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Inverted U‑shaped relationship 
between sleep duration 
and phenotypic age in US adults: 
a population‑based study
Yanwei You 1,2,7,8, Yuquan Chen 3,8, Ruidong Liu 1,4,8, Yangchang Zhang 5, Meiqing Wang 1,2,7, 
Zihao Yang 1,2,7, Jianxiu Liu 1,6,7* & Xindong Ma 1,7*

Sleep is a modifiable behavior that can be targeted in interventions aimed at promoting healthy aging. 
This study aims to (i) identify the sleep duration trend in US adults; (ii) investigate the relationship 
between sleep duration and phenotypic age; and (iii) explore the role of exercise in this relationship. 
Phenotypic age as a novel index was calculated according to biomarkers collected from US adults 
based on the National Health and Nutrition Examination Survey (NHANES). Sleep information was 
self‑reported by participants and discerned through individual interviews. The principal analytical 
method employed was weighted multivariable linear regression modeling, which accommodated for 
the complex multi‑stage sampling design. The potential non‑linear relationship was explored using a 
restricted cubic spline (RCS) model. Furthermore, subgroup analyses evaluated the potential effects of 
sociodemographic and lifestyle factors on the primary study outcomes. A total of 13,569 participants 
were finally included in, thereby resulting in a weighted population of 78,880,615. An examination of 
the temporal trends in sleep duration revealed a declining proportion of individuals with insufficient 
and markedly deficient sleep time since the 2015–2016 cycle. Taken normal sleep group as a reference, 
participants with extreme short sleep [β (95% CI) 0.582 (0.018, 1.146), p = 0.044] and long sleep [β 
(95% CI) 0.694 (0.186, 1.203), p = 0.010] were both positively associated with phenotypic age using 
the fully adjusted model. According to the dose–response relationship between sleep duration and 
phenotypic age, long sleep duration can benefit from regular exercise activity, whereas short sleep 
duration with more exercise tended to have higher phenotypic age. There is an inverted U‑shaped 
relationship between short and long sleep durations and phenotypic age. This study represents an 
important step forward in our understanding of the complex relationship between sleep and healthy 
aging. By shedding light on this topic and providing practical exercise recommendations for promoting 
healthy sleep habits, researchers can help individuals live longer, healthier, and more fulfilling lives.
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In today’s fast-paced society, there is a growing trend of people getting insufficient amounts of sleep on a regular 
 basis1–3. While the recommended amount of sleep for adults from the National Sleep Foundation is typically 
between seven and 8 h per  night4,5, over 1/3 of individuals are falling short of this target due to a variety of factors. 
There is conflicting evidence regarding sleep duration trends across different countries and regions. While some 
studies suggest that people are getting less sleep overall, others show no significant change or even an increase 
in sleep  duration1,6,7.
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While the trends in sleep duration may vary across different countries and regions, there is growing concern 
about the negative health outcomes associated with chronic sleep health  issues8. Insufficient sleep duration, 
defined as less than 7 h per  night4, has been linked to heightened all-cause mortality  risk9,  obesity10, metabolic 
 irregularities11, cognitive  impairment12 and an escalated likelihood of  depression13. In contrast, a minimum sleep 
span of at least 7 h per night was found to be correlated with lower estimates of smoking prevalence, physical 
inactivity and sedentary time, and obesity when compared to shorter sleep  durations14. Although it seems that 
patients affected by chronic disorders may tend to exhibit a proclivity towards longer sleep  cycles15, limited 
empirical evidence exists to substantiate the contention that extended sleep cycles give rise to untoward health 
conditions in otherwise healthy adult populations.

In the field of medicine and health, a growing area of interest is the use of “phenotypic age” as a predictor for 
various diseases and as a biomarker for assessing aging. Phenotypic age refers to an individual’s biological age, 
which is determined by their physical characteristics and functioning rather than their chronological  age16,17. 
Studies have shown that the biological markers based age can be a reliable indicator of an individual’s likelihood 
of developing certain health conditions. This includes chronic diseases such as cardiovascular  disease18, type 
2  diabetes19, and neurological  disease20. One of the advantages of using phenotypic age as a predictive tool is 
that it can provide more accurate information than chronological age or sole marker (e.g., telomere)  alone21,22.

