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An autonomous wheelchair 
with health monitoring system 
based on Internet of Thing
Lei Hou 1,2,5*, Jawwad Latif 1,5, Pouyan Mehryar 1, Stephen Withers 3, Angelos Plastropoulos 3, 
Linlin Shen 4 & Zulfiqur Ali 1*

Assistive powered wheelchairs will bring patients and elderly the ability of remain mobile without the 
direct intervention from caregivers. Vital signs from users can be collected and analyzed remotely to 
allow better disease prevention and proactive management of health and chronic conditions. This 
research proposes an autonomous wheelchair prototype system integrated with biophysical sensors 
based on Internet of Thing (IoT). A powered wheelchair system was developed with three biophysical 
sensors to collect, transmit and analysis users’ four vital signs to provide real-time feedback to 
users and clinicians. A user interface software embedded with the cloud artificial intelligence (AI) 
algorithms was developed for the data visualization and analysis. An improved data compression 
algorithm Minimalist, Adaptive and Streaming R-bit (O-MAS-R) was proposed to achieve a higher 
compression ratio with minimum 7.1%, maximum 45.25% compared with MAS algorithm during the 
data transmission. At the same time, the prototype wheelchair, accompanied with a smart-chair app, 
assimilates data from the onboard sensors and characteristics features within the surroundings in real-
time to achieve the functions including obstruct laser scanning, autonomous localization, and point-
to-point route planning and moving within a predefined area. In conclusion, the wheelchair prototype 
uses AI algorithms and navigation technology to help patients and elderly maintain their independent 
mobility and monitor their healthcare information in real-time.
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An electric-powered wheelchair (EPW) is an assistive technology solution for people with motor disabilities, 
which gives them independent mobility. An estimated 65 million people worldwide need a  wheelchair1, and the 
number of people who are in need of a wheelchair is estimated to increase over 22% in the next  decade2. There 
is a high level of demand for wheelchair services for the elderly that is difficult to meet.

The research on EPW started around the 1980s. The prototype wheelchair allowed a person to maneuver 
within an office  building3. Since then, many EPWs have been developed and commercialized, such as  TinMan4, 
 NavChair5,  Maid6, and  SPAM7 to provide users indoor mobility. However, the traditional type of EPW was 
controlled by a joystick and was difficult to maneuver by patients with complicated disabilities and mobility 
impairment due to cerebral palsy, cognitive impairment, and  fatigue8. For example, patients with Parkinson’s 
disease often lack the cognitive and physical skills to maneuver the EPW due to perceptual impairments. A 
study of 65 clinicians reported that between 10 and 40% of their patients could not be equipped with EPW due 
to sensory disabilities, impaired mobility, or cognitive deficits. These impairments made it difficult to operate a 
wheelchair safely with the current control  functions9. Consequently, those individuals who cannot maneuver an 
EPW independently and safely must be seated in a manual wheelchair and pushed by a caregiver. To solve these 
problems, academics improved the design of the EPW in three main areas: the assistive technology mechanics, 
physical interface, and power shared control between the user and the  wheelchair10,11.

Currently, most autonomous wheelchairs are modified by existing commercially available EPW, with addi-
tional facilities to improve maneuverability, locomotion, localization, navigation, and control  interface12. The 
smart autonomous wheelchairs have been trialled in hospitals and airports.
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In 2016, two prototype autonomous wheelchairs developed by the Singapore-MIT Alliance for Research 
and Technology Centre were tested in a hospital of Singapore to navigate the hospital’s  hallways13. The proto-
type wheelchair created a path map using data from three Lidar sensors. The location of the wheelchair on the 
map is determined using a localization algorithm. In 2017, an autonomous wheelchair embedded with LIDAR 
sensors was proposed by  Harkishan14. This wheelchair can navigate to predefined locations in an unstructured 
environment. Another model WHILL autonomous wheelchair was developed in 2017 by Panasonic and  Whill13. 
This type of wheelchair was premiered at Haneda Airport in Tokyo with further trials in Amsterdam’s Schiphol 
airport, Abu Dhabi airport and north American airports since  201815. However, these prototypes can only take 
passengers to predefined locations within the airport or hospital. The maximum luggage carrying capacity of 
four kilograms cannot fulfill the baggage requirements for most passengers. In addition to autonomous driving, 
assistive biophysical sensors can be integrated into the wheelchair to check passengers’ vital signs before use.

