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Identification of diagnostic 
markers for moyamoya disease 
by combining bulk RNA‑sequencing 
analysis and machine learning
Yifan Xu 1,2, Bing Chen 1,2, Zhongxiang Guo 1,2, Cheng Chen 1, Chao Wang 1, Han Zhou 1, 
Chonghui Zhang 1 & Yugong Feng 1*

Moyamoya disease (MMD) remains a chronic progressive cerebrovascular disease with unknown 
etiology. A growing number of reports describe the development of MMD relevant to infection 
or autoimmune diseases. Identifying biomarkers of MMD is to understand the pathogenesis and 
development of novel targeted therapy and may be the key to improving the patient’s outcome. 
Here, we analyzed gene expression from two GEO databases. To identify the MMD biomarkers, the 
weighted gene co‑expression network analysis (WGCNA) and the differential expression analyses 
were conducted to identify 266 key genes. The KEGG and GO analyses were then performed to 
construct the protein interaction (PPI) network. The three machine‑learning algorithms of support 
vector machine‑recursive feature elimination (SVM‑RFE), random forest and least absolute shrinkage 
and selection operator (LASSO) were used to analyze the key genes and take intersection to construct 
MMD diagnosis based on the four core genes found (ACAN, FREM1, TOP2A and UCHL1), with highly 
accurate AUCs of 0.805, 0.903, 0.815, 0.826. Gene enrichment analysis illustrated that the MMD 
samples revealed quite a few differences in pathways like one carbon pool by folate, aminoacyl‑
tRNA biosynthesis, fat digestion and absorption and fructose and mannose metabolism. In addition, 
the immune infiltration profile demonstrated that ACAN expression was associated with mast cells 
resting, FREM1 expression was associated with T cells CD4 naive, TOP2A expression was associated 
with B cells memory, UCHL1 expression was associated with mast cells activated. Ultimately, the 
four key genes were verified by qPCR. Taken together, our study analyzed the diagnostic biomarkers 
and immune infiltration characteristics of MMD, which may shed light on the potential intervention 
targets of moyamoya disease patients

Keywords Moyamoya disease, Bulk RNA-sequencing, Machine learning, Immune infiltration, Diagnostic 
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MMD is a rare chronic occlusive cerebrovascular disease characterized by reduced cerebral blood flow due to 
stenosis or occlusion of the cranial carotid arteries, often secondary to abnormal formation of the skull base 
vascular  network1. In East Asia, the incidence of moyamoya disease is much higher than in other  areas2,3. In a 
national survey in Japan, among 7700 patients surveyed, the ratio of female to male patients was 1.8, and the peak 
age of onset of patients was described as 10 to 14 years for females and 20 to 24 years for  males4. Furthermore, 
studies have depicted that the hemodynamics of patients with moyamoya disease has also changed, the dilated 
and fragile moyamoya membrane blood vessels often rupture and cause intracranial hemorrhage. Consequently, 
searching novel biomarkers related to MMD and improving the accuracy of MMD prediction is key to improving 
MMD prevention and management.

Little is known about the etiology and pathogenesis of MMD, recent studies have shown that it may be 
influenced by genetic, immune response,  inflammation5,6. It has been confirmed that the ring finger protein 213 
(RNF213) is the most crucial susceptibility gene of  MMD5,7. A few MMD patients, however, did not have RNF213 
mutation, which may be related to innate angiogenesis. Many research findings revealed that the increase or 
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abnormal activity of some growth factors such as vascular endothelial growth factor (VEGF), basic fibroblast 
growth factor (bFGF), hepatocyte growth factor (HGF), can promote intimal hyperplasia and smooth muscle 
cell (SMC) migration in  vessels8–10. Additionally, it is reported that many autoimmune diseases are related to 
moyamoya disease, such as systemic lupus erythematosus, graves disease, antiphospholipid antibody syndrome 
and HLA class I or II allele  abnormalities11–13. Previous studies suggested that IgG was deposited in the damaged 
inner elastic layer, which promoted S100A4 migration to the intima of blood vessels, leading to lumen stenosis 
and compensatory proliferation of small blood vessels, indicating that immune-related factors may be involved 
in the functional and morphological changes of smooth muscle  cells14. Fujimura et al. Found that the concentra-
tions of sCD163 and CXCL5 in serum were abnormal and concluded that M2 macrophages might participate 
in the pathogenesis of MMD by increasing their autoimmune  activity15. Kang et al. found that the increase of 
IL-1β level secreted by macrophages can activate the proliferation of macrophages, endothelial cells and smc, 
thus leading to the increase of vascular permeability and endothelial  dysfunction8. These studies have proved 
that the abnormal immune system may exert a key part in the MMD formation.

