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Prediction of neovascular 
age‑related macular degeneration 
recurrence using optical coherence 
tomography images with a deep 
neural network
Juho Jung 1,11, Jinyoung Han 1,2,11, Jeong Mo Han 3,4,11, Junseo Ko 5, Jeewoo Yoon 5, 
Joon Seo Hwang 6, Ji In Park 7, Gyudeok Hwang 8, Jae Ho Jung 3 & Daniel Duck‑Jin Hwang 8,9,10*

Neovascular age‑related macular degeneration (nAMD) can result in blindness if left untreated, and 
patients often require repeated anti‑vascular endothelial growth factor injections. Although, the treat‑
and‑extend method is becoming popular to reduce vision loss attributed to recurrence, it may pose 
a risk of overtreatment. This study aimed to develop a deep learning model based on DenseNet201 
to predict nAMD recurrence within 3 months after confirming dry‑up 1 month following three 
loading injections in treatment‑naïve patients. A dataset of 1076 spectral domain optical coherence 
tomography (OCT) images from 269 patients diagnosed with nAMD was used. The performance of 
the model was compared with that of 6 ophthalmologists, using 100 randomly selected samples. 
The DenseNet201‑based model achieved 53.0% accuracy in predicting nAMD recurrence using a 
single pre‑injection image and 60.2% accuracy after viewing all the images immediately after the 1st, 
2nd, and 3rd injections. The model outperformed experienced ophthalmologists, with an average 
accuracy of 52.17% using a single pre‑injection image and 53.3% after examining four images before 
and after three loading injections. In conclusion, the artificial intelligence model demonstrated a 
promising ability to predict nAMD recurrence using OCT images and outperformed experienced 
ophthalmologists. These findings suggest that deep learning models can assist in nAMD recurrence 
prediction, thus improving patient outcomes and optimizing treatment strategies.

Age-related macular degeneration (AMD) can be classified into dry and wet types; wet AMD, that is neovascular 
AMD (nAMD), involves the growth of new blood vessels in the subretinal or intraretinal layers, resulting in 
hemorrhage, edema, and ultimately blindness if left  untreated1,2. The standard treatment for nAMD involves 
intravitreal injections of anti-vascular endothelial growth factor (VEGF) agents to suppress and regress these 
new blood  vessels3. Patients receiving AMD treatment often require repeated injections, and various treatment 
protocols, such as  fixed4–7, pro re nata (PRN)8–10, and treat-and-extend (T&E)11, are employed according to the 
retreatment modality. Typically, the next treatment course is decided after three loading injections, with a growing 
trend towards using the T&E method to reduce vision loss owing to recurrence (ASRS survey)12. However, T&E 
may pose the risk of overtreatment based on the patient’s  condition13. Limited research exists on the type of 
patients who could have their injection intervals extended or monitored without receiving injections.
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With the advancement of artificial intelligence (AI), numerous research findings have been reported on the 
diagnosis and treatment of retinal diseases. A model predicting whether the injection interval would be less 
than 5 weeks (high treatment burden) or more than 10 weeks (low treatment burden) when administering T&E 
using anti-VEGF agents for nAMD treatment has been  reported14,15. Predicting the patients requiring immediate 
T&E treatment (owing to recurrence within 3 months after the three loading injections for nAMD), those with 
a longer T&E interval, and those considering PRN treatment after 3 months could aid in treatment planning. 
Thus, we aimed to develop an AI model to predict the group of nAMD-naïve patients who would experience 
recurrence within 3 months after confirming dry-up 1 month after three loading injections. Additionally, we 
performed experiments to compare the predictive accuracy of this model with that of ophthalmologists and 
retinal specialists.

Results
In this study, we conducted a study based on 1076 OCT images from 269 participants. The mean ages were 
70.70 ± 8.84 years. Detailed information on the data used in this study is presented in Table 1.

Model performance
As shown in Table 2, the proposed model based on DenseNet201 achieved an accuracy of 53.0% in predicting 
recurrence after viewing only one pre-injection image and 60.2% accuracy in predicting recurrence after seeing 
all the images immediately after the 1st, 2nd, and 3rd injections. Table 2 summarizes the comparison of the 
performances of our model with baseline models upon predicting recurrence after viewing all the four images. 
Our model demonstrated the highest accuracy, followed by InceptionV3 (58.8%) and DenseNet169 (59.7%). In 
addition, Table 3 shows that both LSTM and attention module demonstrated the highest performance (60.22%) 
on combining sequential features of multiple images. We employed the same DenseNet201 encoder for all the 
fusion methods and the same data conditions were applied to all the models.