A robot operating system was used in an autonomous wheelchair for individuals who have difficulty in con-
trolling movements by  Grewal16. He employed only 2D laser scanners to design a mapping system that enabled 
the wheelchair to move autonomously. The same approach was used by  Wang17, but the sensor offered large 
degree measurements in a narrow space. On the other hand, Surmann utilized a rotatory mechanism and a 2D 
LiDAR scanner to create a 3D environment map for anti-collision system. Nonetheless, the solution may be insuf-
ficient to ensure the safety of the wheelchair  user18. Furthermore, a wheelchair system developed by Andre can 
transport inpatients autonomously to their departments by integrating with the hospital information  system19. 
However, using this system for private transportation may be challenging, as it requires specific location and 
path information for departments in the hospital.

Electrically powered wheelchairs should not only provide mobility for advanced stages of disability but also 
integrate with assistive technology to offer better clinical care. Chronic diseases, such as arthritis, asthma and 
coronary heart disease, are becoming more prevalent among the elderly and place a high demand for healthcare 
 services20. A wheelchair health monitoring system with routine tests can be a cost-effective way for clinicians 
and caregivers to manage chronic conditions in their  patients21. The remote monitoring system can improve the 
management of chronic condition transparency and quality of care for patients while reducing the burden on 
healthcare facilities, emergency situations, and re-admissions. For example, a biomedical sensing system was 
integrated into a prototype wheelchair to record users’ pulse rate, respiratory rate and motion  states22. However, 
the signal communication and autonomous system were limited by Wi-Fi signals and not viable for outdoor 
scenarios. Based on that prototype, a home healthcare system for wheelchair users was proposed to connect 
more sensors in a prototype wheelchair. Similar work was proposed to develop an Intelligent Robotic Wheelchair 
(iRW)23 that integrates telehealth systems to collect vital signs of users in real time. However, there is no effective 
analysis of these healthcare signals which can be used for remote diagnosis by doctors.

One of the significant limitations for the autonomous telehealth wheelchair is the battery life. The operating of 
biophysical sensors embedded in the wheelchair is limited by various resources, such as power supply, memory 
storage and processing  capabilities24,25. Continuous monitoring sensors produce a large amount of data and 
consume significant storage memory and transmission power. According to a  survey26, nearly 80% of the power 
is consumed during the transmission of data in each sensor node. Therefore, it is essential to develop a lower 
power design to make the battery last longer. Data compression in sensor nodes before the data transmission 
provides an adequate method to reduce the size of data. The performance of various data compression algorithms 
is evaluated based on dataset types.

Lempel–Ziv–Welch (S-LZW) data compression algorithm uses structured data to reduce substantial energy 
 consumption27. However, S-LZW is a dictionary-based algorithm that occupies memory for calculation, so it is 
not suitable for sensors with restricted  RAM25. Another compression algorithm of Run Length Encoding (RLE) 
works by removing duplicate data values. Based on RLE, K-RLE was developed to achieve a better compression 
 ratio28. Meanwhile, because it concentrates on computing floating-point data, the Minimalist Adaptive and 
Streaming (MAS) method was recommended as resource  efficient29. Among them, MAS and S-LZW algorithms 
have been widely applied in real-time sensing applications, such as monitoring wind speed, rainfall, tempera-
ture, humidity, soil moisture, pressure, and battery  level24,30. The reduction of power consumption during data 
transmission of the MAS algorithm is between 53.55 and 55.95%, while that of the S-LZW is between 23.41 
and 33.97%. To further improve the data compression ratio during transmission, the Minimalist, Adaptive and 
Streaming R-bit (O-MAS-R) algorithm was proposed.

In this paper we propose an intelligent autonomous wheelchair (iChair) integrated with telemedicine sen-
sors based on IoT, and the architecture of the wheelchair system is shown in Fig. 1. Various sensors including 
wireless location, position accelerometer, seat cushion sensors, and biophysical sensors are embedded in the 
wheelchair to collect users’ physiological and behavioral data in real time. At the same time, an improved data 
compression algorithm Minimalist, Adaptive and Streaming R-bit (O-MAS-R), is also proposed to achieve a 
higher compression ratio during the data transmission. To visualize and analyze the data, a user interface was 
developed to provide telediagnosis, advice and alert to users and caregivers using artificial intelligence algorithms.

Results
Wheelchair monitoring interface
The handrail of the wheelchair system included three biophysical sensors: pulse oxygen  (SpO2), blood pressure, 
and temperature sensors to collect and transmit four kinds of vital signs from users (blood oxygen levels, pulse 
rate, blood pressure and temperature)31, as depicted in Fig. 2.