Meantime, the influence of sleep on aging is an emerging  topic23,24 and no consequence has been reached on 
the relationship between sleep duration and biomarkers-measured aging. Recent studies have suggested that sleep 
may play a role in telomere  length25 and thus biological changes during the aging  process26. One study found that 
individuals who reported shorter sleep duration had significantly shorter telomeres than those who reported 
longer sleep  durations27,28. Another study found that individuals who reported short or long sleep duration had 
higher levels of Amyloid-β burden, which can contribute to a pathology associated with Alzheimer’s disease in 
its early  stages29. While these studies provide some evidence for a link between sleep and phenotypic age related 
changes, more research is needed to fully understand the relationship. Moreover, it is possible that other factors, 
such as lifestyle habits (e.g., physical activity)30, may also play a role in determining an individual’s biological age.

Based on the aforementioned literature, the burgeoning health problems that are associated with sleep 
deficiencies demand increased public attention and healthcare resources. Additionally, less is known about the 
specific relationship between sleep duration and phenotypic age. Therefore, there is an exigency for compelling 
evidence to awaken public consciousness of the detrimental effects of sleep duration and its influence on aging-
based biomarkers. Figure 1 shows the objective and design of the study. By using a nationwide sample of the 
United States population, this study aims to (i) investigate trends in sleep patterns of US adults from the National 
Health and Nutrition Examination Survey (NHANES); (ii) evaluate the relationship between sleep and multi-
biomarkers-based phenotypic age; (iii) conduct subgroup analysis, and explore whether lifestyle behavior such 
as exercise participation may impact this relationship.

Figure 1.  Objective and design of this study.
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Results
A total of 48,762 participants from NHANES 2005–2020 were included in the present analysis for detecting 
the sleep trend. From Fig. 2, it can be found that most people sleep for 6–9 h in different year-cycles. Moreover, 
the proportion of short sleep and extreme short sleep shows a downward trend, while long sleep duration 
demonstrates an upward trend since the 2015–2016 cycle. There were 13,569 participants used for the final 
analysis between sleep duration and phenotypic age, presenting a weighted population of 78,880,615. Table 1 
shows the demographic characteristics of the final participants. The sample was uniform across gender (48.88% 
were males), and most of them were Non-Hispanic Whites (71.64%) and Blacks (10.43%). More than half of 
them had at least college degree (57.52%) and were married (65.05%). The study participants had an average 
phenotypic age of 42.76 years.

In the crude model and model 1, sleep duration was found to be not significantly associated with phenotypic 
age when assessed as a continuous variable, as per Table 2 [Crude Model, β (95% CI) 0.329 (− 0.012, 0.669), 
p = 0.058; Model 1, β (95% CI) − 0.155 (− 0.317, 0.006), p = 0.059]. However, in the fully adjusted model, there 
was a significant association between continuous sleep duration and phenotypic age [Model 2, β (95% CI) 0.153 
(0.015, 0.291), p = 0.031]. Moreover, this association was held when sleep duration was evaluated as a category 
variable. When compared to normal sleep group, a positive association between short sleep and phenotypic 
age was identified in the crude model and model 1 [Crude Model, β (95% CI) 0.867 (0.000, 1.733), p = 0.050; 
Model 1, β (95% CI) 0.837 (0.358, 1.316), p < 0.001; Model 2, β (95% CI) 0.142 (− 0.367, 0.650), p = 0.570]. Taking 
normal sleep group as a reference, extreme short sleep was positively associated with phenotypic age [Crude 
Model, β (95% CI) 2.434 (1.240, 3.628), p < 0.001; Model 1, β (95% CI) 2.356 (1.843, 2.869), p < 0.001; Model 2, 
β (95% CI) 0.582 (0.018, 1.146), p = 0.044]. Additionally, in comparison to normal sleep group, we also noted 
a considerably higher phenotypic age in the long sleep group, regardless of all adjusted models [Crude Model, 
β (95% CI) 2.696 (1.720, 3.672), p < 0.001; Model 1, β (95% CI) 1.000 (0.479, 1.521), p < 0.001; Model 2, β (95% 
CI) 0.694 (0.186, 1.203), p = 0.010].