We conducted an ablation study to examine the effects of clinical data (sex, age, diabetes, and high blood 
pressure) on nAMD recurrence prediction. The clinical data were preprocessed using one-hot encoding and 
inserted as input values along with the OCT images in the model. As shown in Table 4, the accuracy of the model 
was 59.04% and 60.22% with and without clinical data, respectively, indicating that the inclusion of clinical data 
did not significantly enhance the performance of the model. We also assess the impact of the type of anti-VEGF 
agent used on enhancing prediction performance. Table 4 also illustrates that the choice of anti-VEGF treatment 
for each patient does not influence the recurrence results. It is crucial to emphasize that, since this experiment 
solely aims to predict whether recurrence will occur within 3 months from the last injection, any association 

Table 1.  Baseline characteristics. AMD age-related macular degeneration, IQR interquartile range.

Variables Neovascular AMD (N = 269)

Age, years (IQR) 70.7 (64–77, median 71)

Sex, n (%)

 Male 155 (58)

 Female 114 (42)

Eye treated, n (%)

 Right 141 (52)

 Left 128 (48)

Underlying disease, n (%)

 Hypertension 138 (51)

 Diabetes 65 (24)

Table 2.  Comparison of the performance among baseline encoders. All the models obtained the following 
four images as one data input: an initial image, spectral domain optical coherence tomography (SD-OCT) after 
the first injection, SD-OCT after the second injection, and SD-OCT after the third injection. The same fusion 
method, namely, attention, was employed.

Method Accuracy

VGG16 0.5413

Xception 0.5502

ResNet50 0.5506

InceptionV3 0.5876

DenseNet121 0.4591

DenseNet169 0.5966

DenseNet201 0.6020
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with recurrence beyond this timeframe is not analyzed. Therefore, the findings indicate that incorporating the 
patient’s clinical information did not enhance the model’s ability to predict nAMD recurrence within the first 
3 months following the last injection.

Performance comparison with ophthalmologists
Table 5 presents the predictions of our proposed model and those of the six ophthalmologists concerning disease 
recurrence after examining a single pre-injection image. The ophthalmologists’ prediction accuracy ranged 
from 49 to 56%, with an average accuracy of 52.17%, whereas the accuracy of our proposed model was 53.0%, 
which was higher than the average accuracy of ophthalmologists. Note that, both the ophthalmologists and the 
model were not exposed to the other three post-injection images during the single pre-injection image task. 
Therefore, the results demonstrated that our model can predict recurrence more accurately than experienced 
ophthalmologists upon analyzing a single pre-injection image.

Furthermore, we conducted extensive experiments by providing the model and ophthalmologists with four 
images, (comprising pre-injection and immediately after each of the three loading injections) per patient. As 
shown in Table 6, when all the four images were provided, the ophthalmologists’ accuracy ranged from 51 to 
56%, with an average accuracy of 53.3%, whereas the model achieved an accuracy of 60.2%. This indicates that 
ophthalmologists did not demonstrate a significant improvement in the accuracy despite examining more images, 
whereas the model demonstrated a 7% improvement in accuracy.

To investigate whether the basic knowledge of ophthalmologists biased their predictions when considering 
more images, we calculated the change in the ratios of predictions between the model and doctors when examining 
a single image and four images. Figure 1 depicts the change in the ratio in the recurrence prediction values of 
the model and six ophthalmologists when one and four images were shown. Among the six ophthalmologists, 
all except “F2” changed their predicted value from "recurrence" to "no recurrence" when the scans immediately 
after the three-loading injections were additionally shown, whereas the model’s predictions were consistent with 
the actual ground truth. This suggested that experienced ophthalmologists altered their predictions based on 

Table 3.  Performance of the fusion baselines. The same DenseNet201 encoder was used for each fusion 
baseline, and the performance was evaluated on a multi-instance task that used four input images, including a 
pre-injection image and three loading injection images. a LSTM and bConcat denote Long-Short Term Memory 
and Concatenation, respectively.

Fusion Accuracy Sensitivity Specificity F1 Score

LSTMa 0.6022 0.6058 0.5985 0.6021

Concatb 0.5799 0.6386 0.5538 0.5649

Attention 0.6022 0.6160 0.5903 0.6019

Average 0.5874 0.7273 0.5514 0.5495

Table 4.  Ablation study on numeric clinical data. Clinical Data include values for age, sex, diabetes, and high 
blood pressure.

