = (α1j ,α2j , . . . ,αdj) , j = 1, 2, . . . , d . The variable y1 corresponds to the linear transformation of Xi with 
the largest variance. By calculating the covariance matrix of Xi , the first principal component of Xi is obtained. 
The proportion of variance explained by the first principal component for each country will be found in the 
following Table 2:

In PCA, the first principal component height represents the overall trend of mortality change. Therefore, we 
chose the first principal component for cluster analysis, taking Denmark and Finland as examples. As shown in 
Fig. 3, gray represents 101 standardized mortality curves that change with time, and the thick black line represents 
the first principal component, which clearly describes the overall trend of mortality changes.

Shape‑based time series clustering with adjacency matrix construction
After measuring the distance or similarity between samples using metrics, we utilize the first principal compo-
nent of the 16 countries mentioned above for DTW clustering. We choose K-means clustering method to cluster 
samples, which randomly selects k center points in k clusters. Then the center of each cluster is calculated by 
iteration, and samples are distributed according to the distance. The expressions for this algorithm are as follows:

(4)Lmin(i, j) = min{Lmin(i, j − 1), Lmin(i − 1, j), Lmin(i − 1, j − 1)} +M(i, j).

(5)yj = αj
TXi = α1jx1i + α2jx2i + · · · + αdjxdi ,

Figure 3.   Trends in mortality and standardization of data.
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where Ci is the i-th cluster. As the evaluation index of clustering, the contour coefficient is chosen, and the cal-
culation formula is as follows:

where j represents the other sample points within the same category as sample i. The value of b(i) needs to traverse 
other cluster groups to get {b1(i), b2(2), . . . , bm(i)} . In addition, we introduce the sum of squared errors (SSE): 
SSE =

∑k
i=1

∑
p∈Ci

∣∣p−mi

∣∣2 , in order to help evaluate the clustering criteria. Figure 4 displays the Silhouette 
Coefficient and SSE values obtained from clustering the first principal component.

According to Fig. 4, we choose n = 3 as the optimal number of clusters. We plot the clustering results in Fig. 5, 
where France, Finland, Netherlands, Norway, Sweden, Spain, Belgium, Italy and Austria are clustered into the 
first category; Portugal, Britain, Switzerland, Italy and Austria belong to the second category; Denmark, Slovakia 
and the Czech Republic are clustered into the third category.

(6)
Minimize squared error:E =

k∑

i=1

∑

x∈Ci

i�x − µi�2
2,

Centroid:µi =
1

|Ci|
,

(7)

S(i) =
b(i)− a(i)

max{a(i), b(i)}
,

a(i) =
1

n− 1

n∑

j �=i

distance(i, j),

Table 2.   Proportion of four principal components in 16 countries (%). Significant values are in bold.

Main Ingredient FAC1 FAC2 FAC3 FAC4

Finland 79.408 5.872 1.337 1.120

Denmark 94.662 2.016 1.022 0.763

France 86.161 2.390 1.371 1.149

Netherlands 90.323 3.396 0.879 0.647

Norway 80.498 3.536 2.597 1.045

Sweden 87.648 2.679 1.095 0.977

Spain 89.589 4.062 2.525 1.124

Belgium 89.285 2.424 1.481 0.833

U.K. 91.722 3.879 1.429 0.699

Switzerland 87.392 3.458 1.227 0.921

Italy 94.865 2.167 0.949 0.270

Austria 90.767 1.407 1.063 0.908

Portugal 87.836 4.398 1.875 1.081

Hungary 62.557 24.839 2.027 1.417

Slovakia 66.364 13.854 3.301 1.157

Czech 85.880 3.898 1.460 1.169
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Figure 4.   First principal component clustering profile coefficients and SSE.
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Results
In this chapter, we evaluate the effectiveness of our model through experiments, which are divided into two steps. 
The first step is to verify the performance of our model under the same large cluster forecast, and the second step 
is to compare our large cluster forecast results with those of other models in a single country, so as to verify that 
the prediction results of our model in a single country are equally effective.