We calculated the inflection point of the relationship between sleep duration and log based phenotypic age to 
be 7 h using a two-piecewise linear regression modelling (Table 3). On the left side of the inflection point, the β 
(95% CI), and p value were − 0.010 (− 0.014, − 0.005) and < 0.001, respectively. On the other hand, we observed 
that there was also a significant association between sleep duration and log based phenotypic age on the right 
of inflection point [β (95% CI) 0.013 (0.007, 0.018), p < 0.001] using the fully adjusted model. Additionally, this 
dose–response relationship is demonstrated in Fig. 3.

Figure 2.  (a) Histogram of sleep duration distributions in different year-cycles of NHANES; (b) Histogram of 
year-cycles distributions among different sleep categories.



4

Vol:.(1234567890)

Scientific Reports |         (2024) 14:6247  | https://doi.org/10.1038/s41598-024-56316-7

www.nature.com/scientificreports/

Variable (%/Mean)* Normal sleep Short sleep Extreme short sleep Long sleep p-value

Chronological age (years)  < 0.001

 < 40 36.51 36.34 36.52 36.2 36.78

  [40, 60) 40.01 42.54 42.75 43.81 34.19

 ≥ 60 23.49 21.12 20.73 19.99 29.03

Sex  < 0.001

 Male 48.88 50.35 52.44 49.24 44.88

 Female 51.12 49.65 47.56 50.76 55.12

Race/ethnicity  < 0.001

 Non-hispanic White 71.64 76.88 68.3 59.9 73.97

 Non-hispanic Black 10.43 6.44 12.52 20.65 8.44

 Mexican American 7.91 7.34 7.98 6.93 8.8

 Other race/ethnicity 10.02 9.34 11.2 12.52 8.79

Marital status  < 0.001

 Never married 16.29 14.3 16.33 16.54 18

 Married/living with partner 65.05 70.15 64.59 59.4 62.99

 Widowed/divorced 18.66 15.54 19.07 24.06 19.02

Poverty income ratio  < 0.001

 < 1 12.89 9.36 12.55 19.38 13.7

 [1,3) 35.62 32.33 35.86 41.17 36.21

 ≥ 3 51.49 58.31 51.59 39.45 50.09

Education  < 0.001

 Below high school 6.14 4.57 5.25 7.46 7.67

 High school 36.34 32.03 38.06 44.44 35.78

 College or above 57.52 63.41 56.7 48.1 56.56

Body mass index (kg/m2)  < 0.001

 < 25 31.8 32.88 28.97 26.9 34.8

 [25, 30) 33.5 34.06 33.73 32.16 33.37

 ≥ 30 34.7 33.05 37.3 40.94 31.83

Smokers  < 0.001

 Never smoker 52.72 55.67 51.64 45.28 53.82

 Former smoker 24.86 26.06 23.7 21.92 25.78

 Current smoker 22.42 18.27 24.66 32.8 20.41

Alcohol drinkers  < 0.001

 Nondrinker 32.07 28.78 31.23 39.57 32.6

 Moderate alcohol use 47.7 51.84 47.5 39.06 47.57

 High alcohol use 20.23 19.38 21.27 21.37 19.83

Exercise Activity (min/week)  < 0.001

 None 64.85 61.02 64.88 70.35 66.1

 [1, 150) 11.02 12.61 11.05 8.9 10.41

 ≥ 150 24.13 26.37 24.07 20.75 23.49

Hypertension  < 0.001

 No 63.9 67.58 63.11 57.86 63.55

 Yes 36.1 32.42 36.89 42.14 36.45

Diabetes mellitus  < 0.001

 No 87.35 89.78 86.73 83.32 87.21

 Yes 12.65 10.22 13.27 16.68 12.79

Cardiovascular diseases  < 0.001

 No 91.56 94.26 92.22 87.59 90.25

 Yes 8.44 5.74 7.78 12.41 9.75

Phenotypic age (year) 42.76 ± 0.39 41.34 ± 0.45 42.21 ± 0.37 43.77 ± 0.57 44.04 ± 0.58  < 0.001

