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Multitemporal analysis of land 
subsidence induced by open‑pit 
mining activity using improved 
combined scatterer interferometry 
with deep learning algorithm 
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Mine operational safety is an important aspect of maintaining the operational continuity of a mining 
area. In this study, we used the InSAR time series to analyze land surface changes using the ICOPS 
(improved combined scatterers with optimized point scatters) method. This ICOPS method combines 
persistent scatterers (PS) with distributed scatterers (DS) to increase surface deformation analysis’s 
spatial coverage and quality. One of the improvements of this study is the use of machine learning 
in postprocessing, based on convolutional neural networks, to increase the reliability of results. This 
study used data from the Sentinel-1 SAR C-band satellite during the 2016–2022 observation period at 
the Musan mine, North Korea. In the InSAR surface deformation time analysis, the maximum average 
rate of land subsidence was approximately > 15.00 cm per year, with total surface deformation 
of 170 cm and 70 cm for the eastern dumping area and the western dumping area, respectively. 
Analyzing the mechanism of land surface changes also involved evaluating the geological conditions 
in the Musan mining area. Our research findings show that combining machine learning and statistical 
methods has great potential to enhance the understanding of mine surface deformation.

Recently, the surge in industrial development based on mineral resources has led to an increase in the demand 
for mining commodities. This increase certainly increases the concern regarding the sustainable mining indus-
try. One of the concerns about the impact of mining activities is the potential for environmental damage, such 
as landslides or land subsidence1–3. In monitoring surface deformation caused by mining activities, various 
geodetic survey techniques, both land-based and remote sensing-based, have been used. Land-based methods, 
such as leveling and geophysical investigations, provide high-precision measurements with dense temporal 
sampling. However, these measurements lack spatial characterization of surface deformation due to the rarity 
of the measurement points4. The advent of satellite-based interferometric synthetic aperture radar (InSAR) 
techniques has brought new possibilities for monitoring surface deformation with high accuracy and unmatched 
spatial–temporal resolution5. In particular, the successful operation of the SAR Band C Sentinel-1 (S-1) satellite 
through the Copernicus initiative by the European Space Agency (ESA) has resulted in a wide range of InSAR 
applications for monitoring earthquakes, landslides, volcanic activity, urban deformation and mining activity6,7. 
Despite its success in measuring surface deformation associated with mining activity, InSAR has limitations. The 
land subsidence usually occurs at approximately the submeter or even meter scale in a very short period. This 
can lead to unwrapping phase errors or increased decorrelations8. In addition, mining areas are usually located 
in nonurban areas and even remote areas with unstable properties at all times, which impacts the availability of 
coherence targets that SAR observation data can identify.
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Using InSAR to monitor surface deformation induced by mining activities may be a more effective tool, 
potentially improving sustainable mine management. Developing the pixel selection method is a key prerequisite 
for using the InSAR method to monitor surface deformation. Pixel selection can be divided into two types based 
on scattering mechanism and behaviour: persistent scatterers (PS) and distributed scatterers (DS). PS approaches 
focused on assessing backscattering and the phase stability of pixel targets9–11. The PS method’s shortcomings 
are the limited spatial density of pixels obtained since they are spread throughout regions of high phase stabil-
ity, which is uncommon in the mining industry. Meanwhile, DS-based pixel selection increases pixel density by 
selecting a wide group of adjacent pixels with similar scattering mechanisms and evaluating them using statisti-
cal methods. In addition, the development of DS lies in determining DS using statistical methods to analyze 
spatial homogeneous pixels (SHP), such as the Kolmogorov–Smirnov, Anderson‒Darling12, and GLR tests13. 
Then, coherence analysis is performed on the data to obtain pixels with high coherence and determine the DS. 
Using PS and DS points in time series analysis allows points with consistent and widely distributed deformation 
change to be identified14,15.