On the wheelchair as shown in Fig. 2, there are two monitoring interfaces to provide feedback to users: the 
large screen interface and the handrail screen as depicted in Fig. 2. The screen installed on the handrail of the 
wheelchair and the remote GUI are for data classification, visualization, and analysis.
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The information includes data initialization, measurement, upload status to the cloud, and transmission com-
pletion. The duration for each process results in a 40-s cycle, with each set lasting 10 s. The display shows a count-
down for each phase, and the timing allows the data from all three biophysical sensors to finish transmitting.

The GUI, developed in MATLAB and shown in Fig. 3 allows users to download, inspect, and analyze the 
cloud-stored data once it finishes uploading. In the user interface, access to users’ healthcare data requires a 
unique Patient Identity number (PID) assigned to each user before experiments. The warning system uses 
three colors to flag conditions: red, yellow, and blue. The red indicates that the gathered data is above the upper 
threshold, the yellow shows the data is below the lower threshold, and the blue indicates the measured data is 
within the thresholds.

Figure 3 shows the iChair monitoring interface comprising four main sections: patient information, last 
update, vital signs, and inspection. The last update section shows the most recent collecting date and time from 

Figure 1.  The architecture of the smart wheelchair system. A portable wheelchair is equipped with sensors, 
cameras, and screens. The data acquisition system processes, compresses and uploads the measurements from 
biophysical sensors. A MATLAB graphic user interface allows users and doctors access and diagnose the health 
information in real-time31.

Figure 2.  The prototype of the smart wheelchair consists of a controller box, laser sensors, power system, 
screens, and biophysical  sensors31.



4

Vol:.(1234567890)

Scientific Reports |         (2024) 14:5878  | https://doi.org/10.1038/s41598-024-56357-y

www.nature.com/scientificreports/

the user, and the users’ vital signs appear in the vital signs section. In the inspection section, users can see an 
aggregated display of their specific vital sign’s information in the past.

Data compression algorithm
Both MAS and O-MAS-R compression algorithms were applied to five ECG datasets, twelve EMG datasets, and 
three accelerometer datasets to evaluate the approaches effectiveness. Figure 4 depicts the compression ratio 
performance.

In Fig. 4a, the compression results of MAS and O-MAS-R algorithms applied to five ECG datasets are dem-
onstrated. The data in ECG datasets is assigned integer type with two bytes per sample. Each ECG dataset 
comprises 3,600 samples that occupy 7,200 bytes of memory. Among the simulation results, the group three of 
O-MAS-R algorithm shows the greatest compression ratio of 20.54%, while the MAS algorithm is 12.47%. For 
each group, the O-MAS-R method achieves compression ratios of 19.86%, 19.13%, 20.54%, 18.78%, and 18.26% 
respectively. Meanwhile, the MAS algorithm demonstrates compression ratios of 11.9%, 11.57%, 12.47%, 12.32% 
and 12.28% respectively.

In Fig. 4b, EMG data of twelve muscle activities during treadmill walking have been compressed by the MAS 
and O-MAS-R algorithms. The EMG values are float type that contains 4 bytes per sample. Each EMG dataset 
comprises 15,000 samples that occupy 60,000 bytes of memory. The RF activity shows the highest O-MAS-R 
compression ratio of 39.85%, while the MAS is 31.26%. For each group, the O-MAS-R algorithm achieves com-
pression ratios of 39.85%, 35.44%, 34.74%, 39.5%, 35.58%, 36.4%, 33.21%, 36.01%, 39.33%, 35.71%, 35.86% and 
37.87% respectively. Meanwhile, the MAS algorithm demonstrates compression ratios of 31.26%, 26.41%, 26.07%, 
30.8%, 27.07%, 27.62%, 25.95%, 28.53%, 31.18%, 28.27%, 28.41% and 28.95% respectively.

In Fig. 4c, the compression algorithms have been applied to three accelerometer datasets. The data type in the 
dataset is float type and contains 4 bytes per sample. Each Accelerometer dataset has 15,000 samples that take 
60,000 bytes of memory. For each group, the O-MAS-R algorithm achieves compression ratios of 84%, 83.83%, 
and 83.76% respectively. Meanwhile, the MAS algorithm demonstrates compression ratios of 38.83%, 38.28%, 
and 38.77% respectively.