In this study, GSE157628 and GSE141024 datasets were obtained in GEO database, the WGCNA algorithm 
was used to investigate gene variants and explore the coexpression network most closely related to MMD. Before 
this, nevertheless, there has never been any investigation using machine learning, this study is the first application 
of machine learning to determine the characteristic genes of MMD immune-related genes. Here, we apply three 
machine learning algorithms, random forest, SVM-RFE and LASSO, and to predict biomarkers, to predict the 
MMD progress. All the work we do is aimed at finding emerging and accurate biomarkers and clinical interven-
tion targets that can be used in the diagnosis and treatment of MMD.

Methods
Data processing and download
GSE157628 and GSE141024 were obtained from the GEO (https:// www. ncbi. nlm. nih. gov/ gds) database, details 
of the two datasets are found in Supplementary Table S1. And some of their clinical characteristics are found in 
Supplementary Tables S2, S3. The raw data were processed and normalized to use the "limma" (version 3.46.0) 
R package, including the probe ID transformation and calculation of gene expression. To eliminate batch effects 
from the dataset, we employed the "sva" R package. The workflow of this investigation is provided in Fig. 1.

Differentially expressed gene (DEG) analysis
The aim of this study was to conduct a differential expression analysis in order to investigate the disparities 
between normal patients and those diagnosed with moyamoya disease. DEG analysis was performed using the 
"limma" R package under the conditions of p < 0.05 and |log2FC|≥ 0.5. The genes are categorized as up-regulated 
or down-regulated based on whether their log 2FC value exceeds 0.5 or falls below − 0.5. In order to enhance 
the visualization of these differentially expressed genes (DEGs), R software is utilized to generate heat maps and 
volcano plots. Heat maps are constructed using the pheatmap R package.

Enhancement of functionality
The data is assessed through functional enrichment analysis to validate the potential target’s putative function. 
Gene Ontology (GO), the Kyoto Encyclopedia of Genes and Genomes (KEGG)16–18 and Disease ontology (DO) 
were used to estimate functional enrichment by the "GOplot”, “cluster profiler” and “DOSE” packages in R. Sta-
tistical significance was set at p < 0.05. The PPI networks can be utilized for generating gene function predictions 
and identifying genes with comparable effects. Network integration algorithms employ various bioinformatics 
methods such as physical interaction, co-expression, co-localization, gene enrichment analysis, genetic interac-
tion, and site prediction. The construction of PPI networks involved the utilization of a string database (https:// 
string- db. org/), and MMD-related immune genes were selected based on confidence levels exceeding 0.4.

Weighted co‑expression network analysis (WGCNA)
The WGCNA distinguishes the gene co-expression network into several highly related characteristic modules 
and can associate the modules with specific clinical features, find key genes, help identify latent mechanisms 
involved in specific biological processes and seek candidate  biomarkers19. Pearson correlation analysis is used 
to generate the similarity matrix between key genes, then the adjacency matrix is calculated, and the topological 
overlap matrix (TOM) is constructed and using (1-TOM) to describe the dissimilarity between genes to identify 
hierarchical clustering nodes and modules. Subsequently, the highly similar modules are determined by cluster 
analysis. The coexpression modules that meet the conditions (deepSplit = 2, height = 0.25, minModuleSize = 50) 
were identified by the DynamicTreeCut function.

Identification of potential key genes
In this study, three machine learning algorithms, SVM-RFE, random forest and LASSO, were used to isolate 
characteristic genes. SVM-RFE is a machine learning algorithm based on the maximum interval theorem of 
SVM. It adopts the principle of minimizing structural risks and minimizing empirical errors, to strengthen the 
learning  performance20. The SVM module was developed by the “e1071” package. LASSO regression is character-
ized by fitting generalized linear model and screening variables,which analysis was realized by glmnet software 
package with tenfold cross-verification through a turning/penalty  parameter21. RandomForest is used to rank 
genes. Ultimately, we combine three machine learning modes to further screen the most significant feature 
genes. Receiver Operating Characteristic (ROC) curve and area under ROC (AUC) were used to evaluate the 
diagnostic value of biomarkers.

https://www.ncbi.nlm.nih.gov/gds
https://string-db.org/
https://string-db.org/
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Gene set enrichment analysis (GSEA)
GSEA was utilized to determine the biological significance of obtained feature genes, which was referenced “c2.
cp.kegg.v11.0.symbols” gene sets (http:// softw are. broad insti tute. org/ gsea/ msigdb) at a criterion of FDR < 0.05. 
Besides, correlations between optimal feature gene expression levels were calculated using Pearson correlation 
analysis.