One approach to improve InSAR measurement is utilizing multitemporal analysis to minimize temporal 
restrictions and other disruptions. Furthermore, the multitemporal InSAR approaches are the small baseline 
subset approach (SBAS), which limits the temporal baseline, and the Stanford method for persistent scatterers 
(StaMPS)11,16,17. By looking at trends in surface deformation over the long term, we can observe changes that 
occur over time, such as subsidence, lateral movement, or an increase in deformation18,19. This information can 
be invaluable for monitoring and managing mining areas, thereby assisting geotechnical risk mitigation and 
planning of more sustainable mining activities20. Through this study, our objective is to enhance the compre-
hension of surface deformation linked to mining operations and make a valuable contribution to advancing the 
application of combined scatterer interferometry with optimized point scatterers (ICOPS) time series InSAR 
methodology in mining regions. The primary enhancement of the ICOPS is the implementation of a machine 
learning algorithm to enhance the measurement points and generate a spatial clustering map21–23. The results 
of this study are expected to provide a strong basis for more effective decision-making in sustainable and envi-
ronmental mining management.

In this study, we employ the ICOPS time series InSAR method to assess the trend of surface deformation in a 
mining region where direct measurements are challenging to acquire. Open-pit mining methods are utilized in 
the Musan mining region of North Korea, which is recognized as one of the largest iron deposits on the Korean 
Peninsula24. The Musan mining area, North Korea, was chosen as the study area for applying the multitemporal 
InSAR ICOPS method. The data used are SAR data with C-band data from the Sentinel-1 satellite with an analyti-
cal period of 2016–2022. For monitoring and analyzing surface deformation caused by mining operations, the 
InSAR time series application in mining regions has considerable potential. In this study, we employ the ICOPS 
time series InSAR method to assess the trend of surface deformation in a mining region where direct measure-
ments are challenging to acquire. Moreover, employing this method allows us to enhance our comprehension 
of the surface deformation characteristics in the mining region.

Data and methods
Study area
The Musan mine is a large-scale iron ore mining complex located in the northeast region of North Korea, near 
the border with China and Russia. The area’s topography is rugged mountainous terrain with elevations ranging 
from 400 to 1400 m above sea level. The Musan mining site in North Korea is in a mountainous region, with 
the mine situated in a valley surrounded by steep hills and ridges25. The Musan mining area is situated in the 
foothills of the Changbai Mountains, part of a volcanic chain that runs along the border between China and 
North Korea. The area is dissected by several major rivers, including the Tumen River, which flows northward 
into the Sea of Japan26. Figure 1 shows the location of Musan mining in topographical images. 1a and optical 
imagery around the mining site in Fig. 1b.

The Musan mine is an open-pit mine covering an area of approximately 10 square kilometers, with iron 
ore extracted from the surface using heavy machinery, such as excavators and trucks27. The terrain around the 
Musan mining area is heavily forested, with dense stands of coniferous trees covering much of the landscape. 
The soils in the area are generally thin and rocky, with shallow topsoil overlying bedrock25. The topography of 
the Musan mining site poses various challenges for mining operations, including steep slopes, rugged terrain, 
and difficult access to site24. Overall, the topographical characteristics of the Musan mining site present both 
challenges and opportunities for mining operations, with the rugged terrain and complex topography requiring 
specialized equipment and techniques to extract the iron ore while minimizing the impact on the surrounding 
environment28.

Datasets
Sentinel-1 is a remote sensing radar satellite that uses a synthetic aperture radar (SAR) method to acquire 
information about the earth’s surface. These SAR data are used to map and monitor the Earth’s surface using 
VV (vertical–vertical) polarization, and the data covers the period from 13 July 2016 to 11 August 2022, which 
collected a number of images that were used in this study about 152 SAR images. We use the main reference 
from 01 September 2019 and the maximum temporal difference of 60 days on the generating interferogram, 
which forms 659 interferograms. For this study, we define the baseline of the repeated satellite imagery as having 
a maximum perpendicular baseline of approximately 200 m, as shown in Fig. 2, which is the relative distance 
between two different radar observations. SAR data enables accurate deformation measurements on various 
surfaces, including areas covered with vegetation or subject to adverse weather conditions.
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Digital elevation models (DEMs) in InSAR time series deformation measurements offer an important con-
tribution to the high-precision analysis of changes in the Earth’s surface. When radar waves reach the Earth’s 
surface, they interact with the topography and produce an interference phase caused by surface deformation 
and differences in topographic elevations. Therefore, a DEM is used to estimate and remove the topographic 
contribution from the SAR interferometric data, thereby increasing the accuracy in obtaining true deforma-
tion information. On the other hand, we also try to assess the change in elevation in the Musan mining area 
by providing the DEM for several generations in Table 1. Elevation changes are used to analyze the changes in 
topography at the mining site to gain more information about mining activity.