Accuracy Sensitivity Specificity F1 Score

OCT only 0.6022 0.6058 0.5985 0.6021

OCT with Clinical Data 0.5904 0.6133 0.5441 0.5790

OCT with Clinical Data and the type of anti-VEGF agent 0.5928 0.6182 0.5962 0.5815

Table 5.  Comparison of the performances between the model and human experts on the pre-injection image-
only task. Input A denotes a single pre-injection image. a F1, F2, and F3 denote retinal fellows with 2 years of 
experience as a retina specialist. b R1 and R2 denote ophthalmology residents with 1 and 3 years of experience, 
respectively. c RS refers to retina specialist with more than 10 years of clinical experience.

Input Accuracy Sensitivity Specificity F1 score Precision

F1a A 0.5500 0.6078 0.4898 0.5794 0.5536

F2a A 0.5600 0.3137 0.8163 0.4211 0.6400

F3a A 0.5100 0.5882 0.4286 0.5505 0.5172

R1b A 0.5100 0.3529 0.6735 0.4235 0.5294

R2b A 0.5100 0.6078 0.4082 0.5586 0.5167

RSc A 0.4900 0.3529 0.6327 0.4138 0.5000

Average of Doctors A 0.5217 0.4706 0.5749 0.4912 0.5428

Model A 0.5300 0.6667 0.3878 0.5913 0.5313
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their background knowledge and experience when presented with additional imaging information, whereas our 
model considered only the information in the OCT image to generate accurate predictions.

The Fleiss’ kappa coefficient was used to measure the level of agreement between all the ophthalmologists 
and the proposed model in predicting the recurrence of nAMD using both a single-input image task with only 
the pre-injection image and a multi-image input task. The results demonstrated poor agreement among the 
ophthalmologists, with coefficients of 0.0659 and 0.0380 for the single- and multi-input image tasks, respectively 
(P < 0.001). In addition, poor agreement was observed between the proposed model and ophthalmologists, with 
coefficients of 0.0727 and 0.0463 in the single-and multi-image input tasks, respectively (P < 0.002). Statistical 
analysis revealed that the level of agreement between the ophthalmologists and models was lower in the multi-
image input task than in the single-image input task.

Table 6.  Comparison of the performances between the model and human experts on pre-injection image and 
all images immediately after each of the three injections. A, B, C, and D denote the pre-injection image, optical 
coherence tomography (OCT) image after the first injection, OCT image after the second injection, and OCT 
image after the third injection, respectively. a F1, F2, and F3 denote retinal fellows with 2 years of experience as 
a retina specialist. b R1 and R2 denote ophthalmology residents with 1 and 3 years of experience, respectively. 
c RS refers to retina specialist with more than 10 years of experience.

Input Accuracy Sensitivity Specificity F1score Precision

F1a A + B + C + D 0.5500 0.3529 0.7551 0.4444 0.6000

F2a A + B + C + D 0.5300 0.3333 0.7347 0.4198 0.5667

F3a A + B + C + D 0.5600 0.4902 0.6327 0.5319 0.5814

R1b A + B + C + D 0.5100 0.2941 0.7347 0.3797 0.5357

R2b A + B + C + D 0.5400 0.6078 0.4694 0.5741 0.5439

RSc A + B + C + D 0.5100 0.3137 0.7143 0.3951 0.5333

Doctor
Average A + B + C + D 0.5333 0.3987 0.6735 0.4575 0.5602

Model A + B + C + D 0.6022 0.6275 0.5510 0.6095 0.5926

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

F3

F2

F1

R2

R1

RS1

Model

GT

Predic�on Ra�o

Recurrence predic�on with only pre-injec�on image No recurrence predic�on with only pre-injec�on image

Recurrence predic�on with four images No recurrence predic�on with four images

Figure 1.  The prediction ratio of the proposed model and retinal professionals. The prediction ratio refers to 
the ratio between recurrence predictions and non-recurrence predictions. The blue bar represents the prediction 
ratio between recurrence and non-recurrence for the pre-injection image-only task, while the orange bar 
represents the prediction ratio between recurrence and non-recurrence for the pre-injection image and the 
three images immediately after each of the three injections. F retina fellow, R ophthalmology resident, RS retina 
specialist, GT ground truth.
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Grad‑CAM visualization
In Fig. 2, gradient-weighted class activation mapping (Grad-CAM) produced heat maps that highlight the 
regions typically considered by retinal professionals for predicting recurrence in nAMD on OCT images. The 
representative heat maps demonstrate that our proposed model followed a similar approach to that of human 
experts when assessing OCT images.

