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General protocol for predicting 
outbreaks of infectious diseases 
in social networks
Sungchul Kwon  & Jeong‑Man Park *

Epidemic spreading on social networks with quenched connections is strongly influenced by dynamic 
correlations between connected nodes, posing theoretical challenges in predicting outbreaks of 
infectious diseases. The quenched connections introduce dynamic correlations, indicating that 
the infection of one node increases the likelihood of infection among its neighboring nodes. These 
dynamic correlations pose significant difficulties in developing comprehensive theories for threshold 
determination. Determining the precise epidemic threshold is pivotal for diseases control. In this 
study, we propose a general protocol for accurately determining epidemic thresholds by introducing 
a new set of fundamental conditions, where the number of connections between individuals of each 
type remains constant in the stationary state, and by devising a rescaling method for infection rates. 
Our general protocol is applicable to diverse epidemic models, regardless of the number of stages and 
transmission modes. To validate our protocol’s effectiveness, we apply it to two widely recognized 
standard models, the susceptible–infected–recovered-susceptible model and the contact process 
model, both of which have eluded precise threshold determination using existing sophisticated 
theories. Our results offer essential tools to enhance disease control strategies and preparedness in an 
ever-evolving landscape of infectious diseases.

Networks are common structures observed in both real and artificial worlds, encompassing brain neurons, food 
chains, public transport, the World Wide Web, and social relationships. Mathematically, a network is described as 
a graph comprising nodes connected by links. The number of links of a node is referred to as its degree, denoted 
as k. P(k) represents the degree distribution, which is usually Poissonian or power-law. Networks are categorized 
as either annealed networks with time-varying connections or quenched networks with fixed connections over 
time1–4. We focus on quenched networks.

Epidemic spreading is one of the most important dynamical processes taking place on networks. The primary 
objectives of studying epidemic spreading are to understand the mechanisms of infectious diseases’ dissemination 
and, importantly, to predict epidemic outbreaks. For these purposes, modeling epidemic spreading and finding 
the accurate thresholds of various standard models on complex networks have grown into an active research 
field and also led to the development of a diverse range of theoretical approaches taking into account the effects 
of heterogeneous connection patterns on the spreading of diseases1–5.

The heterogeneous connection pattern of underlying social network makes a significant impact on the 
spreading of epidemic and leads to novel phenomena that go beyond the scope of ordinary mean-field theories3,4. 
In the case of quenched networks, susceptible individuals having connections with infected ones are likely to be 
infected, which is referred to the dynamic correlation and crucial in determining the thresholds3,4. The existence 
of these dynamic correlations represents a longstanding challenge that remains unresolved in the development of 
comprehensive methods for accurately determining thresholds in diverse epidemic models with multiple stages 
of disease progression and various transmission modes on quenched networks. This necessitates the exploration 
of fundamental principles underlying a variety of spreading dynamics on quenched networks.

The aim of the present study is to provide a general procedure for deriving accurate epidemic thresholds by 
introducing a new set of fundamental conditions satisfied in the stationary state of various spreading dynamics 
and devising a rescaling method for infection rates. Our protocol is applicable to diverse epidemic models with 
multiple stages and various ways of transmission on a wide range of quenched networks.

In epidemic models, the population is typically divided into different compartments based on the stage 
of the disease, such as susceptible (S), infectious (I), and recovered (R)5–7. Hence various models have been 
introduced according to the number of the stage of diseases under consideration. The simplest model is the 
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susceptible–infected (SI) model, which assumes that the disease leads to lifelong infections without recovery, 
undergoing an irreversible flow S �

→ I , where � represents the infection rate. The susceptible–infected–susceptible 
(SIS) model assumes that the disease does not grant immunity, causing individuals to be infected and 
recovered without immunity, undergoing a cycle S �

→ I
r
→ S , with r representing the recovery rate. The 

susceptible–infected–recovered (SIR) model, in contrast, considers infected individuals to gain permanent 
immunity after recovery, undergoing an irreversible flow S �

→ I
r
→ R.

However, in the case of many infectious diseases such as influenza and the recent COVID-
19 pandemic, immunity and infection are not lifelong. In reality, the more relevant model is the 
susceptible–infected–recovered–susceptible (SIRS) model, where an infected individual acquires temporary 
immunity upon recovery, undergoing a cycle S �

→ I
r
→ R

h
→ S , with h representing the loss-of-immunity 

rate. The SIRS model is highly comprehensive, as it encompasses the SI, SIR, and SIS models as special cases, 
obtained by taking the limits r → 0 , h → 0 , and h → ∞ , respectively. Note that all models mentioned so far 
adopt the transmission way that all susceptible nodes connected to an infected node are infected at the same 
time with the rate �.