For all the datasets, O-MAS-R compression algorithm demonstrates a better performance. The average 
increase of O-MAS-R over MAS is shown in Fig. 4d. The accelerometer datasets of O-MAS-R algorithm shows 
the greatest increase of 45.25% over the MAS algorithm. The average increases of compression ratios for ECG, 
EMG, and Acc datasets are 7.21%, 8.26%, and 45.25%, respectively.

According to the Spyder platform’s profiler tool, the encoding function of the MAS and O-MAS-R algorithms 
in compressing ECG dataset values took 20.28 µs and 25.69 µs, respectively. However, the repetition of data, on 
the other hand, resulted in fewer calls to the encoding function in the O-MAS-R algorithm, which decreased 
the overall run time of the O-MAS-R algorithm. The total run time for the MAS and O-MAS-R algorithms 
applied in ECG dataset were 79.37 ms and 73.04 ms, respectively. Similarly, the encoding function of the MAS 
and O-MAS-R algorithms in compressing Accelerometer dataset values took 18.90us and 19.25 µs, respectively. 

Figure 3.  The iChair monitoring interface. The GUI comprises four main sections: patient information, last 
update, vital signs, and inspection. It allows users and doctors to download and analyze cloud-stored data as well 
as inspect the data being recorded in real-time.
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However, due to high frequency of repetitions of data in accelerometer dataset, the total run time for O-MAS-R 
encoding algorithm is significantly reduced from 283.53 to 71.67  ms25.

MATLAB graphic user interface (GUI)
This paper discusses the smart wheelchair prototype and the three integrated biophysical sensors used to collect 
four vital health indicators from users. It also discusses the MATLAB GUI software designed to synchronize and 
download the patients’ healthcare data for diagnosis and analysis.

The preliminary experiments, five participants were involved in the clinical trials, and healthcare data was 
collected for 5–10 mins for each user. Figure 5a–d demonstrates the results.

Figure 5a documents the five participants whose finger temperatures were measured and recorded. The 
x-axis is the measurement time, and the y-axis is the measured temperature in Celsius (°C). Before taking the 
measurements, participants were advised to place their forefinger on their wrist for a minute to equalize the 
temperature. An upper threshold of 37 °C was set as it was considered as the average normal body temperature. 
Among the participants, users four and five had a slightly higher temperature than normal, and thus the column 
automatically turned red following the three-color system.

As seen in Fig. 5b, the five participants’ pulse rate were recorded with the upper threshold set to 120 bpm. 
The results revealed one participant had a higher average pulse rate than the other participants. Figure 5c depicts 
the blood oxygen saturation level  (SpO2) for each participant. The lower limit of  SpO2 was set at 90%, as any 
number below that represents hypoxemia, and poses a variety of  complications32. Therefore, the level of  SpO2 
is a highly useful approach for measuring health  conditions32. Figure 5d shows the participants’ systolic and 
diastolic blood pressures in the top and bottom rows, respectively. The upper threshold for systolic blood pres-
sure is 120 mmHg, while the upper threshold for diastolic blood pressure is 80 mmHg. The results indicate that 
participant three had unreasonably high systolic blood pressure on certain tests, and participant five had high 
systolic blood pressure and diastolic blood pressure. The three-color system automatically marked the column 
for high blood pressure data in red.

iChair autonomous driving
The autonomous driving experiments were conducted in the factory testing  area33. We described the smart 
wheelchair safety and obstacle detection system in our previously published  papers31. Based on that system, 
the wheelchair was improved to travel autonomously from point to point inside a lager and obstacle completed 
area. An Android-based smartphone app iChair was developed to control and tracks the entire driving progress 
depicted in Fig. 6.

Figure 4.  The compression ratio results of MAS and O-MAS-R algorithms are shown in (a–c), in each figure, 
x-axis shows the group number, and y-axis is the compression ratio. The average ratio increase of the O-MAS-R 
algorithm over MAS is shown in (d). The compression ratio of (a) five ECG datasets, (b) twelve EMG datasets 
and (c) three accelerometer datasets are demonstrated.
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Figure 5.  Four types of vital signs from five participants were monitored: (a) finger temperature, (b) pulse rate, 
(c) blood oxygen levels, and (d) blood pressure. Each column represents a single measurement, and the group 
of columns represents the results from a single participant. The gap between each column is the time spent 
uploading the measurements.