Discussion
Our study’s aim was to develop a sophisticated deep learning model capable of predicting the likelihood of 
future nAMD recurrence and assess its predictive accuracy. Remarkably, our model achieved substantial 
success in predicting nAMD recurrence within the next 3 months based on the follow-up time 1 month after 
the 3rd injection, exhibiting a performance level on par with or surpassing that of seasoned retinal specialists. 
Additionally, our study demonstrated that clinical variables, including age, sex, diabetes, and high blood pressure, 
did not exert a considerable effect on nAMD recurrence within the examined 6-month timeframe.

The developed AI model was designed to predict the possibility of recurrence within the next 3 months based 
on the follow-up time 1 month after the last injections of three loading anti-VEGF therapy in patients with 
nAMD. It targeted treatment-naïve patients who underwent three loading injections and assessed the likelihood 
of recurrence 3 months after the evaluation of the 1-month-interval post-third injection treatment effect. We 
anticipated that this would aid in determining subsequent treatments following three loading injections in nAMD 
management, and investigated whether the model could provide additional assistance compared to a physician’s 
judgment when considering PRN, T&E, or fixed regimen follow-up treatments. To date, AI research has primarily 
focused on the treatment  burden14–17, and this is the first to predict the possibility of recurrence within the next 
3 months, starting 1 month after the last injection of three loading treatments, which holds great significance. In 
particular, with T&E treatment, continuous injections are required even in cases with no recurrence; therefore, 
it is expected that the number of injections could be reduced in some cases through PRN  treatment18; however, 
it is currently impossible to accurately predict the group that would benefit more from T&E or PRN. Moreover, 
in our study, the prediction accuracy of experienced retinal specialists (0.57) was not significantly higher than 
that of general ophthalmologists (0.54), indicating the difficulty in predicting recurrence beforehand. Based on 
the findings of our study, we anticipate that a model capable of predicting recurrence within 3 months (based 

 Initial Injection1 Injection2 Injection3 

(1) 

(2) 

(3) 

(4) 

Figure 2.  Heat maps generated using gradient weighted class activation map (Grad-CAM) for the model’s 
prediction on neovascular age-related macular degeneration (nAMD) recurrence. Grad-CAM visualized 
the pathologic regions most closely associated with the recurrence of nAMD on the four optical coherence 
tomography (OCT) images: a pre-injection image, OCT after first injection, OCT after second injection, and 
OCT after third injection.
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on the 1 month follow up after the last treatment) more accurately than experienced retinal specialists could be 
helpful in clinical settings.

Our model was able to determine recurrence by analyzing four consecutive OCT images obtained during 
three loading injections. Previous studies predicted the treatment burden by learning from the pre-treatment 
OCT images and OCT images after one injection, and reported an improvement in the area under the curve 
(AUC) from 0.64 with pre-treatment OCT images alone to 0.69 when post-treatment OCT images were also 
 utilized15. We confirmed that the prediction accuracy improved when OCT images obtained during the injection 
treatment process were additionally learned. Upon learning from pre-injection images alone, the accuracy was 
0.53; however, it increased to 0.59 when the three injection images were also learned, a value comparable to the 
accuracy of retinal specialists (0.57). This difference could be because the retinal specialists considered the nAMD 
subtypes (i.e., PCV, RAP, and other typical AMD) when predicting recurrence based solely on pre-injection 
images, whereas the AI model made predictions without considering these subtypes. However, when our AI 
model learned from additional post-injection images, it surpassed the prediction accuracy of retinal specialists 
by learning the changes in features, such as subretinal fluid (SRF), pigment epithelial detachment (PED), and 
intraretinal fluid (IRF), that occurred during the loading injection process. In particular, it was evident that the 
model focused on the changes in the SRF, retinal PED, and subretinal hyperreflective material (SHRM) during 
injection treatment upon examining the heat map of the group accurately predicted by the AI model.