ICOPS method
In this study paper, the InSAR ICOPS time series analysis method was developed to monitor spatiotemporal 
surface deformation in the Musan mining area, North Korea, for the 2016–2022 observation period. Persistent 
and distributed scatterers in time series analysis provide a sufficient combination of measurement points (MPs) 
for spatial coverage. Therefore, developing information extraction from MPs is required to obtain reliable time 
series information. The time series analysis is optimized using a deep learning algorithm, the convolutional 

Figure 1.   (a) Elevation map of North Korea, with Sentinel-1 satellite coverage and approximate location of the 
Musan mining area (red box) and (b) optical imagery of the Musan mining area from Planet Labs and processed 
using QGIS ver 3.22.

Figure 2.   Perpendicular baseline from SAR data used in this study.

Table 1.   The digital elevation model is used to analyze the elevation change in the Musan mining area.

Date acquisition Satellite Resolution

SRTM DEM February 2000 Shuttle Radar Topography Mission 30 m

ALOS Global Digital Surface Model January, 2006–January 2011 ALOS-1 30 m

Copernicus DEM January, 2011–January 2015 TanDEM-X 30 m
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neural network (CNN), with a combination of algorithm optimization. The further framework of this study of 
applying the ICOPS for time series analysis is shown in Fig. 3.

Preprocessing‑InSAR
In preprocessing the SAR data, we use 168 single-look complex images cropped according to the needs of the 
study area. The maximal temporal baseline is 60 days to form an interferogram with a maximum perpendicular 
baseline of 200 m. The coregistration process is carried out to match the secondary image to the reference image 
in subpixel accuracy to form an interferogram29. To increase the level of image coherence and efforts to increase 
the signal-to-noise ratio and process efficiency on large-scale datasets, the multilook technique is applied to the 
range and azimuth directions. To obtain differential interferometric SAR (DInSAR), the topographical phase is 
subtracted from the interferogram with an external reference DEM database30; during this step, we use GAMMA 
software.

PS/DS point identification
Persistent scatterers (PS) can be identified using amplitude-based measures that describe temporal or spatial 
consistency. PS have characteristics corresponding to phase stability and high coherence, mostly found on 
human-made objects31. The temporal stability of a resolution can be described by the amplitude dispersion ( Da

)32, calculated using Eq. (1).

The equation uses σa to represent the standard deviation of the amplitudes of the resolution for the inter-
ferogram stack and µa to represent the average amplitude ( µa ) of the resolution for the interferogram stack.

PS identification was carried out using the StaMPS method as a basic algorithm to identify the characteristics 
of pixels with persistent scattering. This algorithm consists of four main steps. First, an interferogram is com-
bined to increase the resolution in scatter identification. Next, the phase stability of each resolution is estimated 
using a combination of amplitude and phase measurements. Initial candidates are selected based on amplitude 
dispersion, and then the phase terms are corrected using a weighted iterative loop to reduce the phase noise. 
The PS can be selected by setting a suitable threshold for phase stability, depending on the desired false-positive 
level. In the final stage, the deformation estimation is obtained by unwrapping the phase and compensating for 
the remaining phase noise using a combination of spatial and temporal filters33.

The DS (distributed scatterers) point’s determination begins with applying the SHP (spatially homogeneous 
pixels) identification algorithm to determine the similarity between neighboring pixels and central pixels using 
statistical inference. At this stage, we use a fast statistical homogeneous pixel selection algorithm, FaSHPS (fast 
statistical homogeneous pixel selection), based on likelihood ratio test (LRT) analysis to determine SHP34. We set 
a search window of 15 × 15 pixels and a significance level 0.05. Determining whether a DS candidate will be used 
as a DS pixel depends on the quality of the optimal phase estimation of the candidate35. Therefore, the fit between 
the original interferometric phase and the optimized phase is used as an evaluation index to measure the quality 
of the optimized phase36. The goodness-of-fit index, called temporal coherence ( γTC ), is calculated using Eq. (2).