The SIS model is the prototype of epidemic models3,4,8–17. In the thermodynamic limit of an infinite 
population, the SIS model experiences an absorbing phase transition (APT) between the disease-free (absorbing) 
phase and the endemic (active) phase when the parameter �̄ ≡ �/r is tuned18–20. The epidemic threshold �̄c is 
the �̄ value at which this APT occurs.

Numerous theoretical endeavors have been dedicated to determining the epidemic thresholds for both the 
SIS and SIR models on quenched networks1–5,8–15. The heterogeneous mean-field (HMF) theory has been applied 
to the study of both models4,8,9 and predicted that the epidemic thresholds of the SIS and SIR models are the 
same, given by �̄HMF

c = �k�/�k2�4,25–27. The symbols 〈k〉 and 〈k2〉 are the first and the second moments of degree k. 
However, several numerical studies have indicated that simulation results for epidemic thresholds deviate from 
the threshold values predicted by the HMF theory27–29.

For the SIR model, mapping the SIR model to a bond-percolation problem provided a notably 
more accurate prediction of the epidemic threshold for the SIR model on quenched networks, given by 
�̄
SIR
c = [�k�/(�k2� − 2�k�)]4,30,31. For the SIS model, Cai et al. incorporated dynamic correlations into a combined 

theory by integrating the HMF theory with the effective degree (ED) approach and predicted the epidemic 
threshold to be �̄SISc = [�k�/(�k2� − �k�)]32. Unfortunately, for the SIRS model, the combined theory by Cai et 
al. does not provide a complete set of equations necessary for the derivation of threshold and hence cannot be 
applied to models with more than two stages.

On the other hand, the contact process (CP) is a typical example of another transmission scheme different 
from the SIS and SIRS models. The CP also holds a prominent position as the archetype for APTs in lattices19,20. 
It shares similarities with SIS dynamics, with the key distinction lying in the fact that infection is attempted to a 
randomly selected susceptible neighbor only, rather than all susceptible neighbors, of the infected node. Similarly 
to the SIRS model, the accurate threshold of the CP on quenched networks remains elusive, despite the availability 
of results from the HMF theory and the self-consistent equation for the threshold through the heterogeneous 
pair-approximation34,35. The challenge here is the random neighbor selection, which poses a theoretical barrier 
to the application of the approach of Cai et al. to the CP.

Consequently, the current comprehension of the CP and SIRS dynamics on quenched networks remains at the 
HMF theory level4,33, which shows the importance of the number of disease stages and the way of transmission 
in addition to the importance of the dynamic correlations, and calls for a deeper theoretical understanding of 
the epidemic spreading on quenched networks.

In this work, we introduce a new set of fundamental conditions named the bond-detailed-balance (BDB) 
conditions, which the numbers of every type of two connected nodes (bonds) must satisfy in the stationary state, 
and a systematic way of rescaling infection rate to apply the new conditions. By integrating the BDB conditions 
and the rescaling method with the method of Cai et al., we develop a general protocol (a series of the derivation 
procedures of thresholds), which can be applicable to diverse epidemic models with multiple numbers of disease 
stages and various transmission ways on quenched networks with an arbitrary P(k). As an example, the protocol 
applied to the SIRS model is depicted schematically in Fig. 1. We verify this protocol by deriving the accurate 
thresholds of the CP and SIRS model. The BDB conditions and the predicted thresholds of both models undergo 
meticulous numerical validation through Monte Carlo simulations conducted on quenched scale-free networks 
with P(k) ∼ k−γ with γ > 2.

Results
SIRS model
The derivation of the threshold of the SIRS model follows the protocol illustrated in Fig. 1.