Figure 6.  The smart wheelchair autonomous driving and control. (a) An engineer sits in the wheelchair and 
controls it using the iChair app. (b) The navigation panel with the iChair app control information, while (c) 
depicts the mapping information of the enclosed area.
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There are three main sections in the iChair app: bio-medical, navigation and mapping. The biomedical sec-
tion displays the collected bio-sensory data, the navigation section links the wheelchair to the app and controls 
its movement, and the mapping section displays the wheelchair’s real-time location.

In Fig. 6a, an engineer sits in the wheelchair and controls it using the iChair app. To perform autonomous 
driving well, the iChair must be in a pre-scanned, enclosed environment, achieved by recording the surrounding 
information into the map using the data from LIDAR sensors. As shown in Fig. 6c, the app remembers its scanned 
path of the office, the start and stop coordinates, and the blue dots provides the position of the wheelchair. The 
red and grey dots, in addition to the lines, are the LIDAR sensors reflecting signals that represent the barriers 
along the path. Once the scanned map saves, the iChair will link with the app to perform the autonomous driv-
ing as shown in Fig. 6b. As a result, the user can enter the start and stop coordinates from the Android app or 
directly through the ROS network as separate position names. By clicking different positions in the app panel, 
the wheelchair will drive to the location autonomously.

During the reliability tests, the iChair navigated to various predetermined locations using automated driving 
scripts. It successfully operated for five hours until the battery ran out of power. Wooden boards were used to 
modify the configuration of the path during the mobility tests to determine the maximum capacity of the system 
to maneuver. The results show that the iChair could pass through a minimal gap of 0.85 m and can operate in 
at least 1.2 m wide corridors. The maximum speed that the wheelchair could move in an unmapped area while 
accounting for unknown obstacles was 0.2 m/s.

Discussion
Patients who cannot safely and independently operate an Electric Powered Wheelchair (EPW) must be seated 
in a manual wheelchair and pushed by a caregiver. An autonomous telemedicine wheelchair is one solution to 
overcoming the cognitive and physical challenges and improve independence for those  users34. It not only takes 
people to their desired location but also assesses their physical location, status conditions and vital bio-signs in 
real-time. This data will help them manage and prevent chronic diseases in the long term.

The paper proposes a smart wheelchair equipped with three biophysical sensors and a novel Internet of Thing 
(IoT) compression algorithm that monitors and assesses users’ physiological and behavioral data in real-time. 
The iChair design should prioritize simplicity in control to minimize usage barriers, especially for patients who 
require assistance. They may initially struggle with or forget to use some of the features. To address the issue, the 
wheelchair controls should be similar to EPWs on the market, facilitating their usage habits. The central screen 
can serve as a user-friendly dashboard, displaying the patient’s current status, providing prompts for necessary 
measurements, and offering easy navigation to desired locations. It serves as an interface for users to interact 
with the iChair smoothly. Due to the wheelchair being integrated with advanced components, algorithms, and 
sensors, if it is deployed in the market on a large scale, maintenance may require specific technical skills. To 
mitigate this issue, the system should support remote monitoring and diagnostic tools for spotting issues early. 
It also provides detailed documents with best practices and maintenance guidelines. Lastly, regular training for 
maintenance staff can be conducted to ensure they can handle any problems effectively.

The smart wheelchair can further develop as a proprietary medical device for autonomous health monitoring 
and navigation. For example, it will offer those affected by Parkinson’s disease the ability to proactively manage 
their chronic condition, and help them avoid fainting, which are considered the most common diagnosis for 
patients attending emergency departments. It will also help maintain their mobility. The artificial intelligence 
algorithms incorporated into the wheelchair will analyze sensor data and provide feedback in real-time to the 
user and clinicians on any potential risks to the patient, such as the experience of a sharp and unexpected drop 
in blood pressure, causing dizziness and an increased risk of fainting. With the assistant of the smart wheelchiar, 
the ratio of carers to patients can be increased from 1:2.5 to 1:4 or 1:5 for completely disabled people, allowing 
the cost of carers to be reduced by up to CNY 15–18 k per year. The wheelchair system is estimated to be priced 
at CNY 8000 (~ £920), and the retrofitted system is priced at CNY 3000 (~ £345). In the UK market, the cost of 
the systems will be £2500 and £500, respectively.