(1)Da =
σa

µa

(2)γTC =
2

N(N − 1)
Re

N∑

m=1

N∑

n=m+1

ejϕm,n e−j(θm−θn)

Figure 3.   Research framework of the ICOPS combining PS and DS processing and optimization processes 
using convolutional neural networks.
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It uses ϕm,n to represent the original interferometric phase between the mth and nth acquisitions. In contrast, 
theta θm and θn represent the optimized phases. Only DS candidates (over 20 SHP) with a γTC value greater 
than 0.5 are considered high-quality DS pixels. Then, PS candidate pixels (less than 20 SHP) are filtered using 
an amplitude dispersion threshold of 0.4. In the final step, high-quality DS and filtered PS pixels are combined 
to form the combined PS/DS measurement process. This set of pixels is used to obtain the InSAR deformation 
time series in the next stage.

ICOPS performs a time series analysis using interference based on different images. The singular value 
decomposition (SVD) method is used in conventional differential interference processing for the interference 
pairs in the set. Each phase change is related to a certain image deformation. To eliminate atmospheric influ-
ences and the resulting deformations, temporal low-pass filtering, and spatial domain high-pass filtering are 
performed37,38. At this stage, the time series deformation is obtained from the PS/DS point and converted into 
a measurement point (MP).

Optimization process
In InSAR time series applications, CNNs can study complex patterns and relationships between time series data 
to identify features such as deformation changes, velocities, and deformation patterns related to geological pro-
cesses and environmental changes. CNNs can automatically extract important features from InSAR time series 
data using convolution and pooling layers39. The measurement points that have been identified are optimized 
using the CNN algorithm to obtain a better level of measurement reliability. The MP dataset is analyzed for cor-
relation coefficients and linearity to obtain information in machine learning training. For the structure of the 
network, the CNN algorithm was based on the 20 convolutional layers with the rectified linear unit (ReLU) and 
the fully connected layers with the number of filter 32 and the filter size 7 × 7, then the activation function based 
on the sigmoid function on the network. For the training and test sample, we selected it from the measurement 
point with the linear coefficients more than 0.7 of the MP datasets will be abelled as data “1”; meanwhile, the 
other point will be labelled as data “0”. After that, we will divide the data “1” and “0” into training and testing 
samples with 70:30 comparison22. Then, the process is carried out using several steps in the deep learning algo-
rithm, starting from the convolution process and the pooling layer in gathering information. Then, these data 
are processed so that they become a prediction model. Based on this prediction model, MP points are optimized 
to increase their reliability.

Then, the optimization process enters the optimization phase using optimization hot-spot analysis based 
on Getis-Ord statistics40,41. The spatial cluster process uses a model that minimizes external intervention in 
determining its distance, where the distance is based on Moran’s global index41. For MP with a large annual 
deformation and a high statistical value (p-value = 0.9) in the context of spatial clustering, it will create deforma-
tion clusters. Meanwhile, MP whose annual deformation value with the statistical value of clustering is below 
the threshold will be considered in a non-significant spatial cluster deformation. This clustering also calculates 
MP distribution statistics to help analyze MP distribution and characteristics. This method can also minimize 
deformation points that are not related in terms of distance, especially at low deformation rates.