Predicting a recurrence within a 3-month timeframe following three loading injections is a challenging task. 
Both human specialists and AI model showed limited ability to accurately predict outcomes based just on a 
single pre-treatment OCT image, resulting in almost random results. However, the accuracy of the prediction 
showed an improvement when assessed using the OCT images taken after the first, second, and third consecutive 
injections. This improvement was observed not only among human experts but also in the AI model. A trend was 
observed that eyes that exhibit favorable response following a single injection likely to showed lower recurrence 
and remained as dry macula. Examining the heatmap highlighted by the AI model, it is evident that the AI 
focuses on areas with significant changes, such as SRF, IRF, and SHRM. This observation suggests that the AI is 
making accurate assessments, eliminating the need for separate learning of individual lesions (Fig. 2). However, 
this pattern did not apply to patients who developed a minor SRF or a small increase in PED within 3 months 
after loadings injections. Conversely, there was a gradual decrease in fluid over the three loading injections for 
some patients, and these individuals did not experience another relapse for a maximum of 3 months. Figure 3 
showed the cases that the AI model provided a false prediction. To emphasize, predicting a relapse within a 
specific period after three loading injections is a challenging task, and to the best of our knowledge, our study 
is the first to attempt such a prediction.

In this study, we trained an AI model using convolutional neural network (CNN) techniques. This approach 
distinguishes our research from previous studies that trained models by classifying OCT images into SRF, 
IRF, PED, retinal photoreceptors, and other categories using autosegmentation techniques and learning their 
 volumes15–17. The ability to learn using a CNN without specifying a detailed learning method highlights the 
strength of our study. However, difficulty in precisely determining the parts of the OCT images that the model 
relies upon for predicting recurrence is a possible limitation. Although we could approximately infer the areas 
that the model emphasized on using Grad-CAM in this study, future follow-up research may provide more 
specific and clear heat maps for identifying the crucial features that contribute to recurrence. Interestingly, 
ophthalmologists exhibited lower prediction accuracy when predicting recurrence based on the three injection 
treatment courses (0.50) than when they made predictions solely according to the pre-treatment images (0.54), 
which suggests that it may be more challenging for ophthalmologists to accurately predict recurrence when they 
rely on criteria, such as improved findings on OCT images or drying of lesions, assuming that these indicate a 
lower likelihood of recurrence.

As shown in Table 3, the LSTM and attention modules demonstrated comparable performance in predicting 
the nAMD recurrence in the multi-image task. This could be attributed to the fact that the pre-injection, 1st, 
2nd, and 3rd injection scans are sequential data at monthly intervals, making the LSTM, which is designed 
for sequential data, highly effective. In addition, the attention mechanism, which highlights and focuses on 
information that significantly affects recurrence among the four images, also demonstrated superior performance 
in this multi-instance input task. This suggests that the attention module enables the deep learning model to 
selectively attend to the regions of an OCT image that contain the most informative features of nAMD recurrence. 
Despite the remarkable performance of LSTM, we selected the attention mechanism as our ultimate model 
fusion method to compute the attention score, representing the model’s influence on recurrence prediction 
based on the four images. In addition, because attention can alleviate the computational burden of processing 
numerous images by enabling the model to concentrate solely on the most pertinent parts of each image, the 
attention mechanism is better suited for this multi-image prediction task. We validated the accuracy of our 
model’s recurrence prediction using Grad-CAM, a visualization technique that identifies critical areas in each of 
the four input images. We verified that our model correctly predicted recurrence by focusing on relevant regions 
upon analyzing the heatmap generated by Grad-CAM.

This study has several limitations. First, the variety and number of available SD-OCT images were limited. 
All the images were acquired using a single OCT device. In future studies, external validation using OCT devices 
from various manufacturers is warranted. Second, the sample size was small. To overcome this problem, we 
applied Leave-One-Out Cross Validation (LOOCV), a reliable technique for studies in the medical field, to small 
 datasets19,20. Although the LOOCV has the benefit of increasing the validly of the training dataset by utilizing 
all the data for training, it is computationally intensive and more susceptible to overfitting than K-fold Cross 
 Validation21. Thus, as depicted in Table 7, K-fold validations were also performed to assess the variance of the 
measure. The results consistently demonstrated performance trends across all folds, affirming the model’s stability 
in responding to the dataset. Opting for LOOCV instead of traditional K-fold validation allowed us to leverage 
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the advantages of LOOCV as a specific instance of k-fold cross-validation. This choice provided a thorough 
evaluation of the model’s generalizability. However, since our study analyzed four OCT images, which were 
captured monthly, for identifying the features, the risk of overfitting was higher when the four images were used 
as input data. While we have implemented diverse strategies including dropout, early stopping, and regularization 
to mitigate this concern, we anticipate that the model’s performance could further improve with larger datasets. 
Additionally, the choice of a 0.5 dropout rate for all layers, aimed at addressing overfitting, may also impact the 
generalizability of the study results. Third, this study employs a pre-trained model from the ImageNet dataset, 
which is trained on RGB data. The application of such a pre-trained model to grayscale medical images may result 
in a decline in performance. Fourth, we have not tested whether using multiple images that make up the OCT 
volume per time point instead of a single line scan shows better performance. If technical issues are resolved and 
recurrence is predicted using multiple images per time point, this model may be useful in extrafoveal CNV cases. 