During the trials, the system could only process up to three sensors simultaneously, because of the micro-
controller’s restrictions in supporting concurrent sensor readings from one group of sensors (analog, UART, 
Bluetooth) to one interface (TFT, Bluetooth, Wi-Fi)35. The constraint may limit the system’s coverage of health 
conditions, especially when managing chronic diseases that involve monitoring multiple health indicators. These 
problems could be optimized by implementing intelligent algorithms that prioritize and cycle through different 
sets of sensors over time, ensuring continuous monitoring of key health parameters relevant to chronic condi-
tions. Additionally, adapting the system to support sensor modularity and sensor fusion technologies would 
enable the integration of more sensors. The detecting sensors integrated into the microcontroller could expand 
to eighteen different functions, including features such as snore monitoring, temperature readings, glucometer 
readings, ECGs, EMGs, breath monitoring,  SpO2, blood pressure, airflow, body position, emergency alarms, and 
room thermometer, providing a more comprehensive view of the patient’s health status.

Health monitoring sensors, such as heart rate, blood pressure and temperature sensors, need to be strategi-
cally placed for accurate readings while considering user comfort. Integrating sensors without interfering with 
wheelchair controls is critical. Thus, for the convenience of our wheelchair design, the temperature sensor was 
placed on the handrail to detect users’ fingers, palm and wrist temperature. However, we acknowledge that 
environmental factors influencing temperature in these areas may cause variations in sensor readings. Further 
improvements involve implementing adaptive calibration algorithms that dynamically adjust temperature read-
ings based on environmental conditions. Additionally, to extend the functionality of the wheelchair, certain sen-
sors can be integrated as conformable and wearable patches on the body and be easily removable modular 
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elements. The integration of multiple sensors, including non-contact sensors on the screen, could be applied to 
offer a comprehensive approach.

However, the effectiveness of the O-MAS-R compression algorithm may be specific to the types of data used 
in the study. The performance might vary when applied to different types of datasets beyond the scope of the 
initial experiments. Additionally, the study demonstrated positive results under controlled conditions, but real-
world scenarios can be more complex. Factors such as signal interference, hardware malfunctions, or variations 
in environmental conditions could affect the actual performance of the proposed model.

Further research can focus on optimizing the compression algorithm for diverse sensor data types, ensur-
ing it maintains efficiency across a wide range of physiological parameters. Extensive validation studies can be 
conducted in diverse healthcare settings, such as different patient demographics, environmental conditions, and 
healthcare practices. Moreover, the algorithm can be further integrated with advanced healthcare AI models for 
automated monitoring and forecasting of users’ physiological conditions and diseases.

To explore the EPW with other sensors for more functionalities, previous work by Shen et.al.,36 extend  the 
scope of the work. This extension includes a face-recognition screen with a camera on the left handrail of the 
wheelchair. This innovative approach aims to evaluate users’ long-term cardiovascular conditions based on facial 
information, utilizing a CHD evaluation algorithm published by  Shen36. First, sixty-eight face feature points and 
ears from patients’ face images were collected. Based on their coordinates, six regions of interests (ROI) were 
extracted: left canthus, right canthus, left crowsfeet, right crowsfeet, nose bridge and  forehead36. Then, a gray-level 
co-occurrence matrix algorithm was applied to the ROIs to extract and analyze their texture features. Lastly, the 
random forest and decision tree classification methods were applied to predict the risk of CHD.

In the paper, 1528 facial images were captured from 309 subjects, comprising 226 males and 83  females36. 
Among them, 195 patients have coronary heart disease. Each patient had at least three face images collected: 
front, left, and right faces. By adopting features into the models, the random forest algorithm had a maximum 
accuracy of 72.73% in identifying patients with CHD, while the decision tree model had a maximum accuracy of 
70.45%. The results demonstrated that facial images can be an effective method of detecting patients with CHD, 
with an accuracy rate of above 70%. The algorithm will be embedded into the wheelchair’s screen to monitor the 
user’s coronary health condition over time.

In the paper, we demonstrated that the proposed use of the O-MAS-R compression algorithm main-
tained a greater compression ratio than the MAS algorithm at a 53% reduction in data transmission power 
 consumption24. As the compression ratio is directly proportional to data transmission power usage, implement-
ing the O-MAS-R algorithm in wireless sensor network sensor nodes will result in even lower data transmission 
power  consumption25. This approach uses the least amount of memory to store and transmit data by reducing 
consecutively repeated data values. This functionality is particularly useful in dealing with healthcare data. 
However, the effectiveness of the O-MAS-R compression algorithm may be specific to the types of data used in 
the study. The performance might vary when applied to different types of datasets beyond the scope of the initial 
experiments. Additionally, the study demonstrated positive results under controlled conditions, but real-world 
scenarios can be more complex. Factors such as signal interference, hardware malfunctions, or variations in 
environmental conditions could affect the actual performance of the proposed model.