Red blood cell distribution width (%) 12.75 ± 0.02 12.61 ± 0.02 12.73 ± 0.03 12.99 ± 0.04 12.79 ± 0.02  < 0.001

Mean red cell volume (fL) 89.53 ± 0.16 89.69 ± 0.17 89.35 ± 0.17 89.1 ± 0.22 89.69 ± 0.18 0.003

Lymphocyte percent (%) 30.23 ± 0.13 30 ± 0.17 30.5 ± 0.20 30.54 ± 0.24 30.13 ± 0.16 0.035

White blood cell count (1000 cells/uL) 7.24 ± 0.03 7.09 ± 0.04 7.36 ± 0.06 7.5 ± 0.08 7.19 ± 0.04  < 0.001

Alkaline phosphatase (U/L) 67.72 ± 0.34 65.74 ± 0.47 68.01 ± 0.51 71.25 ± 0.55 67.88 ± 0.47  < 0.001

C-reactive protein (mg/dL) 0.39 ± 0.01 0.34 ± 0.02 0.4 ± 0.02 0.46 ± 0.03 0.41 ± 0.01  < 0.001

Continued
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The present study sought to investigate the relationship between sleep duration and phenotypic age by 
examining the potential influence of demographic, lifestyle and health-related factors. Detailed stratified analyses 
can be found in Supplementary Table 1. Among these influencing factors, exercise level was a notable variable that 
also significantly regulated the association mentioned above. Subgroup analysis detected the relationship between 
sleep duration and phenotypic age under different level of exercise groups (Fig. 4a). Our findings indicated that 
in none exercise habit group, extreme short sleep and long sleep were positively associated with phenotypic 
age [short sleep, β (95% CI) 1.339 (0.212, 2.466), p = 0.021; extreme short sleep, β (95% CI) 3.277(1.986, 4.569), 
p < 0.001; long sleep, β (95% CI) 3.926(2.748, 5.104), p < 0.001]. However, in participants who participated in more 
than 150 min’ exercise activity per week, there were negative associations between sleep duration and phenotypic 
age [short sleep, β (95% CI) − 1.434 (− 3.102, 0.234), p = 0.089; extreme short sleep, β (95% CI) − 2.594 (− 5.058, 
− 0.130), p = 0.040; long sleep, β (95% CI) − 1.652 (− 3.506, 0.203), p = 0.079]. The dose–response relationship 
between sleep duration and phenotypic age with different exercise activities was further examined using the RCS 
model. From Fig. 4b, it can be observed that the long sleep duration group can benefit from regular exercise 
activity, while the short sleep group with more exercise tended to have a higher phenotypic age.

Discussions
Drawing upon NHANES data, we investigated the sleep duration trend and the relationship between sleep 
duration and phenotypic age, while also examining the potential effects of confounding factors on such 
associations. In addition to identifying the relationship, the dose–response and subgroup analysis can provide 
practical recommendations for promoting healthy sleep habits and slowing down the aging process. Moreover, 
the results shed light on potential health-related factors such as exercise participation that may influence the 
relationship between sleep duration and phenotypic age, and have important implications for clinical practice 
and public health policies.