Immune infiltration analysis
The immune infiltration level of each sample was analyzed by CIBERSORT analysis  technique22,23. The normal-
ized gene expression matrix was uploaded to the CIBERSORT server (https:// ciber sort. stanf ord. edu/). Absolute 
and relative modes were applied while disabling quantile normalization. A total of 1000 permutations were 
conducted for statistical testing. The resulting output provides the percentage distribution of immune cell types 
across all samples, ensuring that the sum of immune cell ratios for each sample equals 1. The Wilcoxon rank-sum 
test was used to evaluate the differences in immune cell proportions and p < 0.05 was considered statistically 
significant.

Quantitative real‑time PCR
We extracted total RNA from tissues using AxyPrep Multi-source Total RNA Micropreparation Kit (Thermo 
Scientific, K0731). The total RNA of lμg was also used for cDNA synthesis by using a reverse transcription kit 
(Thermo Scientific, K16225). Real-time quantitative PCR was performed using THUNDERBIRD SYBR qPCR 
Mix (Toyo Spun, Shanghai, China) on anABIPRISM 7500HT instrument (Applied Biosystems) to detect the 
expression of mRNA. Taking the relative ratio of target gene to GAPDH as its expression, the relative ratio was 

Figure 1.  The flowchart of analysis procedure.

http://software.broadinstitute.org/gsea/msigdb
https://cibersort.stanford.edu/
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calculated by 2−ΔΔCt method. Targeted gene primer sequences were as follows: ACAN, CTC ACC ATC CCC 
TGC TAT TTCAT (forward), ACA CGG CTC CAC TTG ATT CTT (reverse); FREM1, CCT TCC CAA CGA AGT 
CAA GTATG (forward), CAC CTC CAG CAC ATT GTT ACTC (reverse); TOP2A, AGG ATT CTG CTA GTC CAC 
GATAC (forward), CAC CAT GGG AAT AAT AGG AAT GTA CC (reverse); UCHL1, GAG CTG AAG GGA CAA GAA 
GTTAG (forward) GGC CAC TGC GTG AAT AAG TC (reverse).

Statistical analysis
All statistical tests were carried out by R software version 4.1.3. The Kruskal‒Wallis test was used for variable 
comparison between multiple groups. Wilcoxon rank-sum test was utilized for analyzing the difference between 
the two groups. The correlation among the variables was determined to use Pearson’s or Spearman’s correlation 
test.All statistical p-values were two-sided, and p < 0.05 was regarded as statistical significance.

Ethics statement
Written informed consent was obtained from the individual(s) for the publication of any potentially identififiable 
images or data included in this article. On behalf of all authors, I guarantee that all experiments involving human 
tissue samples were conducted in accordance with relevant guidelines and regulations, and that all experimental 
protocols were approved by the Ethics Committee of the Affiliated Hospital of Qingdao University.

Results
DEG screening and data preprocessing
We studied the role of immune-related genes in the progress of moyamoya disease by combining sample expres-
sion profiles from GSE157628 and GSE141024 cohorts. We used PCA to verify the consistency of the sample 
distribution prior to and after correction. Figure S1A displays the scatter distribution of the two datasets before 
batch effect removal, while Fig. S1B depicts the scatter distribution after correction, indicating the successful 
removal of the confounding factors from the rectified samples. Figure 2A,B shows the normalization and DEG 
analysis of all samples, rows represent samples, and columns represent gene expression values in samples. The 
volcano plot shows the recognized DEGs, with 83 genes up-regulated and 331 genes down-regulated (Fig. 2C, 
Supplementary Table S4). Ridgeline plot indicated changes in various biological functions and processes in MMD 
(Fig. 2D). The heat map depicted in Fig. 2E demonstrates DEGs.

Screening of feature modules by WGCNA
The samples in GSE157628 and GSE141024 datasets were clustered, and the gene expression matrix containing 
7001 genes with a standard deviation greater than zero was obtained. To eliminate abnormal samples, we set a 
threshold (Fig. 3A). For another, establish a scale-free network through the "pickSoftThreshold" of the "WGCNA" 

Figure 2.  Normalization of all samples and DEG analysis. (A) Sample expression box diagram before 
normalization. (B) Sample expression box diagram after normalization. (C) The volcano map shows the 
identified DEGs, with 83 genes up-regulated and 331 genes down-regulated. (D) Ridgeline plot of DEGs. (E) 
Heatmap of DEGs. The first column displays the group information, while each row represents a single gene and 
each column presents data from a specific sample. Up-regulated genes are depicted in a vibrant color, whereas 
down-regulated genes are portrayed in a darker shade.
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package, set the power parameter range to 1–30 and the soft threshold to 6, as shown in Figs. 3B,C. Eight modules 
are determined based on average hierarchical clustering and dynamic tree cutting (Fig. 3D). Figure 3E shows 
the frontal correlations between clinical features and ME value. The reliability of module interaction is proved 
by transcription correlation analysis within the module, which indicates that there is no substantial connection 
between modules (Fig. 4A). The results of the independence test among the modules show that there is no cor-
relation between each module (Fig. 4B).