This paper documents and evaluates the obstacle avoidance, human–machine interaction, and point-to-point 
autonomous driving of the smart wheelchair. Currently, the intelligent wheelchair can only drive autonomously 
in a pre-scanned enclosed area because the only way to calculate the optimal route between any two locations 
requires the system to store localized data from the laser sensors. However, once scanned, the stored maps and 
routes can be shared with other wheelchairs for collaborative driving.

For wheelchair users with limited mobility, safety is the top priority. Unmapped areas may have construc-
tion zones, temporary obstacles, changes in road conditions, lacking lane markings and road signs, which can 
cause severe dangers to the wheelchair’s autonomous driving. Therefore, the autonomous driving function will 
be deactivated in unmapped areas. Users have to rely on the manual control of the wheelchair to ensure safety. 
Additionally, to ensure safety for wheelchair users, we conduct thorough testing to validate the system’s perfor-
mance under different conditions, ensuring robustness and safety. We implement redundant sensor systems, 
the obstacle avoidance system, to ensure the vehicle can rely on multiple sources of information, mitigating the 
risk of sensor failures and avoiding collisions. A software filter that used LIDAR sensor data successfully hid the 
user’s legs from the scan data to minimize blind spots. Increasing the use of obstacle detection over a wider range 
reduced the remaining blind spots discovered around the four corners of the wheelchair.

The smart autonomous wheelchair will assist disabled and elderly patients by allowing them to pick locations 
on their phones and drive independently and autonomously. It will reduce their dependency on caregivers and 
family members while also eliciting feelings of self-reliance. Therefore, the wheelchair has potential uses in nurs-
ing homes, hospitals, communities, airports, and shopping malls. In hospitals and nursing homes, the wheelchair 
will work in conjunction with the other infrastructure, such as elevators, ward doors, and automated doors to 
complete easy point-to-point and ward-to-ward mobility. The telemedicine diagnosis from the wheelchair will 
complete the initial evaluation of vital sign measurements at the hospital’s entrance and then continually moni-
tor those patients.

Conclusion
In this paper we proposed a smart autonomous wheelchair (iChair) that integrates with telemedicine sensors 
based on IoT. The wheelchair, controlled by a mobile app, achieved point-to-point autonomous driving within 
a predefined area with and without obstructions. Various sensors, including wireless location, position accel-
erometer, seat cushion sensors, and biophysical sensors embedded in the wheelchair, collected users’ physi-
ological and behavioral data in real-time. This comprehensive data was extracted, transformed, and uploaded 
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to a cloud platform for storage. An improved data compression algorithm, Minimalist, Adaptive and Streaming 
R-bit (O-MAS-R) will likely achieve a higher compression ratio during the data transmission. Performance of 
MAS and O-MAS-R was evaluated in healthcare applications such as ECG, EMG, and accelerometer datasets. 
The designed user interface allowed users and their caretakers or doctors to see and analyze the data using the 
artificial intelligence algorithm to receive telediagnosis, advice and alerts. The interface also allowed users to 
track and diagnose long-term health issues with similar algorithms and makes it easier for medical professionals 
to diagnose probable health conditions in the patients.

Methods
System architecture
The robotic wheelchair system was designed based on the research of our previously published  papers31.

The wheelchair prototype modified and improved upon the Titan-LTE powered  wheelchair37 and integrated 
with the DMC60C digital motor  controllers38 to allow wheelchair manipulation both manually and autonomously. 
The new components include DC motor controllers, a Jetson Nano developer kit, an Inertial Measurement Unit 
(IMU), a joystick module, two light detection and ranging sensors (LIDAR), and a 3D printed shield were 
incorporated into the wheelchair and allowed users to operate the wheelchair via a mobile app. These integrated 
components communicated with each other by a central Controller Area Network (CAN). The joystick module 
was a custom-made unit that used a potentiometer joystick with access to the CAN enabled microcontroller.