We begin with employing the HMF approximation to establish the rate equations for the SIRS model on a 
quenched network characterized by an arbitrary P(k) distribution. Within the HMF approximation, nodes are 
categorized based on their degrees8,9. For a given degree k, we define the set �k comprising nodes with the same 
degree, and denote Nk as its size. We further define Sk =

∑

i∈�k
Si as the count of nodes in the state S within the 

set �k . Similarly, Ik and Rk are defined for states I and R. Consequently, the total number of nodes with degree k 
is determined by Nk = Sk + Ik + Rk . By summing Sk , Ik , and Rk across all possible k values, we obtain the overall 
numbers of nodes in states S, I, and R, represented as S =

∑kmax

k=kmin
Sk . Here, kmin and kmax correspond to the 

minimum and maximum degrees within the underlying network.
To include the dynamic correlations, Cai et al. combined the HMF theory with the ED approach that 

introduces the correlations between susceptible (infected) nodes and their infected neighbors by defining pk ( qk ) 
as the probability of a susceptible (infected) node with degree k having an infected neighbor along a randomly 
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chosen link among their k links32. With the ED approach, the HMF rate equations of Sk , Ik , and Rk are modified 
as follows

In the steady state, Sk , Ik , and Rk are related with each other by Eqs. (1)–(3) as

Similarly to the SIS model32, we introduce Skjn , Ikjn , and Rkjn , denoting the numbers of nodes among Sk , Ik , and 
Rk categories, which are connected to j infected neighbors and n recovered neighbors. For Skjn , Ikjn , and Rkjn , 
we define the probabilities pk , qk , and vk , which signify the likelihood of a susceptible node, an infected node, 
and a recovered node with degree k, respectively, being connected to an infected neighbor through a randomly 
selected link among k links. Additionally, we introduce wk , xk , and yk for Skjn , Ikjn , and Rkjn , representing the 
probabilities of a susceptible node, an infected node, and a recovered node with degree k being connected to a 
recovered neighbor through a randomly chosen link among k links, respectively.

Within the set �k , we focus on nodes having j infected neighbors and n recovered neighbors out of k links. 
For a specific combination of j and n, we can express Skjn , Ikjn , and Rkjn using binomial distributions involving 
pk , qk , and vk for j infected neighbors, as well as wk , xk , and yk for n recovered neighbors

 where 
(

k
j

)

 represents a combination of k links taken j at a time without repetition and ŵk = wk/(1− pk) 

denotes the conditional probabilities of a link being connected to a recovered neighbor given that the link is not 
connected to an infected neighbor. Ikjn and Rkjn can be expressed by using binomial distributions similarly. 
Subsequently, Sk , Ik , and Rk are calculated by summing Skjn , Ikjn , and Rkjn across the range of j and n. For further 
details, refer to the Supplemental Material36.

We define a bond as two nodes directly connected and present a new set of conditions that bonds must satisfy 
for epidemic dynamics on networks. We assert that the number ( �ab ) of each bond type remains constant on 
average in the steady state, where a and b can be any of S, I, and R. Consequently, the average change ( 〈��ab〉 ) 
in the number of each bond type vanishes in a time interval dt, during which only a single event occurs. We refer 
to this as the bond-detailed-balance (BDB) condition.

In Table 1, we provide a summary of all possible changes in the numbers of various bond types, along with 
their corresponding probabilities. Using Table 1, we derive six equations that represent the BDB conditions by 
summing the product of each contribution to ��ab and the corresponding probability. We confirmed the validity 

(1)
dSk

dt
=− �kSkpk + hRk ,

(2)
dIk

dt
=− rIk + �kSkpk ,

(3)
dRk

dt
=− hRk + rIk .

(4)�kSkpk = rIk = hRk .

(5)Skjn = Sk(1− pk)
k−jp

j
k

(

k
j

)

(1− ŵk)
k−j−nŵn

k

(

k − j
n

)

,

Figure 1.   The protocol for the SIRS model to derive the threshold �̄SIRSc  . The derivation procedure follows 
arrows. The yellow arrow indicates that inputs are utilized to obtain equations corresponding to bond-detailed-
balance conditions for every type of bonds in terms of the effective-degree expressions of S, I, and R. Inputs 
entered along the blue arrow are utilized to express the obtained equations in terms of Ik and p. The purple 
arrow indicates that all equations reduced to a single equation after some algebra. For the CP with another 
transmission way, the infection rate is first rescaled with 〈k〉/〈k2〉 to make the HMF rate equation of Ik similar 
to dIk/dt of the SIRS model before applying the protocol for the CP, which is obtained by dropping all variables 
related R in the protocol for the SIRS model.
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of the BDB conditions through numerical simulations and provide comprehensive details of the simulation 
outcomes in the Supplemental Material. Among these six equations36, the following three equations are utilized:

By summing Eqs. (7) and (8) and utilizing Eq. (6), we deduce the relationship 
∑

kjn �Skjnjk =
∑

kjn rIkjnk so 
that Eqs. (7) and (8) become equivalent and can be organized into the following form:

By expressing the second and third terms using Ik36, Eq. (9) is rewritten as:

Considering that we lack information about how pk varies for different k values, we assume, following the 
maximum entropy principle, that all pk and wk are the same across all k values ( pk = p,wk = w for all k).