Figure 3.  Cases that the AI model provided a false prediction. A1, B1, C1, D1, E1 were taken before first 
injection, A2, B2, C2, D2, E2 were taken 1 month after first injection, A3, B3, C3, D3, E3 were 1 months after 
second loading injections, A4, B4, C4, D4, E4 were taken 1 months after three loading injections, and A5, 
B5, C5, D5, E5 were taken 4 month after the three loading injections. OCT after the first injection showed a 
favorable outcome (A2 and B2), however within 3 months after loading injections the SRF reappeared (A5, 
arrow), or the PED reappeared (B5 and arrow); SHRM decreased gradually over the three loading injections, but 
almost all SHRM disappeared (C5), or no recurrence was observed (D5); the OCT showed only some PED after 
three loading injections (E4), but the increased PED proved to be a recurrence (E5); all of the above cases that 
the AI model wrongly predicted.

Table 7.  Results of K-fold (K = 5) validation for the proposed model predicting on pre-injection images and all 
images immediately after each of the three injections.

K-Fold Accuracy Sensitivity Specificity F1score Precision

Fold 1 0.5789 0.56 0.5938 0.5757 0.5789

Fold 2 0.5912 0.5448 0.6439 0.5810 0.5912

Fold 3 0.5737 0.5875 0.5 0.5223 0.5737

Fold 4 0.5965 0.6117 0.5304 0.5682 0.5965

Fold 5 0.5789 0.6897 0.4643 0.5725 0.5789
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Fifth, the nAMD subtypes could not be distinguished. The response to the injections and prognosis may vary for 
each nAMD subtype; we did not consider that the subtypes. A higher prediction performance for recurrence can 
be expected if the model is trained by distinguishing the nAMD subtypes using a larger sample. Lastly, of the 421 
patients who showed dry-up macula after three loading injections, only 269 patients (64%) with good follow-up 
examination were evaluated for recurrence, which may introduce bias. This could be attributed to variations in 
patient satisfaction or treatment response, which may affect patient compliance and thus create bias.

In conclusion, the AI model demonstrated remarkable ability for nAMD recurrence prediction using OCT 
images, surpassing the performance of experienced ophthalmologists. These results indicate that deep-learning 
models have the potential to aid in forecasting nAMD recurrence, ultimately enhancing patient outcomes and 
refining treatment approaches.

Methods
Data collection and labelling
We analyzed the medical records of the patients diagnosed with nAMD between January 2015 and June 2021 
at the Kong Eye Hospital. Only treatment-naïve eyes with nAMD were enrolled and all the patients received 
three monthly injections of either ranibizumab or aflibercept. If both eyes were treated, only one eye was 
randomly selected. Exclusion criteria were extrafoveal nAMD; non-exudative AMD; more than a 6-week interval 
between three loading injections; prior treatment in the study eye with photodynamic therapy, subfoveal focal 
laser photocoagulation, or vitrectomy; anti-VEGF injection other than ranibizumab and aflibercept; macular 
degeneration, such as epiretinal membrane and macular hole; retinal vascular disease, such as retinal vein 
occlusion, retinal artery occlusion, and diabetic retinopathy; missing OCT examination; and cataract surgery 
within 3 months.

Age, sex, underlying diseases such as hypertension and diabetes, and history of ophthalmic surgery were 
recorded for all the patients. Visual acuity, intraocular pressure, and fundus examinations were performed, 
and neovascularization in the macula was confirmed using fluorescein angiography (FA) and indocyanine 
green angiography (ICGA). OCT was performed at each visit to determine the changes in the macula. FA was 
performed using the Heidelberg Retina Angiograph (HRA; Heidelberg Engineering, Heidelberg, Germany), and 
OCT was performed using the Heidelberg Spectralis (Heidelberg Engineering, Heidelberg, Germany).

