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Pulsar glitches from quantum 
vortex networks
Giacomo Marmorini 1,2, Shigehiro Yasui 3,4 & Muneto Nitta 3,4*

Neutron stars or pulsars are very rapidly rotating compact stars with extremely high density. One 
of the unsolved long-standing problems of these enigmatic celestial bodies is the origin of pulsars’ 
glitches, i.e., the sudden rapid deceleration in the rotation speed of neutron stars. Although many 
glitch events have been reported, there is no consensus on the microscopic mechanism responsible 
for them. One of the important characterizations of the glitches is the scaling law P(E) ∼ E

−α of 
the probability distribution for a glitch with energy E. Here, we reanalyse the accumulated up-to-
date observation data to obtain the exponent α ≈ 0.88 for the scaling law, and propose a simple 
microscopic model that naturally deduces this scaling law without any free parameters. Our model 
explains the appearance of these glitches in terms of the presence of quantum vortex networks arising 
at the interface of two different kinds of superfluids in the core of neutron stars; a p-wave neutron 
superfluid in the inner core which interfaces with the s-wave neutron superfluid in the outer core, 
where each integer vortex in the s-wave superfluid connects to two half-quantized vortices in the 
p-wave superfluid through structures called “boojums”.

Neutron stars (NSs) and in particular pulsars are compact stars with the highest known density in our universe 
(about one solar mass within 103 km3)1, thereby providing an astrophysical laboratory to study phases of mat-
ter under extraordinary conditions: not only at very high density but also under rapid rotation and extremely 
strong magnetic fields (see Refs.2,3 for recent reviews). The study of NSs attracts great interest from researchers 
in diverse fields as recently there has been observations of highly massive  NSs4,5 and gravitational waves from 
a binary NS  merger6. One of the most intensive events of NSs is pulsar’s glitches, i.e., the abrupt deceleration 
of the rotation speed of  NSs7 (see Refs.8–10 as recent reviews). Although many glitch events have been reported, 
the microscopic mechanism responsible for all the glitch events is still elusive. However, several ideas have been 
theoretically proposed:  starquakes11,12 and the catastrophic unpinning of quantum superfluid  vortices13,14. While 
star quakes are not a viable explanation for all glitches, vortex motion is generally  invoked15.

One of the important characterizations of the glitches is the scaling law of the cumulative probability distribu-
tion of glitch sizes P(E) ∼ E−α with an exponent α , giving the probability of the occurrence of a glitch with energy 
E16 (see also Ref.17). The value of α ≈ 0.14 was obtained in Ref.16 (we notice that the size distribution of glitches 
is not precisely a power law but bi-modal (multi-modal) with an excess of large  glitches9). Adopting the scaling 
law for many glitches in average seems to be natural if one regards the glitches occurrence as consequences of 
starquakes in the crust region at the surface of NSs. In fact, this scaling law resembles the Gutenberg–Richter law 
expressing the probability distribution of the total number of earthquakes of certain  magnitude18. This is known 
as an instance of power-law distributions commonly found in diverse subjects in the natural, human and social 
sciences; for example the Pareto distribution drawn from  economics19 and scale-free networks such as the World 
Wide Web in network  science20. The “network” is one of the key ingredients in our study.

The other key ingredient of our study is quantum vortices in superfluids. Superfluids are fluids possessing 
zero viscosity which can support states with persistent flows. In laboratory experiments, 4 He atoms become a 
superfluid at low temperatures. In the interiors of NSs, neutrons form Cooper pairs and exhibit  superfluidity21 
(see Ref.22 for a recent review) (see Fig. 1a), which is consistent with the thermal evolution of NSs, the long 
relaxation time after each  glitch11,12,23, and the neutrino  emissivity24. When superfluids undergo rotation, vortices 
are created. One of remarkable properties of superfluids is the fact that these vortices carry a quantized amount 
of angular momentum unlike classical fluids, hence the name quantum vortices. Since neutron stars are rapidly 
rotating, the superfluid component is pierced by quantum vortices lying along the rotation axis, which typically 
form an Abrikosov triangular lattice whose number can reach 1019 . There is also an accompanying ordinary 
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component (not forming Cooper pairs) which lowers its rotation speed by releasing gravitational waves and 
electromagnetic pulses, whose period is observed to be a continuous quantity. On the other hand, the superfluid 
component maintains a constant rotation speed, as a consequence of superfluidity. Therefore, a gap between the 
rotation speeds of the two components grows over time. The superfluid component can lower its rotation speed 
by releasing vortices. If the vortices can be released one by one, then the superfluid component’s rotation speed 
can catch up with the ordinary component immediately once this difference reaches the amount corresponding 
to one quantized vortex, and the change of the rotation should be (almost) smooth at any given time, which does 
not explain the appearance of glitches.