Variable (%/Mean)* Normal sleep Short sleep Extreme short sleep Long sleep p-value

Albumin (g/L) 42.66 ± 0.07 42.93 ± 0.08 42.65 ± 0.09 42.15 ± 0.09 42.61 ± 0.1  < 0.001

Glucose (mmol/L) 5.82 ± 0.03 5.75 ± 0.05 5.84 ± 0.05 5.9 ± 0.06 5.83 ± 0.05 0.087

Creatinine (umol/L) 79.38 ± 0.37 79.06 ± 0.49 79.35 ± 0.43 79.96 ± 0.69 79.46 ± 0.55 0.624

Table 1.  Demographic characteristics of the final participants. *For categorical variables: survey-weighted 
percentage (%). For continuous variables: survey-weighted mean ± SE; NHANES, National Health and 
Nutrition Examination Survey.

Table 2.  Weighted linear regression results for relationship between sleep duration and phenotypic age. 
a Crude model, no covariate was adjusted. b Model 1, age, sex, and race were adjusted. c Model 2, age, sex, 
race, marital status, education, poverty status, body mass index, smokers, alcohol drinkers, exercise activity, 
hypertension, diabetes mellitus, and cardiovascular diseases were adjusted. CI, confidence interval.

Crude  modela Model  1b Model  2c

β (95% CI) p-value β (95% CI) p-value β (95% CI) p-value

Sleep duration (hours/day) 0.329 (− 0.012, 0.669) 0.058 − 0.155 (− 0.317, 0.006) 0.059 0.153 (0.015, 0.291) 0.031

Sleep duration (as category)

 Normal sleep Reference Reference Reference

 Short sleep 0.867 (0.000, 1.733) 0.050 0.837 (0.358, 1.316)  < 0.001 0.142 (− 0.367, 0.650) 0.570

 Extreme short sleep 2.434 (1.240, 3.628)  < 0.001 2.356 (1.843, 2.869)  < 0.001 0.582 (0.018, 1.146) 0.044

 Long sleep 2.696 (1.720, 3.672)  < 0.001 1.000 (0.479, 1.521)  < 0.001 0.694 (0.186, 1.203) 0.010

Table 3.  Threshold effect analysis of relationship between sleep duration and log phenotypic age. Age, sex, 
race, marital status, education, poverty status, body mass index, smokers, alcohol drinkers, exercise activity, 
hypertension, diabetes mellitus, and cardiovascular diseases were adjusted.

β (95% CI) p-value

One—line linear regression model − 0.001 (− 0.003, 0.003) 0.934

Two—piecewise linear regression model

 Sleep duration < 7 (hours/day) − 0.010 (− 0.014, − 0.005)  < 0.001

 Sleep duration ≥ 7 (hours/day) 0.013 (0.007, 0.018)  < 0.001

 Log—likelihood ratio test  < 0.001
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In the current study, it was observed that extreme short-sleep population demonstrated a downward trend. 
This dynamic may reflect evolving cultural attitudes toward sleep hygiene, broader societal priorities, as well 
as demographic shifts. Such findings provide valuable insights into the changing landscape of sleep patterns 
and attendant health outcomes, thereby informing clinical practice and public health policy. Furthermore, our 
findings indicated that short sleep was associated with accelerated phenotypic age. Research has shown that 
getting enough sleep is critical for overall health and  wellbeing31. Consistent with our findings, it has been proved 
that insufficient sleep can lead to impaired immune  function32, which can contribute to an accelerated aging 
process. In addition, our study also identified that too long sleep was also positively associated with phenotypic 
age. Numerous investigations have evinced that protracted slumber has been linked with a greater susceptibility 
to  mortality33,34. However, this correlation between extended slumber and mortality might be substantially 
convoluted by variables such as economic standing. Concurrently, surplus activation of catecholaminergic tone 
and perturbations in energy metabolism were identified as potential drivers behind the correlation between 
extreme sleep duration and health  hazards34,35. Findings from different cohort studies further corroborated 
our results, demonstrating a positive correlation between healthy sleep quality and improved cognitive health, 
as well as a decreased risk of premature health span  decline36–38. Additionally, although not explored in this 
study, the impact of napping on sleep duration is a multifaceted aspect that requires careful  consideration39–41. 
Further exploration is needed to understand the relationship between napping habits and overall sleep duration, 
particularly in the context of split sleep schedules and potential associations with sleep fragmentation.