Utilizing the relation from Eq. (4) and Sk + Ik + Rk = Nk with Nk = NP(k) , we can express Ik as a function 
of p:

Substituting Eq. (11) into Eq. (10), we arrive at a self-consistent equation for p. By finding the solution of p that 
satisfies this self-consistent equation and then substituting this solution back into Eq. (11), the total number of 
infected nodes in the stationary state can be determined32.

The epidemic threshold �c can be determined from Eq. (10)32. We define the left-hand side of Eq. (10) as f(p). 
The trivial solution of f (p) = 0 is p = 0 , corresponding to the disease-free phase due to Ik|p=0 = 0 ∀ k from Eq. 
(11). Conversely, f (p = 1) is always negative. Hence, for a positive solution p+ in the interval (0, 1) that 
corresponds to the endemic phase with positive I(p+) , f(p) must be a convex function of p. The convexity 
requirement implies that the slope of f(p) at p = 0 , df (p)/dp|p=0 , should be positive. As the solution p+ and 
I(p+) tend to zero with the control parameter � → �

+
c  , the slope also approaches zero as � → �

+
c  and eventually 

becomes zero at �c . Hence, the condition for the transition between the disease-free and endemic phases is 
df (p)
dp

∣

∣

∣

∣

p=0

= 0 , and we derive the epidemic threshold �̄c = �c/r of the SIRS model36 as

(6)���II � =
∑

kjn

�Skjnj · j −
∑

kjn

rIkjn · j = 0,

(7)

���SI � =
∑

kjn

�Skjnj ·
(

(k − j − n)− j
)

−
∑

kjn

rIkjn · (k − j − n)+
∑

kjn

hRkjn · j = 0,

(8)

���IR� =
∑

kjn

�Skjnj · n

+
∑

kjn

rIkjn · (j − n)−
∑

kjn

hRkjn · j = 0.

(9)(r + h)
∑

kjn

Ikjnn− �

∑

kjn

Skjnj
2 − �

∑

kjn

Skjnjn = 0.

(10)
(r + h)

(

∑

k

kIk −
r

�

∑

k

Ik

)

− (2r + h)
∑

k

(

1+ pk(k − 1)
)

Ik − r
∑

k

wk(k − 1)Ik = 0.

(11)Ik =
�kpN

r + (1+ r/h)�kp
P(k).

Table 1.   The changes in the numbers of bonds due to all possible events during a time interval dt of the 
SIRS model on a quenched network. � represents the total rate � = σ + π + φ defined in the Supplemental 
Material36.

Event Skjn → Ikjn Ikjn → Rkjn Rkjn → Skjn

Probability �Skjnj/� rIkjn/� hRkjn/�

��SS −(k − j − n) 0 (k − j − n)

��II j −j 0

��RR 0 n −n

��SI −j + (k − j − n) −(k − j − n) j

��IR n (j − n) −j

��RS −n (k − j − n) n− (k − j − n)
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From Eq. (12), we can immediately derive the threshold for the SIRS model on quenched regular networks with 
P(k) = δk,k0 , where the degree of every node is k0 . By substituting �k� = k0 and �k2� = k20 into Eq. (12), we arrive 
at the threshold for regular networks as:

Equations (12) and (13) accurately yield the known thresholds of the SI, SIR, and SIS models on quenched 
networks, as discussed below.

The SIRS model with r = 0 corresponds to the SI model, where an endemic steady state of a positive I is 
possible for any � > 0 , resulting in �SIc = 0 . When r = 0 , �SIRSc  is also zero, as expected. When h approaches 
infinity, the R state immediately transitions to S, effectively converting the SIRS model into the SIS model, whose 
threshold is given by �̄SISc = [�k�/(�k2� − �k�)] . As h tends towards infinity, �̄SIRSc  approaches �̄SISc  . At h = 0 , the 
SIRS model simplifies to the SIR model, and the system ultimately stabilizes in a steady state where R = N − S , 
with S ≤ S(t = 0) . In contrast to the absorbing phase transition seen in the SIRS model, the SIR model exhibits 
a threshold phenomenon briefly explained as follows5.