Results
Mean deformation analysis
The ICOPS method was used to obtain deformation results in the time range from September 2016 to Septem-
ber 2022 based on Sentinel-1 (S-1) and Copernicus DEM (digital elevation model) data as topographic phase 
references. The ICOPS approach was applied to stacked interferogram datasets to analyze surface deformation 
at the mining site, and combining PS and DS points increased the spatial density of measurements. This section 
provides a mean deformation map based on persistent scatterers, specifically the StaMPS and SBAS methods, as 
seen in Fig. 4a,b. Surface deformation of the entire dumping area occurs within the line of sight of the satellite 
(LOS), and these data are converted into vertical deformation data by negligible the deformation in a horizontal 
direction based on the assumption the deformation occurs in a vertical direction42. As shown in Fig. 4, the mean 
deformation rate was observed in the study area, and almost all time series values were negative, indicating land 
subsidence. Surface deformation generally occurs in the eastern dumping areas (P1) and the western dumping 
areas (P2). Figure 4C shows the outcome of the ICOPS time-series processing before the optimization procedure, 
while Fig. 4d shows the result after the optimization process. As a result, the point discarded during the optimi-
zation process was unremarkable regarding value or spatial distribution. Then, we compared the SBAS method 
to ICOPS to demonstrate the optimization benefits for surface deformation at mining sites. ICOPS can reduce 
non-significant points that were not picked as measurement points based on the results of the optimization tech-
nique. The SBAS data reveal the mean rate of surface deformation in the mining area and the concentrations of 
surface deformation in the western and eastern dumping areas. Surface deformation at the dump site rises over 
time in response to mining process deposits. In contrast, surface changes and coherence values at the mining 
site influence the choice of DS point. Regional surface deformation occurred continuously at varying speeds in 
the dumping site, with no evidence of sudden deformation, such as collapses and landslides.

In this analysis, two main areas were identified as the areas affected by surface deformation: the eastern and 
western dumping areas. The eastern dumping area has experienced consistent subsidence since 2016, with a 
large deformation-affected area at the Musan mine complex. Based on the results, the mean deformation rate 
is about 15.00 cm/year in this area, with a maximum rate of deformation of 18.63 cm/year. It is known that this 
area is the eastern hilly area in the Musan mining complex, which was used for a long time for dumping unused 
extracted material. In the western dumping area, an average surface deformation of 10.20 cm/year was recorded 
from 2016 to 2022. The changing contours of the surface in this area almost follow the changes in the contours 
of the dumping area, which were made according to the conditions of the mining activity. Two points of interest 



6

Vol:.(1234567890)

Scientific Reports |         (2024) 14:6311  | https://doi.org/10.1038/s41598-024-56347-0

www.nature.com/scientificreports/

in the Musan mining area were selected to gain information on surface deformation in the time series graph 
from 2016 to 2022, as shown in Fig. 4e.

The trend of changes in surface deformation
This study aims to analyze the changing trend of surface deformation in the Musan mining area using InSAR 
time series data from 2016 to 2022. The results of the analysis show that there was a significant change in sur-
face deformation in this area during that period. Figure 5 shows the trend of accumulated surface deformation 
from September 2016 to September 2022. Surface deformation in the eastern dumping area is extensive, with 
the highest surface deformation in all Musan mining areas, with a maximum accumulated deformation of more 
than 120 cm. The expansion of the eastern dumping area also contributed to the increase in surface deformation 
in mid-2017–2022. The eastern dumping site has operated for a longer time, which can affect the compaction of 

Figure 4.   Mean deformation map retrieved from the (a) StaMPS processing and (b) SBAS processing. In 
addition, the result from the ICOPS method from 2016 to 2022 using Sentinel-1 datasets was present (c) before 
and (d) after optimization. Also, the (e) represents the time-series deformation graph from the P1 (eastern 
dump) and P2 (western dump) derived by the ICOPS method after optimization. For the map was processed 
using QGIS ver 3.22 and satellite imagery was derived from Planet Labs.
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dumped material. The vertical deformations in the study area have intensified as the dump height has increased. 
Areas with severe deformation are mainly concentrated along the slope edges of the upper areas.

Furthermore, the western dumping area of the Musan mining complex began to show subsidence in 2018. 
The western dumping area experienced extensive expansion, with a large amount of stockpiled material being 
supplied from conveyor belts or trucks in the hilly area in approximately 2018–2019. Significant changes in sur-
face deformation began to occur after 2019, possibly due to pressure and consolidation from heaps on the hill 
in this western dumping area. The change in deformation in the western dumping area can be used as a mining 
activity indicator. As a result, the upper part of the western dumping area, which has more surface deformation 
than the lower part, may indicate that the activity of dumping material was focused on the upper part rather 
than the lower part in this period. Moreover, most of the eroded material has been carried out of the study area 
for the western dumping area, and a small accumulation appears at the foot of the slope.