Figure 3.  The dose–response relationship between sleep duration and log based phenotypic age.

Figure 4.  Subgroup analysis (a) and dose–response relationship (b) between sleep duration and phenotypic age 
under different level of exercise groups (*p < 0.1, **p < 0.05, ***p < 0.001).



7

Vol.:(0123456789)

Scientific Reports |         (2024) 14:6247  | https://doi.org/10.1038/s41598-024-56316-7

www.nature.com/scientificreports/

When it comes to the biological mechanisms about the relationship between sleep duration and hallmarks 
of aging. It ought to be underscored that critical hormonal modulators implicated in the sleep homeostasis 
framework, such as serum concentrations of testosterone, were shown to be influenced by inadequate sleep 
duration and disturbance in circadian  rhythms42 Furthermore, previous literature posited that an escalation in 
inflammatory processes could serve as a plausible intermediary mechanism responsible for the augmented aging 
observed in abnormal  sleep43,44. It has been reported that transitory deficiency in sleep duration precipitates a 
reduction in the levels of circulating metabolites orchestrating redox homeostasis, and induces alterations in 
epigenetic profiles, thereby triggering multifarious downstream effects on biological  function45,46. In addition, 
the accelerated aging associated with extreme sleep duration can be interpreted by cellular senescence, which 
can be reflected by changes in telomere  length47.

The multifactorial nature of phenotypic age engenders a complex interplay of influential lifestyle factors. 
Physical activity represents a lifestyle intervention capable of engendering salutary effects on the trajectory of 
aging and conferring longevity upon its ardent  practitioners48,49. Our investigation has probed the possibility of 
interventions to mitigate phenotypic aging and has underscored the salutary role of physical exercise as a lifestyle 
intervention, particularly in the context of the relationship between sleep and phenotypic age. The import of 
our research lies in its emphasis on the capacity of physical exercise to bestow benefits upon individuals with 
over 7 h of nightly slumber. It is noteworthy that a promising alternative therapeutic avenue for mitigating sleep 
disturbances in individuals across the lifespan, spanning from young to geriatric populations, has emerged in 
the form of  exercise50–52. According to our results, individuals with reduced sleep duration may experience 
accelerated phenotypic aging despite more regular engagement in exercise regimens. At a glance, the present 
findings may appear antithetical to the well-documented benefits of exercise. However, in consideration of the 
fact that short sleep itself could affect the ability and motivation of exercise, it makes sense that exercise intensity 
could be an important factor. There is current evidence finding that the benefits of exercise on health may have 
a threshold effect on both young and older  adults53,54. From mechanism, conducting one- bout high volume of 
exercise might increase the inflammatory  response55, especially considering the short-sleep status. Hence, the 
premise of positive benefits of exercise is regular circadian rhythm and sufficient sleep.

Our study has several strengths. The importance of large-scale studies of sleep should be  recognized56. First, 
we used data from a large, nationally representative sample of US adults, increasing the generalizability of our 
findings. Second, we utilized the concept of phenotypic age, which provides a more comprehensive measure 
of biological aging than chronological age alone. Third, we took into account various sociodemographic and 
health-related factors that could confound the relationship between sleep duration and phenotypic age. Moreover, 
another key aspect of this study was its focus on the influence of physical exercise. By examining how different 
subgroups of exercise groups may impact the relationship between sleep and aging, this study identified that 
biological aging can be mitigated by sufficient sleep accompanied by regular exercise volume.