Large cluster prediction results
According to the mortality data of our 16 countries, we set m = 16 and T = 16 , which indicates that the forecast 
time is 16 years. In order to compare the effects of our models, we choose the classic multivariate time series 
prediction models, namely LSTM, 1D-CNN and RNN. In our model training, we fixed the epoch to 500 for 
each model and used the Adam optimizer with the mean squared error (MSE) loss function. The initial learning 
rate is set to lr = 0.001 . To evaluate the performance of the models, we calculate the root mean squared error 
(RMSE) for different time periods, age groups, and overall predictions42. In addition to the RMSE metric, we 
also utilized the MAE and MAPE metrics to calculate overall performance for both dimensions. The evaluation 
indicators used are as follows:

RMSEall , MAEall , MAPEall measure the prediction error of all countries, and the values calculated from the 
forecast values of each model are shown in Table 3. The results demonstrate that our model is superior to other 
series forecasting models in large cluster forecasting. In addition, the GT-A model with the adaptive adjustment 

(8)

RMSEall =

√√√√ 1

m× T × d

m∑

i=1

T∑

t=1

d∑

a=1

(
yi,t,a − ŷi,t,a

)2
,

MAE all =
1

m× T × d

m∑

i=1

T∑

t=1

d∑

a=1

∣∣yi,t,a − ŷi,t,a
∣∣,

MAPE all =
100%

m× T × d

m∑

i=1

T∑

t=1

d∑

a=1

∣∣∣∣
yi,t,a − ŷi,t,a

yi,t,a

∣∣∣∣,

RMSEall(t) =

√√√√ 1

m× d

m∑

i=1

d∑

a=1

(
yi,t,a − ŷi,t,a

)2
.

Figure 5.   Mortality first principal component cluster analysis.

Table 3.   Summary of RMSEall , MAEall , MAPEall over country groups. Significant values are in bold.

Model LSTM RNN CNN TF GT GT-A

RMSEall 0.2202 0.2403 0.2192 0.2117 0.1860 0.1729

MAEall 0.1359 0.1423 0.1529 0.1373 0.1246 0.1042

MAPEall 2.6162 2.6739 3.2913 2.8139 1.4750 1.1941
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matrix shows improvement compared to the GT model, which proves the effectiveness of our proposed adaptive 
adjustment matrix.

Figure 6 shows the RMSEall(t) values of different models from 2001 to 2016. With the passage of time, the 
RMSE values of all models gradually increase. Specifically, 1D-CNN, GT and GT-A show relatively stable per-
formance, while LSTM and RNN show oscillation. As well as the latest references in the field of human mortality 
prediction using deep learning, as shown in the references24, we used the transformer model(TF) with the same 
parameters as a preliminary comparison. Among all the models, GT and GT-A perform best in the step size 
prediction task, and GT-A performs better than GT.

Figures 7 and 8 show the residuals of predicted values and true values of all countries in the six models in the 
time dimension and the age dimension respectively, in which red indicates overestimation and blue indicates 
underestimation. In Fig. 7, the red dotted line represents the linear fitting curve of scattering points and the 
overall trend of scattering errors. The errors of LSTM ,RNN and Transformer tend to be overestimated, while 
the errors of 1D-CNN, GT and GT-A are relatively smooth in overall error, and the slopes of GT and GT-A are 
the lowest. Figure 8 presents the heat map of the average mortality error by age in 16 countries. The prediction 
error is obtained by subtracting the average predicted value from the average true value and then subtracting 
the estimated standard deviation of each age group.

All models exhibit inhomogeneities in error oscillations at low ages, caused by the excessive transition differ-
ences between unstable mortality at low ages and stable mortality at middle and low ages. Therefore, mortality 
prediction in the lower age groups requires higher performance of the model. Figure 8 shows that 1D-CNN, 
LSTM, RNN,Transformer have large overestimated parts between low to middle and low ages. In contrast, 
although GT and GT-A models present oscillatory irregular regions at low ages, the overall residuals are low. In 
the middle age region, GT and GT-A models perform evenly without abrupt overestimation and underestima-
tion, especially from around age 30 ≤ d ≤ 90 , which is the best performance. The higher age range exhibits areas 
of irregularity, similar to those observed in the lower age range. The GT-A model shows a small improvement 
compared to the GT model at low and high ages and overall has lower mean mortality error. The results dem-
onstrate that our model outperforms traditional time series prediction models over a large cluster range, which 
indicate that additional spatial information, namely homogeneous information, improves prediction accuracy in 
the processing of large cluster data. Our model not only improves the performance of simultaneous prediction 
but also obtains better performance in single country forecasting.
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Figure 6.   RMSEall(t) over forecasting steps of all conutries.
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Experiment of comparing the prediction results
For the prediction results of a single country, we define the following indicators to measure the prediction per-
formance of different models:
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In Fig. 9, performance metrics are calculated for all age groups and time horizons across 16 countries, and it is 
evident that the GT and GT-A models outperform the LC model in all countries. Specifically, in terms of RMSE, 
GT and GT-A outperformed the LC model by 52.4% and 59.2%, respectively. The following formula represents 
the percentage calculation method, where m denotes the total number of countries included in the calculation. 
The index of the i-th country under model1 is denoted as RMSEi(model1) . In terms of MAE, GT and GT-A 
exceeded the LC model by 72.2% and 79.2%, respectively. Finally, in terms of MAPE, GT and GT-A exceeded 
the LC model by 206.4% and 223.6%, respectively. The countries with larger values across all metrics may be 
attributed to the small size of their population. For instance, the populations of the top three countries with the 
highest indicators, namely Denmark, Hungary, and Slovakia, are 5.911 million, 9.689 million, and 5.430 mil-
lion, respectively.