In order to overcome this problem, the hypothesis of catastrophic unpinning of quantum  vortices13,14 assumes 
that all vortices are pinned to nuclei, which play the role of impurities in the crust (see the inset of Fig. 1a), 
analogously to metallic superconductors where Abrikosov vortices are energetically favored to be pinned to 
impurities. Then, in order to explain the occurrence of glitches, an avalanche of unpinning of a large number of 
vortices is assumed to occur spontaneously. Several models have been suggested, but one usually needs some 
phenomenological parameters in order to account for the momentum transfer from the core region to the 
crust, a subject around which there is quite some uncertainty, fueling a long  debate25–33 (see Ref.15 as a review). 
Moreover, a recent work based on microscopic  calculations34 shows that, unlike in metallic superconductors, 
pinning of vortices to impurities is energetically disfavored in the case of nuclear superfluids (see, e.g., Ref.35 for 
the recent study) (despite the advances in microscopic calculations, the relevance of the pinning to the glitch 
mechanism is still unclear because the sign of the single-nucleus interaction may not be directly related to the 
absence of the  pinning36).

Here, we first reanalyse the accumulated up-to-date observation  data37,38 to obtain the scaling law P(E) ∼ E−α 
with the exponent α ≈ 0.88 . We then propose a simple microscopic model that naturally deduces the scaling 
law with this exponent without any additional free parameters. Our model explains the origin of the glitches 
in terms of a quantum vortex network that arises at the interfaces of the two different kinds of superfluids in 
the cores of NSs. In contrast to the catastrophic vortex unpinning hypothesis, we need no (un)pinning for the 
accumulation of quantum vortices.

The two different kinds of superfluids explained above were theoretically predicted as two different types 
of neutron Cooper pairs: s-wave and p-wave parings. While an s-wave  paring21 is dominant in the low-density 
regime relevant for the neutron star outer core, a p-wave paring is dominant in the high-density regime relevant 
for the inner  core39,40,40–49 (more precisely, s-wave and p-wave pairings denote 1S0 (spin-singlet and s-wave with 
total angular momentum J = 0 ) and 3P2 (a spin-triplet and p-wave with total angular momentum J = 2 ) parings, 
respectively. See Supplementary Information for more details). Therefore, we will assume that the interior of 
neutron stars consists of a layer structure with a p-wave inner core surrounded by an s-wave outer core form-
ing a spherical shell (Fig. 1b) (As a remark for a different argument, the the Kelvin–Helmholtz instability at the 
interface of the s-wave crust and the p-wave core may provide a trigger mechanism for pulsar  glitches50. This is 
different from the mechanism proposed in our study). We will focus on the superfluid components neglecting 

Figure 1.  Inner structures of NSs. (a) The conventioanl picture: Pinned vortices in the s-wave superfluid in 
the core surrounded by the crust (dark blue) in the outermost region. Vortices form a lattice and are pinned at 
nuclei in the crust (see the inset). The orange arrows denote that vortices are released when a NS decreases its 
rotation speed. (b) Our picture: vortex network in the p-wave inner core (pink) surrounded by the s-wave outer 
core of the spherical shell (grey). Vortices are not pinned at nuclei in the crust. A single integer quantum vortex 
(IQV) in the s-wave outer core is split into two half-quantized vortices (HQVs) in the p-wave inner core. The red 
and blue vortices indicate different topological charges of the HQVs (±), respectively. There are two cases (i) and 
(ii) for the connections between IQVs and HQVs. (i) The same pair of two HQVs in the p-wave inner core are 
connected to a single IQV in the upper and lower s-wave regions, forming a cluster of a certain minimum size. 
(ii) Two HQVs connected to a single vortex in the upper (lower) s-wave region are connected to different IQVs 
in the lower (upper) s-wave region, forming a cluster with a larger size. In our proposal, this network in (ii) plays 
an essential role (see the text).
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interaction with a normal component, while the mutual friction between normal and superfluid components 
exists in real astrophysical  systems10,51.