Profile deformation analysis
To analyze surface deformation in the Musan mining area further, deformation profiles were drawn for the 
eastern dumping area (area 1) and western dumping area (area 2), as shown in Fig. 6. The eastern dumping area 
in Figure. Profile Lines A–A represent 3b and 3cʹ and B–Bʹ, with maximum deformations reaching 115 cm and 
121 cm in 2022. Moreover, the western dumping area is represented by profile Lines C–Cʹ and D–Dʹ, located in 
the northeastern part of the study area, and experienced maximum decreases of 63 cm and 78 cm, as shown in 
Fig. 3d,e. Based on the C–Cʹ and D–Dʹ profile lines, there is an indication of surface deformation along with the 
compaction that occurs, with uplift at the end of the deformation profile. The cumulative surface deformation 
curve shows a fairly consistent downward trend during the 2016–2020 phase, where the intervals of decline 
have a uniform magnitude in that period. However, in 2021–2022, there has been a decrease in the interval 
of decline, especially in 2021, due to the data not covering the full year in 2022. These results further explain 
surface deformation in the Musan mining area, mostly at the dumping site. The higher deformation recorded in 
the upper part of the western dumping site than in the lower part of this dumping site may be related to mining 
activity. An increase in deformation may have been induced by the expansion of the dumping process from 2018 
at the western dumping site.

Estimating changes in the volume and elevation
Besides monitoring surface deformation in recent years using InSAR, we also carried out the analysis of change 
elevation based on the digital elevation model (DEM). Elevation change can reflect the transformation of sur-
face deformation in different years in the mining site. This analysis will provide valuable information that may 
be combined with InSAR analysis to improve understanding of the mining situation. An analysis of changes 
in elevation in the Musan mining area for the period of 2000–2011 using the shuttle radar topography mission 
(SRTM) and advanced land observing satellite (ALOS) digital elevation model (DEM) provides interesting 
information. Elevation changes are made by subtracting the values in the ALOS DEM from those in the SRTM 
DEM to determine changes, as shown on the contour map in Fig. 7a. The distribution of changes in the min-
ing area is located in the main excavation area, which has lost elevation, with a decrease in elevation of − 40 m. 
There are elevation changes that are increasing in the east and west areas, known as the western dumping areas 

Figure 5.   Surface deformation trend in the Musan mining area from 2016 to 2022.
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and the eastern dumping areas, respectively. The increase in elevation in this period is approximately 80 m for 
the western dumping area and 110 m for the eastern dumping area. Many elevation changes have occurred in 
the southern part of the western dumping area. Volume changes have also been used to determine changes in 
conditions during the 2000–2010 period, in which the mining area was 35,225,970 m3, while in the dumping 
area, values of 29,423,277 m3 in the western area and 17,587,725 m3 in the eastern area were recorded.

Between 2010 and 2016, we studied elevation changes in the Musan mining area using the Copernicus DEM 
and ALOS DEM. Our research found that the excavated mining area experienced a maximum height change 
of − 35 m, with a pattern that followed the contours of the prior elevation decrease. Additionally, the eastern 
dumping area experienced a height increase of 75 m, while the western dumping region experienced a height 
increase of 85 m. According to Fig. 7b, the contour map of elevation variations from 2010 to 2016 reveals changes 

Figure 6.   Accumulation deformation from 2016 to 2022 with profile deformation analysis of the Musan mining 
area (a) and the profile deformation results from profiles A–Aʹ (b) and B–Bʹ (c) in the eastern dumping site and 
profiles C–Cʹ (d) and D–Dʹ I in the western dumping site.

Figure 7.   (a) Contour map of elevation changes from 2000 to 2010 using the SRTM DEM (2000) and ALOS 
World DEM (2010) and (b) Contour map of elevation changes from 2000 to 2010 using the ALOS DEM (2010) 
and Copernicus DEM (2016) was generated using QGIS version 3.22.