OCT scans were performed prior to injection therapy and at every 4-week visit during injection therapy, and 
the treatment response was assessed using OCT scans performed 4 weeks after the third injection. The macular 
fluids were included the IRF, SRF, and PED. Dry macula was defined as the absence of IRF and SRF. Fluid under 
the retinal pigment epithelium was not considered for identifying dry macula unless the PED increased compared 
to that during the last visit. Regarding the treatment results, when all the IRF and SRF disappeared, the dry-up 
response was evaluated as good, and when the SRF and IRF remained and residual fluid was visible, the response 
was evaluated as poor. When only the PED remained and no other fluid was present, it was judged to be dry-up9. 
In cases of new macular hemorrhage or increased macular edema on OCT, a dry macula was not considered.

Upon OCT imaging, recurrence was determined if IRF, SRF, or subretinal hemorrhage (SRH) was observed, 
or PED was significantly increased. Recurrence was considered among only the patients who exhibited dry-up 
macula after three loading injections, if any signs of IRF, SRF, or SRH were observed, or if there was a significant 
increase in PED before the completion of follow-up (within 6 months after the initiation of the first treatment). 
However, if the dry-up state was maintained even 6 months after the initial injection treatment, it was classified 
as a non-recurrence group.

Data preprocessing
The flowchart illustrating the process of administering injections is depicted in Fig. 4. In our study, which aimed 
to predict the recurrence of SRF or IRF in the macula or increase of PED, 96 patients were excluded because they 
did not show dry-up macula after three injections. Additionally, 152 patients were excluded due to follow-up loss 
or missing follow-up around 6 months, making it difficult to evaluate the timing of recurrence around 4 months 
after the last injection. As a result, only 269 out of the initial 517 patients were included in the study. In addition, 

1st Injection Day 2nd Injection Day 3rd Injection Day FINISH Recurrence 
Check-point

+1 Month +1 Month +1 Month

Duration: 6 Month

Recur / Non-Recur

Pre-injection

START

On the same day

Time Point: 0M Time Point: 1M Time Point: 2M Time Point: 3M Time Point: 6M

Figure 4.  The flowchart of the three loading anti-vascular endothelial growth factor injections for patients with 
neovascular age-related macular degeneration. The process begins with capturing of the pre-injection optical 
coherence tomography (OCT) images on the first injection day, followed by monthly OCT image captures 
immediately following the injection. The recurrence is checked 6 months after the first injection day.
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since we aimed to predict whether recurrence would occur within the next 3 months based on the follow-up 
time 1 month after the last injection, we used censoring statistical  analysis22 to relabel the patient’s recurrence; 
moreover, since some patients could not be tracked and data could not be recorded after three loading injections, 
data processing through censoring statistical analysis was considered necessary. Using the censoring statistic 
method, our dataset was divided into four cases: (1) recurrence within 4 months after the last injection, (2) 
recurrence after 6 months after the initial injection, (3) no recurrence after 6 months after the initial injection, 
and (4) no patient records after three injections. We relabeled (1) as having recurred, (2) and (3) as non-recurred 
and excluded (4) because we did not know whether recurrence occurred. Thus, we used the data of 269 relabeled 
patients as the final dataset by applying censoring statistical analysis to the 388 patients who completed the three 
loading injection treatments.

Moreover, because our research objective was to predict recurrence by examining the (1) pre-injection image 
only and (2) pre-injection image and all the images immediately after each of the three injections, we used 1076 
SD-OCT images from 269 patients with pre-injection images and images after the 1st, 2nd, and 3rd injections.

We down sampled all the OCT images into a fixed-size image of 224 × 224 RGB for inputting deep neural 
network. We increased the various input images using data augmentation to build a robust model and avoid 
overfitting. The data augmentation process included (1) random horizontal image flips and (2) random rotations 
of up to 10° in the images. We performed data augmentation only during model training.