Functional enrichment analysis
Venn plot illustrated that there were 266 common genes between DEGs and WGCNA module genes (Fig. 4C, 
Supplementary Table S5). The consequences of DO analysis illustrates that these common genes are relevant 
to acute lymphocytic leukemia, ocular motility disease, cranial nerve disease and acute myocardial infarction 
(Fig. 5A). Exploring MMD-related signal pathways by applying GO analysis, which mainly were divided into 
three categories: cell components (CC), biological processes (BP) and molecular functions (MF). GO enrich-
ment analysis revealed that those 266 common genes were closely related to BPs such as heart contraction, heart 
process; CCs such as presynapse, neuronal cell body; and MFs such as ubiquitin binding and armadillo repeat 
domain binding (Fig. 5B). It is also worth noting that, several common cancers, such as gastric cancer, breast 
cancer, and hepatocellular carcinoma, were enriched by KEGG analysis, which means that MMD may have a 
similar or identical molecular mechanism to cancer progression. In addition, we also noticed some common 
pathways, such as Hippo, Wnt, ErbB signaling pathway, etc. (Fig. 5C–E). Meanwhile, we established a hub mod-
ule from PPI network, including key atherosclerotic plaque progression and immune-related genes (Fig. 5F,G). 
Statistical significance was set at p < 0.05.

Verification of diagnostic marker genes
We utilize machine learning algorithm to choose the foremost features to screen hub genes with the most diag-
nostic value. Thirteen key biomarkers were identified from deg by LASSO logistic regression (Fig. 6A). Fifty-eight 
genes were obtained as diagnostic markers by SVM-RFE algorithm (Fig. 6B,C). The RF algorithm determines 30 
genes as key indexes (Fig. 6D,E). By screening overlapping genes from LASSO, random forest and SVM-RFE, 
we eventually got 4 shared hub genes, which are considered to have the greatest diagnostic value, with ACAN, 
FREM1, TOP2A and UCHL1 respectively (Fig. 6F). To further verify the diagnostic and prognostic efficacy 
of each shared central gene, we used ROC curve and AUC values for evaluation (Fig. 7A,B). For confirming 
the previous findings, we validated the expression differences of these four genes between samples of different 

Figure 3.  Construction of WGCNA co–expression network. (A) Sample clustering dendrogram with tree 
leaves corresponding to individual samples. (B) Soft threshold b = 6 and scale–free topological fit index (R2). 
(C) Clustered dendrogram were cut at a height of 0.25 to detect and combine similar modules. (D) The 
cluster dendrogram of the genes with median absolute deviation in the top 25%. Each branch in the figure 
represents one gene, and every color below represents one co-expression module. (E) Heat map of module–trait 
correlations. Red represents positive correlations and blue represents negative correlations.
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states in two downloaded datasets and observed that ACAN, FREM1, TOP2A and UCHL1 was significantly 
downregulated in MMD samples (Fig. 7C).

Identification of the function of four diagnostic marker Genesc
We use GSEA to classify MMD tissues into two categories according to the median expression of each single 
signature genes. According to ACAN, In the highly expressed subgroup, one carbon pool by folate, terpenoid 
backbone biosynthesis, thiamine metabolism, citrate cycle (TCA cycle), 2-oxocarboxylic acid metabolism 

Figure 4.  Construction of WGCNA co–expression network. (A) Clustering dendrogram of module feature 
genes. (B) Collinear heat map of module feature genes. Red color indicates a high correlation, blue color 
indicates opposite results. (C) Venn diagram of key module genes versus DEGs.

Figure 5.  Analyses of functional enrichment of DEGs and PPI network. (A) DO analysis of co-expressed genes. 
(B) GO analysis of co-expressed genes. (C–E) KEGG analysis of co-expressed genes. (F) The PPI network of 
feature genes. (G) The co-expression network showing the correlation intensity of hub genes from overlapping 
candidate genes.