We show that the glitch mechanism can be explained by the crucial property of p-wave superfluids: the exist-
ence of half-quantized vortices (HQVs) carrying half-quantized  circulations52–55, as opposed to integer-quantized 
vortices (IQVs)44,46,47,56,57. HQVs are energetically favored so that one IQV is split into two HQVs (denoted as 
red and blue vortices in Fig. 1b) with additional topological charges cancelling each other (see Supplementary 
Information)53,54. Here the colors of red and blue are used to distinguish the two species of topological charges 
of the HQVs (±). Quantum vortices in the s-wave and p-wave superfluids are connected through junctions 
called “boojums”58 at the interface; one IQV in the s-wave superfluid is connected to two HQVs in the p-wave 
superfluid. We thus have a picture of a large number of vortices penetrating the p-wave inner core surrounded 
by the s-wave outer core as in Fig. 1b. Then, it is possible that the same pair of two HQVs in the p-wave core are 
connected to a single IQV in the upper and lower s-wave regions (see (i) in Fig. 1b). If this is the case, a neutron 
star superfluid can change its rotation speed by releasing vortices one by one from the core as is the case without 
vortex pinning at the crust, which would not explain the appearance of glitches. However, more generally, as 
illustrated in (ii) in Fig. 1b, we can have two HQVs connected to a single IQV in the upper (lower) s-wave region 
which are connected to a different IQV in the lower (upper) s-wave region, thereby leading to the formation of 
a vortex network composed of a cluster of connected vortices as in Fig. 2. As we show below, in this case, each 
cluster can contain a large number of vortices, which exhibits the power-law distribution of glitches.

Observed distribution of energy
Let us analyze the glitch dataset reported by Ref.37; we additionally use the pulsar  catalogue38 to retrieve the pulsar 
periods. Let Po(E) denote the cumulative probability of observed glitch energies as in Ref.16 (see “Methods” for 
details). Here the glitch energy E denotes the released kinetic energy I��� with the momentum of inertia I of 
the NS, the rotation frequency � of the NS, and the change of frequency �� by the glitch. Figure 3 displays the 
log-log plot of Po(E) obtained from the analysis of 533 glitches, where the line, determined by the least squares 
method using all 533 data points, shows the cumulative distribution of the power law

One can see that in the central region (away from extremely small or extremely large glitches), the cumula-
tive distribution is well approximated by the power law. However, note that we used all the data without any 
cutoff for fitting.

Cluster size and energy distribution
The radius of the whole core is typically 10 km. There is an uncertainty for the size of the p-wave inner core but 
it is thought to be a few km. The mean intervortex distance is of order 10−6 m, and the number of vortices is of 
order 1019 . We assume that the s–p interfaces are mostly flat and parallel for simplicity although the outer and 
inner cores would be almost spherical. However, our results do not depend on the precise details of the underly-
ing shapes and sizes at all. We further assume a triangular vortex lattice which is rigidly rotating, as is typically 
the case for superfluids. We consider a rotating frame in which this lattice is static. Then, at the s–p interface, 
two HQVs with different topological charges in the p-wave region will pair and connect to an integer vortex in 
the s-wave region via a boojum.

In order to study the cluster size distribution we employ the following model. We assume that the HQVs in 
the p-wave region form an Abrikosov-like triangular lattice with periodic boundary conditions; however we 

(1)Po(E) ∼ E−0.88±0.03.

Figure 2.  Schematic views of pairings of vortices at s-p-s interfaces resulting in vortex clusters. (a) Top view of 
a vortex network, (b) top view and (c) view from diagonally above of a 3D configuration. In (a), black and grey 
dots denote integer vortices in the s-wave region at the top and bottom, respectively, while red and blue dots and 
lines denote HQVs in the p-wave region forming an Abrikosov lattice. Clusters with sizes one, three and four are 
shown.
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do not assume any restriction on the blue/red vortex pattern except that for a red vortex it is always possible to 
find a blue nearest neighbor and vice versa. We then consider a triangular vortex lattice of rhombic shape and 
simulate two random blue-red pairings, that would correspond to the boojums at the top and bottom ends of the 
vortices. The superposition of the two pairings generates loops of various sizes, which corresponds to clusters 
in which all vortices are connected via boojums. This was schematically depicted in Fig. 2, and an example of 
configurations taken from our simulation is presented in Fig. 4 (note that a minimal loop made of two vortices 
appears in the form of a segment).

Statistical analysis of the cluster size distribution shows a power-law behaviour (for details of the analysis see 
“Methods”). The best estimate of the probability distribution of cluster size is

where s is the cluster size and the subscript t stands for “theoretical”; the simulated data points and the best fit to 
Eq. (2) is displayed in Fig. 5. Then, we can define the cumulative probability as Pt(s) =

∫ smax

s pt(u)du . A cluster 
of size s defines a region inside of which the number of vortices is of order s2 . Since there is no reconnection 
between HQVs with different topological  charges59,60, when a cluster is expelled from the neutron star core, it 
necessarily drags all the other vortices enclosed by that cluster. It is therefore safe to assume that the energy 
associated with the emission of a vortex cluster satisfies the relation E = cs2 for some constant c. By using this 
relation, we can translate the size distribution in Eq. (2) to the energy probability distribution, pt(E) ∼ E−1.8±0.2 
and the corresponding cumulative distribution (see “Methods”)

Thus, our model gives a description of the scaling law in Eq. (1) for the set of observed glitches without any 
free parameters.