(9)
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√√√√ 1
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(
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)2
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∣∣,
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100%
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∣∣∣∣.

Table 4.   Predictive performance of four models in different countries. a RMSE,MAE,MAPE are the overall 
RMSE,MAE,MAPE across all ages and time horizons in each countries. b Mean is the sample mean of the 
RMSEs over age groups. c Q1,Q3 are the first quartile, and third quartile of the RMSEs over age groups. 
d GT,GT-A are the GCN-Transformer model and the GCN-Transformer model with the addition of adaptively 
adjusted adjacency matrix, respectively. Significant values are in bold.

Model RMSEa MAEa MAPEa Meanb Q1
c Q3

d

UK

 LC 0.1630 0.1320 3.0010 0.1460 0.1927 0.1114

 LSTM 0.1215 0.0830 0.8439 0.1024 0.0639 0.1248

 GT 0.0942 0.0648 0.7236 0.0719 0.0336 0.1574

 GT-A 0.0750 0.0512 0.5710 0.0682 0.0355 0.0592

France

 LC 0.2150 0.1510 2.6180 0.1650 0.0704 0.2928

 LSTM 0.1255 0.0934 0.9668 0.1113 0.0675 0.1417

 GT 0.1260 0.0895 1.1069 0.0898 0.0673 0.3223

 GT-A 0.1074 0.0735 0.9037 0.0913 0.0696 0.0742

Italy

 LC 0.2130 0.1420 2.6580 0.1600 0.1130 0.1855

 LSTM 0.1507 0.1071 1.0447 0.1285 0.0721 0.1749

 GT 0.1313 0.0899 0.9584 0.0987 0.0572 0.1402

 GT-A 0.1122 0.0750 0.7596 0.0897 0.0563 0.0517

Spain

 LC 0.2170 0.1550 3.1700 0.1770 0.0536 0.3206

 LSTM 0.2063 0.1436 1.2722 0.1683 0.0681 0.2420

 GT 0.1516 0.1057 1.0853 0.1170 0.0547 0.1270

 GT-A 0.1244 0.0847 0.8647 0.1010 0.0486 0.0676

Sweden

 LC 0.2320 0.1650 3.1270 0.1897 0.1666 0.1890

 LSTM 0.2803 0.1563 1.2730 0.1906 0.0649 0.2103

 GT 0.1957 0.1103 0.9958 0.1391 0.0539 0.1572

 GT-A 0.1934 0.1129 1.0982 0.1352 0.0489 0.1494

Switzerland

 LC 0.3430 0.2260 3.7180 0.2616 0.0858 0.4345

 LSTM 0.3043 0.1802 1.4848 0.2181 0.0850 0.2449

 GT 0.2377 0.1464 1.4929 0.1838 0.0890 0.2409

 GT-A 0.2236 0.1367 1.5796 0.1716 0.0659 0.2531
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In Table 2, we have selected six representative countries from Northern, Western, Central and Southern 
Europe for specific analysis, with the calculation based on the age group of each country. The optimal perfor-
mance is indicated by bold markings. As shown in Table 4, both the GT model and the GT-A model outperform 
the LC model across all six indicators. Moreover, the GT-A model with the addition of the adaptive control matrix 
outperformed the GT model in 83.3% of the indicators.

Based on Fig. 10, it is observed that the LC model performed poorly in mortality prediction in young age 
as well as in young adulthood for the UK and Czech, with severe oscillations in RMSE. In contrast, the RMSE 
curves of GT and GT-A are much smaller than that of the LC model between the ages of 10 and 50 years, showing 
more stability in performance. The RMSE curves of GT-A are generally lower than those of GT during middle 
age to old age. For instance, the GT-A model performed significantly better than GT within 60 ≤ d ≤ 85 in Italy, 
Finland, and Czech. Overall, the GT-A composite model exhibited the greatest advantage in the entire age group.