7

Vol.:(0123456789)

Scientific Reports |         (2024) 14:5931  | https://doi.org/10.1038/s41598-024-56367-w

www.nature.com/scientificreports/

were significantly enriched, whereas alpha-linolenic acid metabolism, arachidonic acid metabolism, butanoate 
metabolism, fc epsilon RI signaling pathway, linoleic acid metabolism were significantly enriched in the low 

Figure 6.  Diagnostic marker genes selection. (A) The performance in of ten-time cross-verification for tuning 
parameter in selection LASSO. (B,C) Biomarker signature gene expression validation by support vector machine 
recursive feature elimination (SVM–RFE) algorithm selection. (D) randomForest error rate versus the number 
of classification trees. (E) The top 50 relatively important genes. (F) Venn plot shows the key genes screened by 
three machine learning methods.
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ACAN subgroup (Fig. 8A). As for FREM1, aminoacyl-tRNA biosynthesis, glycosaminoglycan degradation and 
glycosphingolipid biosynthesis-ganglio series and selenocompound metabolism protein export were signifi-
cantly enriched in the high FREM1subgroup, whereas IL-17 signaling pathway, legionellosis, malaria, nicotine 
addiction, TNF signaling pathway were significantly enriched in the low FREM1 subgroup (Fig. 8B). In the 
high TOP2A subgroup, fat digestion and absorption, linolenic acid metabolism, maturity onset diabete of the 
young, the nicotine addiction and steroid biosynthesis were significantly enriched, whereas were significantly 
Aminoacyl-tRNA biosynthesis non-homologous end-joining, one carbon pool by folate, other glycan degradation 
and Protein export enriched in the low TOP2A subgroup (Fig. 8C). In the high UCHL1 subgroup, fructose and 
mannose metabolism, galactose metabolism, hippo signaling pathway-multiple species and pentose phosphate 
pathway were significantly enriched whereas systemic lupus erythematosus, ABC transporters allograft rejec-
tion, Intestinal immune network for IgA production, Graft-versus-host disease were significantly enriched in 
the low UCHL1 subgroup (Fig. 8D). The Neo4j browser was ultimately utilized for conducting additional GSEA 
analysis, which yielded several enriched pathways: matrix metalloproteinases (MMPs), collagen degradation, 
hyaluronic acid binding, extracellular matrix (ECM) proteoglycans and epinephrine binding (Supplementary 
Table S6). Overall, the GSEA enrichment differences of different diagnostic marker gene subgroups were mainly 
concentrated in immune response and lipid metabolism, which indicated that changes in these two types of 
biological processes may play a key role in MMD.

Correlation analysis among ACAN, FREM1, TOP2A and UCHL1 and immune infiltration
We conducted Spearman correlation analysis to further clarify the correlation between key genes and various 
immune cell subsets. The results indicated that ACAN was positively correlated with mast cells resting (p = 0.066, 
considered marginally statistically significant) (Fig. 9A). FRM1 was positively correlated with T cells follicu-
lar helper (p = 0.045, r = 0.52), while it was negatively correlated with T cells CD4 naive (p = 0.027, r = − 0.57) 
(Fig. 9B,E,F). TOP2 was negatively correlated with B cells memory (p = 0.02, r = − 0.59) (Fig. 9C,G), UCHL1 
was positively correlated with T cells CD4 momory activated (p = 0.037, r = − 0.54) and mast cells activated 
(p = 0.012, r = − 0.63) (Fig. 9D,H,I). Overall, T cells, B cells, and mast cells appear to be more closely associated 
with diagnostic marker genes in MMD and are more likely to play an important role in MMD. Gene correlations 
were also examined, as shown in Fig. 10A,B.

Immune correlation analysis
To further assess the differences in the immune cell infiltration and hallmark gene sets between MMD and control 
samples, the CIBERSORT algorithm was employed. The results for differential immune cell infiltration are shown 
in Figs. 10C. The ssGSEA results of immune infiltration pathways involved and related to the correlation of shared 
hub genes are shown in the heatmap. ACAN was positively correlated with bile acid metabolism (Fig. 11A). Myo-
genesis and Kras signaling (DN) had strongly positively correlated with FREM1(Fig. 11B). E2F targets, NOTCH 
signaling, P53 pathway xenobiotic metabolism all had strongly negatively correlated with TOP2A (Fig. 11C). 
Metabolism, TGF beta signaling all had strongly positively correlated with UCHL1 (Fig. 11D). This indicates 
that these characteristic genes may regulate the immune process in the progress of MMD.