Conclusion
We have obtained the power-law scaling law of Eq. (1) for glitches from recent observational data, and proposed 
a simple model to explain the scaling law of Eq. (3) based on vortices penetrating the p-wave superfluid core 
surrounded by the s-wave superfluid. Boojums connecting two HQVs in the p-wave superfluid and one integer 
vortex in the s-wave superfluid give rise to clusters of vortices, whose distributions realise the scaling law. The 
appearance of the vortex network naturally explains a similarity with power-law distributions in other systems 

(2)pt(s) ∼ s−2.6±0.3,

(3)Pt(E) ∼ E−0.8±0.2.

Figure 3.  log10 Po(E) v.s. log10 E plot of observed glitches of energy E. The blue line indicates Eq. (1) obtained 
by fit using all the data points, for which the intercept is arbitrary for the log-log plots.

Figure 4.  Snapshot of pairings at the top (a) and bottom (b) interface, and the resulting vortex clusters (c), 
which appears as loops in the top view. Here, the red and blue dots and segments denote HQVs in the p-wave 
region.
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widely discussed in network science. The key strength of our approach is that our model contains no free param-
eters to explain the observed data.

Explaining deviations from the power laws such as excesses of large events, see e.g. Ref.51, is a future problem. 
Future models should also incorporate the hydrodynamics on the neutron star fluids, which can impact signifi-
cantly also the observed size distributions and may explain the deviations from the power laws.

Methods
Observed distribution of glitch energy
Let us analyze the glitch dataset reported by Ref.37; we also use the pulsar  catalogue38 to retrieve the pulsar peri-
ods. The energy of a glitch can be estimated from the change in rotational energy of the neutron star, namely 
Eg = I ��� , where I is the moment of inertia and � is the rotational frequency. By taking 1.4M⊙ as the typical 
neutron star mass and 105 cm as the typical radius, the glitch energy  becomes16

where P is the period of the pulsar in seconds, �ν/ν is the relative change of frequency associated with the glitch 
and a is a constant of order 1 (for concreteness we take a = 2.9116). Let us also define the cumulative probability 
of observed glitch energies as in Ref.16:

Figure 3 displays the log-log plot of Po(E) obtained from the analysis of 533 glitches, where the line, deter-
mined by the least squares method using all 533 data points, shows the cumulative distribution of the power law 
in Eq. (1). Note that a change of the overall energy scale in Eq. (4) would not affect this behaviour.

This scaling law is significantly different from the previously found scaling behaviour Po(E) ∼ E−0.1416. The 
reason can be considered as follows: Ref.16 used 27 data points of glitches in the energy range 1039–1042 erg, for 
which the upper limit came from the observational limitations at that time, while our analysis with 533 data sets 
covers a broader range of energies than theirs per Fig. 3, which yields the observed differences of the exponents. 
Another important point is that several datum corresponding to extremely giant glitches with energy higher 
than 1043.6 erg are rare events, with corresponding lower probability, giving a smaller contribution to our fitting.

Simulation of vortex pairing and clustering
Cluster configurations are generated by simulating two uncorrelated random pairings in a triangular lattice with 
periodic boundary conditions. This is achieved by a version of the worm algorithm. First, we choose an arbitrary 
pairing, e.g. the simple pairing in Fig. 6, we then perform a series of decorrelation steps to obtain random pair-
ings. Each step consists of the following operations. First we generate a path defined by a sequence of sites as 
follows: we randomly choose a site, that will be the first in the sequence; then we add the site to which the first 
one is paired; next, we randomly choose one of the five available nearest neighbours of the latter site (if it is a 
paired site already, which is already in the sequence, then it cannot be chosen) and add it to the sequence, fol-
lowed by the corresponding paired site, and so on, until we encounter a site that is already in the sequence. This 
defines a path that contains a loop. If the loop has an odd number of segments, we discard it; otherwise we flip 
the pairing along the loop. This completes one decorrelation step; we perform 103 steps for each site to obtain the 
first configuration (interpreted as the boojums at the top s–p-wave interface) and the same number of steps to 
obtain the second configuration (interpreted as the boojums at the bottom s–p interface). Superposing the two 
configurations gives a schematic top view of the HQV system, in which loops represent vortex clusters that are 
kept together by boojums. The size of the clusters is calculated by a standard analysis of the adjacency matrix, 

(4)Eg ≈
a · 1046

P2
�ν

ν
ergs,

(5)Po(E) =

∫ Emax

E
po(u)du.