In a simple mean-field analysis, the rate equation for I(t) is described by dI/dt = (�S/N − r)I . When 
the initial ratio S(0)/N is less than �̄−1 , the value of I(t) diminishes without increasing due to the decreasing 
susceptible population S(t) < S(0) . However, when S(0)/N > �̄

−1 , I(t) initially increases to a maximum and 
then decays exponentially to zero. The inverse of �̄ is known as the basic reproduction number R0 . For the 
invasion of a disease into a population with S(0)/N = 1 , the disease will spread if the condition R0 > 1 is met; 
otherwise, the disease will die out exponentially. Since the stationary number of recovered individuals R is given 
by 

∫∞
0

I(t)dt , the SIR model displays a continuous transition from a state where R = 0 to a state where R > 0 
at a finite value of �̄SIRc

4,31. On quenched networks, the threshold �̄SIRc  is expressed as [�k�/(�k2� − 2�k�)] , which 
agrees with �̄SIRSc |h→0.

As a result, the threshold �̄SIRSc  is correctly reduced to the thresholds of the three well-known models: the SI, 
SIR, and SIS models, by considering the limits r → 0 , h → 0 , and h → ∞ , respectively.

In simulations, it is often convenient to work with rates normalized by their sum. In the subsequent discussion, 
� , r, and h denote scaled rates and satisfy the conservation relation �+ h+ r = 1 . For simplicity, we will refer 
to �SIRSc  as �c . By utilizing the relationship �+ h+ r = 1 , we can express �c as a function of either h or r by 
eliminating r or h in Eq. (12)36. The resulting equations are as follows:

Given that �c(h) = �̄
SIS
c  when r = 1− �c for h = 0 , �c(h) monotonically decreases from �̄SISc  to zero as h increases 

from 0 to 1. Regarding �c(r) , it is important to note that the upper limit of r is restricted to rmax = 1− �̄
SIS
c  , 

beyond which h becomes negative. As a result, �c(r) increases from 0 to �c(rmax)
36.

To validate the expressions for �c(h) and �c(r) , we carried out Monte Carlo simulations of the SIRS model 
on quenched scale-free networks (SFNs) with P(k) ∼ k−γ and draw the phase diagrams with the estimates of �c 
obtained for various h and r as illustrated in Fig. 2 (Supplemental Material). Figure 2 shows the good agreement 
of the theoretical values and the estimates with high accuracy.

CP model
The CP is another significant model that displays APTs on networks4 and in lattice structures18–24. In the CP, 
individuals undergo a cycle of infection dynamics as S �

→ I
r
→ S , analogous to the SIS model. However, a key 

distinction from the SIS model is that in the CP an infected individual randomly selects one of its neighbors 
and the infection occurs if the selected neighbor is susceptible, whereas in the SIS model an infected individual 
infects all susceptible neighbors21–24. Hence the transmission ways of the CP and SIS model are distinct. Previous 
attempts to calculate the threshold �CPc  for the CP were performed using the heterogeneous pair-approximation 
(HPA), which takes dynamic correlations and the random selection into account35. However, the HPA only 
provides a self-consistent equation for �CPc  . Despite the similarity of the CP and SIS dynamics, an accurate 
expression for �CPc  on quenched networks has remained elusive.

The random selection make it impossible to write the HMF rate equation of Ik analogous to Eq. (5) so that the 
protocol similar to the SIRS model cannot be applied to the CP. This problem can be resolved by rescaling the 
infection rate � with 〈k〉/〈k2〉 and defining an effective infection rate �k = ��k�/�k2� (Supplemental Material). 
Then we rewrite dIk/dt by approximating pk = p as

(12)�̄
SIRS
c =

�k�

�k2� − ( h+2r
h+r )�k�

.

(13)�̄
SIRS
c (k0) =

1

k0 − ( h+2r
h+r )

.

(14)�c(h) =
�̄
SIS
c

2�̄HMF
c

(

1−

√

1− 4(1− h)
(�̄HMF

c )2

�̄SISc

)

,

(15)�c(r) =
1

2

(

1−

√

1− 4r�̄SISc

)

.

(16)
dIk

dt
= −rIk +�kkSkp.
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Next, we obtain the protocol for the CP by dropping the variables related to Rk in the protocol for the SIRS model. 
The BDB conditions for the CP are presented and confirmed by simulations in the Supplemental Material. By 
simply replacing �k with � in Eq. (16), we recover dIk/dt and the protocol for the SIS model32.