Quantitative real‑time PCR
To verify the expression of the 4 key genes in MMD, we obtained Peripheral venous blood samples from 4 patients 
with MMD and 4 normal subjects. The results of qPCR showed that the expression pattern of proliferation or 

Figure 7.  MMD diagnostic value and characterized gene expression validation. (A,B) ROC curves of the 
feature genes. (C) Diagnostic marker gene expression in GSE157628 and GSE141024 datasets.
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Figure 8.  GSEA identifies signaling pathways involved in the diagnostic marker genes. (A) GSEA analysis 
of ACAN gene. (B) GSEA analysis of FREM1 gene. (C) GSEA analysis of TOP2A gene. (D) GSEA analysis of 
UCHL1 gene.

Figure 9.  Correlation between diagnostic markers and infiltrating immune cells. (A–D) Correlation among 
hub genes and infiltrating immune cells. (E–I) The scatterplots showed the distribution of T cells follicular 
helper, T cells CD4 naive, B cells memory, T cells CD4 momory activated and mast cells activated count with 
p < 0.05 by Spearman’s rank correlation test. R > 0 indicated that the two were positively correlated, and vice 
versa.
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differentiation genes was highly consistent with the bulk RNA-seq data. That is, compared with the control 
group, the expressions of ACAN, FREM1, TOP2A and UCHL1 in the experimental group were all decreased 
(Fig. 12A–E).

Figure 10.  Visualization of immune cell infiltration and analysis of hallmark gene sets. (A,B) Correlation 
analysis of seven optimal feature genes in MMD samples. (C) Correlation analysis of the 50 hallmark gene 
sets with four optimal feature genes. Statistic tests: Wilcoxon rank-sum test (P < 0.2#; P < 0.05*; P < 0.01**; 
P < 0.001***; ns no significance).
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Discussion
MMD is a disease in which the body attempts to compensate for this pathological feature by angiogenesis, 
forming smaller and weaker collateral vessels due to progressive stenosis of the cerebral arteries. However, these 
fragile vessels are more prone to bleeding, leading to adverse outcomes and even death. Unfortunately, although 
the clinical diagnosis and treatment of MMD has always been a difficult problem, the current understanding of 
the disease is still insufficient, and there is a lack of targets for early diagnosis and treatment. However, to data, 
many studies have proved the important role of immune system dysregulation in the process of MMD, which 
may be a good starting point for molecular  research24,25.

The previous study by Jin et al. utilized bioinformatics methods to investigate the potential role of neutrophil-
associated DEGs in MMD, and identified UNC13D as a promising candidate for characterizing neutrophil infil-
tration in MMD. However, we conducted a comprehensive analysis of all DEGs using three advanced machine 
learning algorithms to identify key genes, which were subsequently experimentally  validated26. In this study, 
DEGs and WGCNA module genes were checked and combined, which screened out 153 candidate genes for 
further analysis. In addition, application of GO, KEGG, and DO enrichment assays to further investigate the 
potential functions and mechanisms of this module, DO analysis further uncovered that acute myocardial 
infarction (AMI) was significantly correlation with MMD, which is consistent with previous research. AMI is a 
critical symptom of coronary heart disease (CHD). Histopathological investigations of MMD-involved internal 
carotid arteries have shown that intimal fibroblast thickening, and smooth muscle cell (SMC) proliferation are 
responsible for arterial  occlusion27,28. Furthermore, SMC proliferation is an integral part of the atherosclerotic 
mechanism of coronary artery disease, which is comparable to the histopathology of MMD. Besides, a previous 
study conducted to analyze explanted SMCs and myofibroblasts from patients carrying ACTA2 demonstrated 
increased proliferation of SMCs resulting in occlusive  disease29. GO analysis showed that MMD was associated 
with heart-related regulation, neuronal release and other processes. Ikeda demonstrated that MMD is involved 
with the extra-cranial vessels as well as the intracranial vessels, and there are systemic etiologic factors, which 
cause intimal thickening in the systemic  vessels30. Histopathologic studies of the involved internal carotid arteries 
in MMD showed fibrocellular thickening of the intima and proliferated smooth muscle cells (SMC) as the cause 
of the arterial  occlusion27,28. The study conducted by Mika et al. unveiled a significant up-regulation of RNF213 
mRNA, a susceptibility gene for MMD, in affected neurons as early as 6 h following transient focal cerebral 
ischemia and reperfusion. And the co-localization of Rnf213 mRNA expression with TUNEL-positive neurons 
suggests that the Rnf213 gene plays a role in cell survival and cell death in neural tissue under cerebral ischemia, 
which is an underlying pathology of  MMD31. KEGG analysis showed that gastric cancer, breast cancer, hippo 
signaling pathway, hepatocellular carcinoma and wht signaling pathway were the most significant functional 

Figure 11.  Correlation between characteristic genes and immunities. (A) Correlation between immune 
pathway and ACAN gene. (B) Correlation between immune pathway and FREM1 gene. (C) Correlation 
between immune pathway and TOP2A gene. (D) Correlation between immune pathway and UCHL1 gene.
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modules for enrichment. To prevent over-fitting, RF, LASSO, and SVM-RFE were selected to further screen for 
shared pivot genes, which were ACAN, FREM1, TOP2A and UCHL1.