Figure 5.  Plot in linear scale of the simulated cluster-size probability data points {si , qi = p(si)} and the inferred 
power law pt(s) ∼ s−2.6 (see “Methods” for details).
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which is the accepted procedure for complex networks. See Supplementary Information (Sec. 3) for possible 
realisations in condensed matter setups of s–p–s interfaces.

Statistical analysis
In this section, we statistically analyze 100 independent simulations of size with 482 = 2304 sites. We use a 
Bayesian technique based on Dirichlet  distributions61, which is appropriate for discrete random variables, such 
as our cluster size. The likelihood of observing a data set is given by the multinomial distribution

where ni is the number of observed clusters with size si = 2i , N =
∑

i ni and qi are the corresponding probabili-
ties. Since our simulations are independent, we simply consider the data from all simulations at the same time. 
We can infer the the probabilities q = {qi} given the observed counts n = {ni} using Bayes’ theorem,

where p(n|q) is the likelihood defined in Eq. (6) and p(q) is the prior distribution of the probabilities q . The 
appropriate choice of prior is the Dirichlet distribution

with ai = 1, ∀i ; this is chosen since we do not assume any specific knowledge about the probabilities before doing 
the simulations. For the properties of the Dirichlet and multinomial distribution the posterior distribution will 
also be of Dirichlet type, namely

The expectation value of the probabilities will then be

(6)p(n1, . . . , nk|q1, . . . , qk) =
N !

n1! . . . nk!

k∏
i

qnii ,

(7)
p(q|n) =

p(n|q) p(q)∫
dq p(n|q) p(q)

,

(8)Dir(q|a) =
Ŵ(A)∏k
i Ŵ(ai)

k∏
i

qaii , A ≡

k∑
i

ai

(9)p(q|n) = Dir(q|a + n).

Figure 6.  Schematic representation of the worm algorithm: (a) starting configuration; (b) random generation 
of the worm, which terminates when it crosses itself; (c) only the loop section of the worm is retained; (d) pairs 
are flipped along the worm, giving rise to the new configuration. In (a,d), only pairs before and after flipping are 
coloured by red and blue.
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The error bars for the qi ’s can be estimated by taking the square root of the variance Var[qi] = E[(qi − q̄i)
2] 

over the distribution Eq. (9); they turn out to be quite small, essentially invisible in Fig. 7. We try to fit the data 
{si , qi} with two different models, namely exponential and power law, with a least-squares method, in order to 
understand the general behaviour of the cluster size distribution. By looking at the Akaike information criterion 
(see Supplementary Information (Sec. 4) for details), it is clear that that the power-law model is preferred and 
the best fit gives

where ±0.3 denotes the statistical error. In Fig. 5 in the main text and in Fig. 7 the data {si , qi} and the inferred 
law of Eq. (11) are represented both in linear and logarithmic scales, respectively. Figure 7 shows the log-log plot, 
in which the line is determined by the least square method using all 100 simulations. The large size configura-
tions on the right part deviate from the line, but these deviations are quite tiny ( ≈ 10−4 to 10−3 ) giving a smaller 
contribution to our fitting. In fact, one can find that the fitting is very good in the linear plot.

We have also generated simulations with smaller N and get similar results, thereby implying the N independ-
ence of our results for large N.

Translation from the cluster size distribution to the glitch energy distribution
By using the relation E = cs2 between the glitch energy E and the vortex cluster size s, we can translate the size 
distribution in Eq. (11) to the (cumurative) energy distribution of glitchs as

with some constants c′ and c′′ , which defines the energy probability distribution, pt(E) = c′E−1.8±0.2 and the 
corresponding cumulative distribution

(10)q̄i =
ni + 1

N + k
.

(11)p(s) ∼ s−2.6±0.3

(12)
Pt(s) =4.8

∫ smax

s
u−2.6du = c′

∫ Emax=cs2max

E=cs2
v−1.3 dv

v1/2

=c′
∫ Emax

E
v−1.8dv = c′′E−0.8 = Pt(E)

(13)Pt(E) = c′′E−0.8±0.2.

Figure 7.  Plot in logarithmic scale of the simulated cluster-size probability data points {si , qi = p(si)} and the 
inferred power law pt(s) ∼ s−2.6.
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Data availability
Our data are available upon request. The contact researcher is GM.

Code availability
Our code is available upon request. The contact researcher is GM.
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