The Jetson module included Wi-Fi capability, which allowed the entire wheelchair system to be linked to a 
wireless Android application. The software that enabled mobility assistance and autonomous driving was written 
in C++. The sensors connected to the Jetson Nano development kit used Robot Operating System middleware 
(ROS). It implemented a navigation stack and custom configurations for obstacle avoidance. The stack consisted 
of specially developed modules, including a localization module and a mapping module. The packages for reading 
the joystick, movement aid, and motor control were developed while the autonomous movement was powered 
by an open-source navigation. The Timed Elastic-Band (TEB) route  planner30 enabled path planning optimiza-
tion to ensure smooth and safe mobility in the iChair system. It also included two laser  sensors31 mounted on 
the front of the wheelchair to help ensure obstruct avoidance.

The microcontroller used by the data acquisition unit was an Arduino  component39, while the biophysi-
cal sensors were MySignals  packages35. Consequently, we designed a converter microcontroller to resolve the 
incompatibility between the Arduino and MySignals system. The  ThingSpeak40 cloud platform was used to allow 
users to view, download and analyze the stored data. We also developed a new MATLAB graphic user interface 
(GUI) to help users and doctors access and diagnose health information in real-time.

Data communication and compression
We introduced the proposed Minimalist, Adaptive and Streaming R-bit (O-MAS-R) data compression algorithm 
in our previously published  papers25,31. The improvements made to the MAS algorithm allowed for a decrease 
in the sequential repeating of data values, which lead to a higher compression ratio. Equation (1) represents the 
floating data format of the O-MAS-R data compression algorithm.

where nnn is the length of the input data in binary format, eee represents the position of the decimal point for 
the input data from left to right. Additionally, ns shows whether the input value is positive or negative, and the 
proposed R-bit represents the consecutive repetition of input digits.

The algorithm calculates up to seven input digits. The repetition input value from the subsequent input data 
sets the R digit to 1. When there is no repetition, R is 0. The number of R-bits increases as the number of consecu-
tive repetitions of input data increases. The decoding process outputs the same value until it reads 0. Similarly, 
Eq. (2) represents the O-MAS-R encoding format for the integer value.

To distinguish between integer and floating-point data, the first three digits 000 indicated the input data is 
integer and eee bit is removed. The repetition digit R-bit indicates if the following data is the same as the current 
value.

The following describes the detailed encoding and decoding process of data. When the sensor nodes send 
out data, the algorithm determines if the value is an integer or float number. When the value is a float number, 
the data value compresses using the float encoding format described in Eq. (1). In contrast, when the value is 
an integer, the integer encoding format [Eq. (2)] compresses the data. Following data encoding, an R-bit will 
append to the end of the format dependent on the repetition of the next data value. If the value is the same as 
the present value, the R-bit is 1. If not, the R-bit value is 0. For the data decoding progress, the software reads 
the first data value and examines the R-bit to determine whether the upcoming value is the same as the current 
value. If the R-bit is 1, the upcoming value is treated as the same as the current one. The method keeps reading 
R-bit until it equals 0.

Both the MAS and O-MAS-R were implemented across three healthcare datasets: electrocardiography (ECG), 
surface electromyography (sEMG), and accelerometer-based events (Acc) to assess the efficacy of the data com-
pression methods. Scripts for data compression algorithms were simulated in Spyder (Python 3.7). The compres-
sion ratio was determined by dividing the dataset’s compressed size by its original size, as indicated in Eq. (3). 
The higher the compression ratio, the better the data compression algorithm would perform.

(1)nnn/eee/ns/ . . . input data . . . /R/ . . .

(2)000/nnn/ns/ . . . input data . . . /R/ . . .
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Five ECG  datasets41, twelve EMG  datasets42, and three accelerometer  datasets43 were obtained from the MIT-
BIH Arrhythmia  Database44, with a sampling frequency of 360 samples per second and an 11-bit resolution. 
Additionally, sEMG datasets were recorded at 1.5 kHz, corresponding to 12 lower limb muscles in a healthy 
subject during treadmill walking. These muscles include rectus gemoris (RF), vastus lateralis (VL), gracilis (GR), 
biceps femoris long head (BFLH), tensor fasciae latae (TFL), Vastus medialis (VM), Tibialis Anterior (TA), Soleus 
(SOL), Gluteus Medius (GMD), gastrocnemius lateralis (GL), gastrocnemius medialis (GM) and semitendinosus 
(SEM)44. Lastly, datasets from three-axis accelerometers were selected and evaluated at a frequency of 120 Hz.

Ethical approval
This study was approved by the Innovative Technology and Science Ltd on 2020.06. We affirm that all experiments 
were conducted in compliance with the experimental guidelines and regulations established by the Innovative 
Technology and Science Ltd.
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