Aggrecan, encoded by the ACAN gene, is a multi-module proteoglycan, accounting for 10% of cartilage. 
ACAN is vital in the morphogenesis of bone and cartilage, as well as several mutations have been found in short 
stature  patients32,33. In patients with highly variable symptoms or syndrome phenotypes, at least 25 pathological 
ACAN mutations were found in nonsyndromic short  stature34. However, the analysis of proteoglycan group 
confirmed that Acan exists in normal human aorta and also in aortic lesions of Acute type A aortic dissection 
(ATAAD) patients. A study revealed that ACAN plasma level is a reliable biomarker for detecting the presence 
of ATAAD. The marker can reliably detect ATAAD patients in a very sensitive way. Moreover, ACAN has a tight 
link with the occurrence and development of cancer. Vizeacoumar et al. showed that ACAN gene was significantly 
up regulated in all stages of cancer by comparison between normal gastric tissues and gastric  tumors35. Recently, 
Vafaeie et al. illustrated that the diagnosed ACAN will serve as a new reference for the construction of a central 
gene-based prediction model for gastric cancer and provide new ideas for individualized  treatment36. The same 
result also seen in  LUAD37 and even endothelial  dysfunction38. Interestingly, Jung et al. found that circulating 
endothelial progenitor cells isolated from peripheral blood of adult patients with MMD were  dysfunctional39. 
All these studies have indicated that endothelial progenitor cells may be involved in the progressive occlusive 
injury of the internal carotid artery.

As for FREM1, a study illustrated that in cervical epithelial tissue, it may have a potential role in vaginal 
HIV-1 infection though enhancing mRNA expression of many inflammatory  genes40. Another study found that 
many signaling pathways related to immune regulation were clustered in the high FREM1 expression group, 
such as inflammatory response, JAK-STAT signaling, cytokine-cytokine receptor interaction, and T cell recep-
tor  signaling41. These findings suggest that FREM1 may also be involved in the reconstruction and regulation 
of the immune microenvironment. However, the exact prognostic value of FREM1 in MMD patients still needs 
further investigation.

Multiple studies have revealed that UCHL1 is involved in some important human-related immune responses. 
Take for example, human papillomavirus induced UCHL1 expression in keratinocytes, which inhibited the secre-
tion of macrophage inflammatory protein-3, type I interferon and interleukin-8 to promote the immune escape 
of human  papillomavirus42. Gu et al. have proved that UCHL1 has a dual regulatory effect on the immunosup-
pressive ability of MSCs in inflammatory  environment43. Similarly, MMD and these genes are closely related to 
immunity, and many autoimmune diseases are also related to moyamoya disease, which means that we need to 
more comprehensive and in-depth study the mechanism of the above genes involved in the formation of MMD.

Moreover, there is a lack of research in the MMD field regarding the TOP2A. TOP2A has been demonstrated 
to be involved in mechanisms of cancer formation and can be used as a biological predictor in a number of stud-
ies. Jain et al. found that the overexpression of TOP2A accelerated the progression of adrenocortical  carcinoma44. 
TOP2A as a therapeutic target is also widely involved in clinical treatment, TOP2A change is a predictive marker 
of epirubicin sensitivity in clinical  treatment45. TOP2A protein level can be used as a predictor of response of 
epirubicin to neoadjuvant therapy for breast  cancer46.