To visually compare the predicted values with the true values, we follow the approach of Li and Lu42 and plot 
the average mortality rates for ages 0 ≤ d ≤ 100 . The plot includes the true average mortality rates from 1950 
to 2016 and the average predicted mortality rates for the three models from 2001 to 2016. As shown in Fig. 11, 
the LC model exhibits a flat curve in the 16-year average forecast value from 2001 to 2016, which fails to capture 
the fluctuation change of the average true value. In contrast, the GT and GT-A models are able to fluctuate with 
the fluctuation of the true value, and in most countries, the average forecast value of GT-A is closer to the aver-
age true value. Through the analysis of the cumulative error, it becomes evident that the error of the LC model 
experiences a rapid increase, in contrast to the other three models which demonstrate a more moderate perfor-
mance. The GT and GT-A models consistently exhibited the highest level of performance across most countries.

(10)

RMSEmean1 =
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RMSEmean2 =
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m

m∑
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Percent = ((RMSEmean1 − RMSEmean2)/RMSEmean1) ∗ 100%.
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Figure 10.   RMSE over forecasting years.
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RMSFE (Root Mean Squared Forecast Error) can be utilized to assess the performance of our predictions, 
which bears similarities to RMSE (Root Mean Squared Error). Once we have obtained the RMSFE, it enables 
us to compute prediction intervals. These intervals represent the range within which we expect our predicted 
values for future observations to fall. Typically, prediction intervals are expressed as intervals that encompass 
the likely range of true observations.

The width of the prediction interval is typically determined by the confidence level and the forecast error 
(RMSFE). The confidence level denotes the desired probability of the prediction interval encompassing the true 
observation. For instance, selecting a confidence level of 95% indicates that we aim for a 0.95 probability of the 
prediction interval covering the true observation as shown in Fig. 12.

In a normal distribution, around 95% of the observations lie within two standard deviations of the mean. 
Hence, leveraging the properties of the normal distribution, we can employ the RMSFE and confidence level to 
calculate the size of the prediction interval.

Discussion
In this study, we present a novel model GT-A to simultaneously predict mortality for multiple countries in large 
clusters, representing a major improvement in mortality prediction models for large clusters. By incorporating 
spatial information and similarity information between multidimensional series, the traditional task of mortality 
time series prediction is efficiently incorporated into spatial data for the first time. The results demonstrate that 
exploiting similarity information between multidimensional series to capture spatial location information in large 
clusters has the ability to effectively improve the accuracy of time series forecasting. In large-scale cluster experi-
ments, the prediction performance of the GT-A model is better than that of the traditional time series prediction 
model. Furthermore, the addition of the adaptive adjustment matrix of clustering information improves the 
regional heterogeneity in large clusters, and enhances the accuracy of the model to some extent. These findings 
suggest that future research should be conducted on the heterogeneity existing in each dimension in the study of 
large clusters to further improve prediction accuracy.We also find that simultaneous prediction for large clusters 
will improve prediction accuracy of a single national data set (Supplementary Information). Compared with the 
traditional LC model with single data set prediction, GT-A achieves better performance across the board. As Li 
and Lee11 said, it was possible to improve the prediction accuracy of mortality of a single population by captur-
ing mortality trends common to several populations with higher statistical confidence.So far, there are various 
variants of the Transformer model. However, the mortality prediction model has not progressed synchronously, 
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Figure 11.   Forecast versus actual mortality rates averaged across 0 ≤ d ≤ 100 and prediction error.
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so this study will innovatively apply Transformer to mortality prediction and combine GCN network to capture 
geographic information. Furthermore, we also consider exploring the design of more suitable models for mortal-
ity rate prediction in future research to enhance its accuracy. For instance, combining attention mechanisms with 
the lc model could be a potential approach. This is because advancements in mortality rate prediction models 
have the potential to greatly benefit public health initiatives and decision-making processes. Moreover, the black 
box nature of neural networks presents uncertainty that prevents a full understanding of the mathematical and 
actuarial principles behind them, which is also the field of future research and development.

Data availability
The datasets generated and/or analysed during the current study are available in the [Human Mortality Database] 
repository, [https://​morta​lity.​org/].
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