Despite these strengths, our study also has some limitations. Firstly, we used cross-sectional data, which 
limited our ability to establish causality between sleep duration and phenotypic age. The cross-sectional 
nature of the study design was unable for us to observe the dynamic physiological changes in phenotypic age. 
Secondly, there were also other influencing factors such as race, sex, age, and BMI, that may modify the observed 
relationships between sleep duration, exercise, and phenotypic age, which can be further explored. Thirdly, 
our study relied on self-reported measures of sleep duration (cannot measure time in bed and total sleep time 
simultaneously), which may be subject to recall bias. Furthermore, most epidemiological studies that rely on 
self-reported sleep duration (without all-night EEG sleep recordings) suffer from another limitation, namely they 
cannot determine whether sleep fragmentation, with or without changes in sleep duration, can also affect life 
span. Fourthly, there is an absence of detailed information on sleep medication usage in the NHANES dataset. 
Consequently, our analysis did not encompass an evaluation of the potential impact of sleep medication on the 
relationship between sleep duration and phenotypic age. Finally, we did not explore the role of sleep quality and 
sleep variability, which may be an important factor in the relationship between sleep duration and phenotypic 
age. Future studies should consider using objective measures of sleep, such as an actigraphy or polysomnography.

Conclusions
Overall, the findings of our study suggested that in the United States, the population with extremely short sleep 
duration showed a decreasing trend in recent years. Moreover, there existed an inverted U-shaped relationship 
between sleep duration and phenotypic age. This study was significant as it contributed to the growing body of 
research that emphasized the importance of sleep in relation to biological aging. Additionally, in individuals with 
extended sleep duration, consistent engagement in regular exercise is associated with benefits, while those with 
shorter sleep duration and increased exercise exhibit a tendency toward higher phenotypic age. These findings 
have important implications for public health, underscoring the need for interventions aimed at promoting 
healthy sleep habits for fostering healthy aging. Further research is needed to establish causality and explore the 
role of sleep quality in this relationship.

Methods
Study population
Study participants are from the NHANES, a comprehensive population-based survey with the aim of collecting 
data from the civilian population in the United States. As part of NHANES, approximately 10,000 people 
were surveyed on a 2-year cycle and a multistage probability sampling approach was used to select a sample 
representative of noninstitutionalized households.

In the present study, for the sleep trend analysis, we analyzed participants from eight cycles of the “continuous 
NHANES” (2005–2020) and included 48,762 participants in the analysis. Considering that the data for phenotypic 
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age was only available in NHANES 2001–2010, a total of 13,569 participants were used for the association 
between sleep duration and phenotypic age. Participants without sleep data, phenotypic age, and covariates and 
those who were pregnant were excluded from the analysis. A flowchart showing the inclusion and exclusion 
process is shown in Fig. 5.

Measurement of exposure and outcome variables
The exposure variable in this study was sleep duration. NHANES collected self-reported sleep duration data 
through their standardized questionnaire, which is administered to participants during in-person  interviews57. In 
the survey, participants were asked, "How much sleep (hours) do you usually get during the weekdays or during 
workdays at night? Participants replied with a value between 3 and 12, and responses less than 3 h or more than 
12 h were coded as 3 and 12,  respectively58. Referring to the suggestions by the National Sleep  Foundation5, 
sleep duration was categorized into long (≥ 8 h), normal (≥ 7 and < 8 h), short (≥ 6 and < 7 h) and extreme short 
(< 6 h) sleep.

The outcome variable was phenotypic age. It is apparent that the utilization of a newly fashioned phenotypic 
age, in lieu of relying on the self-sufficient chronological age, yields superior prognostic outcomes pertaining 
to health. To be precise, referring to the definition of phenotypic age proposed by Morgan E. Levine et al.17, we 
conducted a computation of the phenotypic age using ten age-linked variables. These include chronological age, 
albumin (liver), creatinine (kidney), glucose (metabolic), C-reactive protein (inflammation), lymphocyte percent 
(immune), mean red cell volume (immune), red blood cell distribution width (immune), alkaline phosphatase 
(liver), and white blood cell count (immune). Participants were required to fast for at least 8 h before giving 
blood samples. The blood samples were collected at the mobile examination center using standard procedures 
and stored in a secure  facility59,60. The method of calculation for phenotypic age was conducted as follows, which 
have been documented in an existing  literature61:

Covariate assessment
The variables that were deemed confounding factors were age groups [< 40, 40–60 (≥ 40 and < 60), 
or ≥ 60 years], sex groups (male or female), race or ethnicity groups (Non-Hispanic white, Non-Hispanic black, 
Mexican–American, or other), marital groups (Never married, married/living with partner, widowed/divorced), 
poverty income ratio groups [< 1,1–3 (≥ 1 and < 3), ≥ 3], education level groups (below high school, high school, 
college or above), body mass index groups [< 25, 25–30 (≥ 25 and < 30), ≥ 30 kg/m2], smoke group (never smoker, 
former smoker, current smoker), alcohol drink group (nondrinker, moderate alcohol use, high alcohol use), 
exercise group [none (< 1), 1–150 (≥ 1 and < 150), ≥ 150 min/week], hypertension (yes or no), diabetes mellitus 
(yes or no), and cardiovascular diseases (yes or no). Individuals classified as moderate alcohol use consumed 14 

Phenotypic age = 141.50+
Ln

[

−0.00553× Ln
(

exp
(

−1.51714×exp (xb)
0.0076927

))]

0.09165

Figure 5.  Flowchart of the study design and participants’ inclusion criteria.
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or fewer drinks per week for men, or 7 or fewer drinks per week for women, with no more than 5 drinks on any 
single day in the past year. On the other hand, high alcohol use participants were those who consumed more 
than 14 drinks per week for men, or more than 7 drinks per week for women, including having 5 or more drinks 
on at least 1 day in the past year for both men and  women62,63. Exercise, as distinct from work-related physical 
activities (which included chores, yard work, and other paid or unpaid work), was defined as leisure-time physical 
engagement, including sports, fitness, and other leisure pursuits. The category of exercise level was suggested 
by WHO Guidelines and previous  literature64,65. Detailed selection and classification of covariates can be found 
in previous  publications64,66.

Statistical analyses
All data were combined according to the NHANES protocol, and data analysis was applied using the weighting 
methodology by the NHANES survey-weighted analytic suggestions. Weights from the Mobile Examination 
Center (MEC) interviews were reweighted to account for non-responders, non-coverage, and unequal probability 
of selection in NHANES. For the baseline characteristics of participants, in order to explicate the findings, the 
continuous variables were articulated as means and standard error (SE), while the categorical variables were 
articulated as percentages (%). Employing a weighted linear regression model, we investigated the association 
between sleep duration and phenotypic age, accounting for several confounding variables across three distinct 
models. The Crude model allowed no adjustment for covariates, whereas Model 1 adjusted for age, sex, and race. 
In contrast, Model 2 integrated additional covariates including marital status, education, poverty status, body 
mass index, exercise activity, smokers, alcohol drinkers, hypertension, diabetes mellitus, and cardiovascular 
diseases to obtain a more accurate estimation of the strength and direction of the relationship under scrutiny.

Furthermore, the dose–response relationship was examined using the threshold effect analysis. Initially, the 
employment of a smooth curve fitting technique is implemented as a preliminary analysis to discern whether 
the independent variable has been partitioned into discrete intervals. Then, segmented regression, also referred 
to as piece-wise regression, is employed whereby separate line segments are utilized to fit each interval. A log-
likelihood ratio test is employed in order to compare the one-line (non-segmented) model with the segmented 
regression model to determine whether a threshold exists. Subsequently, the inflection point connecting the 
segments that maximizes the likelihood based on the model is determined using a two-step recursive method. 
More details about the inflection point calculation can be found  elsewhere67. Upon identification of the inflection 
point, the nonlinear association was assessed using the restricted cubic spline (RCS) with optimal knots set at 
three. Logarithmic transformations with natural log were applied to phenotypic age to better reflect changing 
trends in RCS analysis. Moreover, stratified analyses were performed to investigate the impact of lifestyle factors 
on the correlation between sleep duration and phenotypic age. Statistical analyses were conducted utilizing the 
software provided by the R Foundation (accessible via http:// www.R- proje ct. org), with statistical significance 
set at a p value of 0.05 or lower.

Ethics approval
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integrity of any part of the work are appropriately investigated and resolved. The study was conducted in 
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