Figure 12.  The qPCR of controls vs MMD groups. (A–E) mRNA level of ACAN, FREM1, TOP2A and UCHL1 
in controls vs MMD groups. (p < 0.01). ** indicates P < 0.01.
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Very interestingly, the 4 diagnostic marker genes and immune cell association analysis showed T cells, B cells, 
and mast cells may play an important role in MMD. The relationship between T cells and MMD was first pointed 
out in 1993. Studies have shown that the abnormally thickened vascular intima in MMD is mainly composed of 
smooth muscle cells and some macrophages and T  cells47. In addition, a clinical study by Leihua Weng et al. also 
pointed out that the percentages of circulating Treg and Th17 cells in MMD patients were significantly higher 
than those in controls. In addition, it is interesting that their study also points to the important role of TGF-β 
in the progression of  MMD48. This is consistent with the results obtained in our ssGSEA analysis. M Yamamoto 
et al. first pointed out that TGF-β1 is a potent enhancer of elastin expression in arterial SMC, and the expression 
of this gene is significantly increased in MMD  patients49, while some other studies in recent years have pointed 
out that the polymorphism of TGF-β It is closely related to the progression of MMD in European  races50,51, 
but research by Xiaomeng Wang et al. suggests that this polymorphism has no clear relationship with MMD in 
Chinese  populations52. Similarly, the latest study by Shusuke Yamamoto et al. pointed out that the expression 
level of TGF-β1 in the cerebrospinal fluid of MMD patients was significantly increased, which may lead to the 
proliferation of fibroblasts in the arachnoid and their differentiation into myofibroblasts, thereby producing 
excess collagen, which in turn leads to the growth of malformed blood vessels in MMD. It is worth mention-
ing that changes in the TGF-β pathway show a high correlation with UCHL1, which has been verified in heart 
diseases and  tumors53,54. Although this gene has not been studied in MMD, it is a potential intervention target. 
In addition, our immune infiltration analysis also suggested that there is a close relationship between B cells and 
mast cells and MMD, but unfortunately there is still a lack of such studies. Targets for therapeutic intervention. 
The GSEA analysis further enhanced the enrichment of relevant pathways. Firstly, MMPs play a pivotal role in 
vascular remodeling and angiogenesis, contributing to the development of collateral vessels in response to vessel 
narrowing and blockage in the  brain55,56. Inflammation is a key player in the disease’s development, with MMPs 
contributing to vascular inflammation and extracellular matrix  degradation57. Additionally, certain MMPs are 
promising biomarkers, with elevated levels detected in individuals with moyamoya disease, indicating ongoing 
vascular remodeling and  inflammation58. The study conducted by Miki Fujimura et al.58. utilized enzyme-linked 
immunosorbent assay to demonstrate that upregulated matrix metalloproteinase-9 (MMP-9) expression may 
contribute to the development of pathologic angiogenesis and/or destabilization of vascular structure, thereby 
potentially leading to bleeding in moyamoya disease. Muneaki et al.59. conducted immunohistochemical analysis 
of samples from patients with MMD and observed a significant accumulation of hyaluronic acid in the intimal 
thickening of occluding lesions associated with MMD. Hyaluronate synthase 2 was found to be highly expressed 
in endothelial progenitor cells exhibiting intimal thickening. It has been demonstrated that invading endothelial 
progenitor cells, aiming to repair endothelial damage, excessively produce hyaluronic acid within the intima, 
leading to vascular stenosis. Another aspect is the involvement of hyaluronic acid in the extracellular matrix 
(ECM). In moyamoya disease, ongoing vascular remodeling is a hallmark, potentially influenced by changes 
in the composition and distribution of hyaluronic acid, impacting the structural and mechanical properties of 
blood  vessels60,61. Furthermore, hyaluronic acid interactions with specific receptors can contribute to inflam-
mation and tissue  damage62,63. Lastly, the disease’s connection with ECM proteoglycans further underscores 
the role of vascular remodeling. These proteoglycans are integral to the structural and mechanical properties of 
blood vessel  walls64,65. In inflammation, ECM proteoglycans can influence the inflammatory response, interact-
ing with cytokines, growth factors, and immune cells. Maintaining extracellular matrix integrity is crucial for 
vascular health, and changes in proteoglycan content and distribution within blood vessel walls may affect the 
mechanical properties of these  vessels66,67.

Our study is the first to incorporate machine learning to the identification of diagnostic markers for MMD, 
and the first to analyze the role of hub genes in MMD through GSEA. In addition, this study will help to identify 
effective targets for immunotherapy of MMD and promote the development of immunotherapy for MMD. At 
the same time, this work also outlined the map of MMD immune microenvironment, which provided a basis 
for the future research of MMD immune microenvironment.

Conclusion
In conclusion, ACAN, FREM1, TOP2A and UCHL1 were established as diagnostic markers and potential immu-
notherapeutic targets for MMD by single cell, WGCNA, differential expression analysis and three machine 
learning methods. Immune infiltration analysis reveals a possible critical function of mast cells resting, T cells 
follicular helper, T cells CD4 naive, B cells memory, T cells CD4 momory activated and mast cells activated in the 
development of MMD, this could provide a novel insight into the pathogenesis and the joint treatment of MMD.

Data availability
The original contributions presented in the study are included in the article/Supplementary Material; further 
inquiries can be directed to the corresponding authors. This sequencing dataset was obtained from GEO database 
(https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE14 1024, https:// www. ncbi. nlm. nih. gov/ geo/ query/ 
acc. cgi? acc= GSE15 7628).
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