Subsequent procedures for deriving �CPc  are straightforward and yield the explicit expression for �̄CPc (= �
CP
c /r)

36 as:

In the limit of N → ∞ , this expression yields �̄CPc = 1 for 2 < γ ≤ 3 , where 〈k2〉 diverges. In all other cases, �̄CPc  is 
greater than 1. For the regular network with degree k0 , we obtain �̄CPc = k0/(k0 − 1) . The different expressions of 
�̄
CP
c  and �̄SISc  are the consequence of the selection scheme of neighbors and show the importance of transmission 

ways in predicting the epidemic outbreak even for the same infection cycle S �
→ I

r
→ S.

We carried out simulations for the CP on quenched SFNs with N = 107 and kmin = 5 , and estimated �̄CPc  for 
several γ values. The resultant phase diagram is illustrated in Fig. 3 (Supplemental Material). As shown in the 
inset of Fig. 3, the error sharply increases near γ = 3 , which reflects that the network structure drastically changes 
due to diverging 〈k2〉 at γ = 3 . For other values of γ , the errors are quite small, 2% ∼ 4% , so the simulation results 
convincingly support the expression of �̄CPc  of Eq. (17).

(17)�̄
CP
c =

�k2�

�k2� − �k�
.

Figure 2.   Phase Diagram of the SIRS Model on the scale-free network (SFN) with γ = 5 , N = 107 , kmin = 5 , 
and kmax = 100 : The SFN yields �k� = 6.094 and �k2� = 41.547 , for which �̄SISc = 0.1719 and �̄HMF

c = 0.14668 . 
(a) Plot of �c(h) vs. h. The horizontal dashed line represents �̄SIRc = �̄

SIS
c = 0.1719 . (b) Plot of �c(r) vs. r, where 

r is smaller than rmax = 1− �̄
SIS
c = 0.8281 due to the constraint h ≥ 0 . In each panel, the circles represent the 

simulation-based estimates of �c , while the solid line corresponds to the theoretical �c values derived from Eqs. 
(14) and (15). The discrepancies between the estimates and the theoretical values fall within a range of 0.9% to 
1.6%.

Figure 3.   Phase diagram of the contact process (CP) on the scale-free network (SFN) with N = 107 and 
kmin = 5 : Plots of �̄c vs. γ . Circles and squares are the estimates of �̄c resulting from simulations and the 
theoretical �̄c obtained from Eq. (17) for SFNs of various γ ranging from 2.25, 2.5, 2.8, and 3.5 to 10. The inset 
displays the errors in the estimates compared to the theoretical values. A solid line has been drawn between the 
symbols to provide a visual guide.
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Discussion
We have introduced a new approach involving BDB conditions and applied it to the ED approach in conjunction 
with the HMF theory to determine the epidemic thresholds for both the SIRS and CP models on quenched 
networks. The BDB conditions and the systematic method of rescaling infection rate make it possible to resolve 
the multiple stages of disease progression and the random selection of one neighbor, which have been the 
long-standing theoretical challenges in finding the accurate thresholds of the SIRS model and CP. We have 
derived the threshold of both models by combining the BDB conditions and the rescaling method with the 
approach developed by Cai et el., and encapsulated the series of procedures for deriving thresholds in a general 
protocol. The predicted thresholds of both models according to the protocol were verified by simulations with 
high accuracy on quenched scale-free networks.

The SIRS and CP models are characterized by stationary cyclic behaviors. However, even for models that 
exhibit irreversible flows as their stationary behaviors, such as the SIR model, we can still derive the thresholds 
by introducing a virtual process that transforms such models into ones featuring cyclic stationary behaviors, 
similar to the SIRS model and taking the limit of the rate for the virtual process vanishing.

The utility of the protocol extends beyond these two specific models, as it is applicable to a wide range 
of epidemic models due to its general nature involving multiple stages of disease progression and various 
transmission ways. Given the successful derivation of epidemic thresholds for both the CP and SIRS models, 
our approach represented by the protocol is likely to yield accurate threshold expressions for epidemic models 
on diverse types of quenched networks, encompassing scenarios involving weighted, directed, and even directed-
weighted networks.

Moreover, the application of our protocol to real-world epidemics would be intriguing. To implement our 
protocol, it is essential to first conduct model parameter estimation and analyze the network structure. Epidemic 
models, often characterized by non-linearities, are anticipated to have model parameters that vary over time and 
depend on numerous factors37. Consequently, the estimation of model parameters becomes challenging. This 
aspect could be considered in future works.

Data availability
All data generated and analyzed in this study are included in this article (and its Supplementary Information file).
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