9

Vol.:(0123456789)

Scientific Reports |         (2024) 14:6311  | https://doi.org/10.1038/s41598-024-56347-0

www.nature.com/scientificreports/

in mining activities, particularly in the mining area. Although the two primary dumping places remain the most 
active, they are distributed in diverse directions. The eastern area has elevation changes in the northern and 
southern areas, whereas the western region has alterations in the north half of the dumping area. Estimation 
of volume changes was also carried out in the three areas of interest during the 2010–2016 observation period. 
The change in volume in the excavation area was − 27,425,211 m3, while in the western dumping area, there was 
a change in volume of 14,983,446 m3, and in the eastern dumping area, there was a change of 23,382,894.11 m3.

The previously reported volume changes are still raw and need adjustments to predict the iron ore mining 
capacity at the Musan mine. In the case of the Musan mine, only very limited geological information was pro-
vided, so information regarding the location and appearance of drilling data and development of the mine was 
not significant. Because the iron ore distribution pattern in the Anshan Formation is similar to that of the Musan 
Group at the Musan mine, the Musan Group is considered the eastern extension of the Anshan Group25. The most 
recent researcher measured the density of iron ore in the mineralized belt used at Donganshan and Qidashan 
in the Anshan Formation43. In this study, the average density of ore produced at the Musan mine was estimated 
to be approximately 3.4 × 103 kg/m3 over the average density of ore produced from the Anshan Formation43.

The results of elevation changes based on DEM data are processed again to estimate the ore obtained from 
this mining activity. In the estimation process, several assumptions are applied to this calculation according 
to the results of the literature review that has been carried out. By applying an approximate assumption in the 
form of material that can be processed in the form of 0.3 volume of the total extraction, the volume difference 
can be converted into a predictable ore estimate that can be extracted. Then, the defined iron ore density values 
can be used to estimate the mass that can be extracted during that period. Based on the above assumptions, in 
the 2000–2011 period, there was a volume change in the mining area of 35,225,970 m3, and it can be estimated 
that the mass extracted during that period was 119.77 million tons. In the 2011–2016 period, using a difference 
in the volume of the mining area of 27,425,211 m3, it was estimated that the extracted mass was approximately 
93.25 million tons. Also, we calculate the mass change on the dumping site in the 2000–2016 period, as shown in 
Table 2. Therefore, the estimation affected by the resolution size of the DEM led to uncertain error calculations. 
This calculation is an approximate calculation that requires correction in terms of rock conditions and density 
aspects that are more precise according to the characteristics of the Musan mine.

Discussion
We applied performance analysis to evaluate subsidence measurements in the Musan mining area using ICOPS 
technology for multitemporal InSAR. The test is carried out by analyzing the value of the mean deformation at 
the measurement point produced by the two multitemporal InSAR methods, namely StaMPS and ICOPS. We 
investigated the time series deformation graphic measurements at points that overlap with the StaMPS method to 
confirm the reliability of measurements using the ICOPS method, as shown in Fig. 8. Additionally, for the StaMPS 
and ICOPS methods, the time series deformation measurement graphs with an estimated RMSE value of 0.85 are 
shown in Fig. 8c. As demonstrated by these observations, the ICOPS method measurement results are reliable 
when compared with other methods. Besides, the measurement points from the StaMPS and ICOPS that have 
coincidence or are within an area of 20 m are evaluated by cross-correlation to obtain a correlation coefficient 
value. Based on the results of the correlation coefficient analysis, the coefficient value of R2 = 0.87 m is obtained, 
indicating that the ICOPS method is reliable in this calculation. This performance study demonstrates that the 
ICOPS analysis approach is suitable for integrating other multitemporal InSAR methodologies. A comparison 
between the ICOPS method and geodetic data is necessary for additional analysis to assure its reliability; however, 
such comparisons are not feasible at this location. In addition to performance analysis, from the coverage side, 
ICOPS can maximize DS and PS in forming MP’s while maintaining useful surface deformation information.

This study aims to analyze the relationship between lithologic conditions and surface deformation in the 
Musan area and the North Korean mining area. This study area is characterized by significant lithological com-
plexity and mining activity44. In general, the lithology in this area consists of igneous, metamorphic, and sedi-
mentary deposits24. The dominant granitoid rocks in the area have high hardness and structural strength, so they 
tend to be more stable and have more controlled surface deformations. Moreover, metamorphic rocks, such as 
schist and gneiss, have different properties43. These rocks have a more complex texture and structure with diverse 
mineral contents. When subjected to stress and environmental changes, these properties make it susceptible to 
significant surface deformation. In addition, sedimentary rocks, such as sandstone, clay, and gravel, were also 
found in the Musan mining area. These sedimentary rocks tend to have a lower density and weaker structural 
strength than igneous and metamorphic rocks45. As a result, surface deformation in this area tends to be more 
significant, especially during intense mining activities.

Table 2.   Estimation of mass change in iron mining from change of volume derived from DEM.

2000–2011 (SRTM–ALOS DEM)
2011–2016 (ALOS DEM–Copernicus 
DEM)

Volume change (m3) Mass change (Mt) Volume change (m3) Mass change (Mt)

West Dumping 29,493,732 55.74 23,382,894 44.19

East Dumping 17,587,725 33.24 14,585,446 25.68

Excavation Site − 35,225,970 − 119.77 − 27,425,211 − 93.25

Waste ratio 0.748 0.722
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The influence of climatic factors can also be an important consideration in the relationship between lithol-
ogy and surface deformation in the Musan mining area27. The correlation between local climatic conditions, 
such as high rainfall, significant temperature changes, and surface deformation, needs to be considered. Soil 
erosion due to rain and thermal changes can affect slope stability and cause more significant surface deforma-
tions, especially in weaker sedimentary deposits46. This analysis provides a deeper understanding of the factors 
affecting surface deformation in the Musan mining area in North Korea. The results of this study can be used 
as an important foundation for sustainable mining management and future mitigation of surface deformation 
risks in the mining area.

Conclusion
This study analyzes surface deformation in the Musan mining area in North Korea using the proposed InSAR 
time series method known as ICOPS with Sentinel-1 satellite SAR data from 2016 to 2022. Combining DS and 
PS boosts spatial coverage by approximately 80% compared to using PS alone, despite this investigation’s lengthy 
temporal observation period. Deep learning algorithms are used in optimization applications to minimize inter-
ference caused by disturbances in InSAR deformation time series analysis. The examination of the time series 
deformation process in the Musan mining area revealed varying degrees of deformation between 2016 and 
2022. Using the ICOPS approach, the excavation area experiences an average deformation magnitude of 18 cm/
year, with a maximum detected deformation of 170 cm. Surface deformation in the western dumping region has 
accumulated to 70 cm with an average rate of 10.20 cm per year. The deformation in the dumping area is likely 
due to surface pressure causing soil compaction at the top, with avalanches accumulating in the valley area.

A correlation test was conducted using cross-validation between two InSAR approaches at coinciding meas-
urement locations. The test revealed a reliable consistency between the two methods, with a correlation coef-
ficient of R2 = 0.87. The study demonstrates that the ICOPS approach can enhance spatial coverage and density 
while maintaining measurement accuracy and reliability. Analysis of the causes of deformation is carried out by 
comparing the conditions of the geological area in the mining area. However, the limited sources of information 
about this mining area limit the analysis of the deformation. Even so, this study shows that applying the ICOPS 
time series method to mining areas and long temporal scales can provide reliable results. The development of 

Figure 8.   Mean deformation map derived from (a) StaMPS and (b) ICOPS overlayed satellite imagery from 
Planet Labs and processed using QGIS ver. 3.22. (c) Then, the time-series graph from the reference point is 
marked by a star from the StaMPS and ICOPS methods.
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deformation studies in the mining area can be carried out with comparisons and studies of the causes of defor-
mation with better information in the future.

Data availability
The SAR data used for generating time-series surface deformation in the study are available at Copernicus Sen-
tinel and processed by ESA via Alaska Satellite Facilities (https://​asf.​alaska.​edu/).
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