Model architecture
To predict nAMD recurrence, we built a deep learning model based on  DenseNet20123. As shown in Table 2, 
DenseNet201 demonstrated the best performance among other well-known CNN architectures, such as VGG-
1624,  Xception25, Inception-V326, and ResNet-5027; thus, we selected DenseNet201 as the base feature extractor. 
DenseNet has the advantage of significantly reducing the number of parameters by encouraging reuse of the 
 features28. Moreover, we confirmed that the deep-layer structure of Densenet201 captured the representations 
of the disease better than Densenet121 and Densenet169. To avoid overfitting and train the models faster, we 
applied transfer  learning29 to learn the all models and to ensure fairness, the same input data were used in 
training model. Specifically, we initialized 200 layers of DenseNet201 with pre-trained weights using the large-
scale Dataset,  ImageNet30.

In addition, as shown in Fig. 5, we adopted a multi-instance model structure to simultaneously study multiple 
OCT images after monthly loading injections. To assess multiple input images, as shown in Table 3, both the 
 LSTM31 and  attention32 modules performed well in capturing sequential information. However, we selected 
the attention module as the final fusion method to calculate the attention score for each image and predict 
nAMD recurrence. While using the dropout layer to prevent overfitting, we added the traditional multilayered 
 perceptron33 as a fully connected layer. Finally, we used the softmax activation function for the final output layers 
to predict the nAMD recurrence.

Figure 5.  Overall architecture of the proposed model. The model is composed of an input layer, four feature 
extractors, an attention fusion layer, and a fully connected layer with dropouts and sigmoid activation function. 
The four feature extractors are based on DenseNet201 encoder, each with 200 pretrained convolutional 
neural network layers, and weight sharing application among them. The last fully connected layer predicts the 
likelihood of recurrence of the input cases within 6 months from the initial check point.
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Visual explanation using Grad‑CAM
We applied Grad-CAM34 to provide a visual explanation of the decision-making process of the deep learning 
model. Grad-CAM highlights the important regions on OCT images for predicting nAMD recurrence through 
gradient-based localization. Based on the gradient of the feature maps of each convolution layer, we created a 
heat map representing the part used in the prediction process of the model.

Experimental setup
We performed  LOOCV35 to train both the baseline and proposed models. Thus, LOOCV is an effective validation 
method for small data  sizes21. For applying LOOCV to our training process, we retained only one data sample 
for model testing and used the remaining dataset for training. This process was repeated 269 times, indicating 
the number of patients, with each observation being excluded once as validation data. Although LOOCV is a 
well-known effective method for evaluating small data sizes, it is also known for its vulnerability to overfitting 
compared to K-fold cross-validation36. To manage overfitting, we employed dropouts and implemented early 
stopping with a patience of 7. To perform LOOCV for all the datasets, we divided the dataset according to the 
patient ID to prevent the OCT images of the same patient from being mixed in the training, test, and validation 
sets. In addition, we employed the same LOOCV to train all the models, and each model was evaluated using the 
average performance for all the LOOCV results. To ensure fairness across all models, we established a uniform 
parameter standard that configured the batch size, epoch, and dropout rate as 64, 100, and 0.4, respectively. 
Additionally, we utilized the  Adam37 optimization with a learning rate of 0.001 for all models, including the 
proposed model.

For the general experiment, 100 samples were randomly selected from 269 patients for a performance 
comparison with the ophthalmologists. To ensure a fair experiment, these 100 samples were not used in the 
model training process. We provided (1) a single image of the initial state, before the loading injections, and (2) 
three post-injection images immediately after the loading injection of these 100 patients to six ophthalmologists, 
including two ophthalmology residents (1 and 3 years of experience, respectively), three retinal fellows (2 years 
of experience as a retina specialist), and one retinal specialist (more than 10 years of clinical experience). Note 
that, during the experiment involving the presentation of (1) a single image of the initial state before the loading 
injections and (2) three post-injection images immediately after the loading injection to six ophthalmologists, 
only (1) was shown while (2) was intentionally withheld. To analyze the ophthalmologists’ individual and 
common perspectives, we analyzed each ophthalmologist’s prediction results for 100 patients, consisting of 52 
recurrence cases and 48 non-recurrence cases. Simultaneously, we calculated the average decision-making and 
probability of recurrence by all the ophthalmologists for comparison with the softmax value of the proposed 
model. If all six ophthalmologists predicted recurrence for the sample, it was calculated as 1, and if all six 
predicted no recurrence, it was calculated as 0. Statistical analysis was conducted between the average prediction 
rate of the six ophthalmologists and the softmax value of the proposed model to determine the consistency and 
relevance of the decision-making process.

Statistical analysis
We applied Fleiss’ kappa coefficients to calculate the level of agreement between the multiple rates, including 
those of all the ophthalmologists and the proposed model. To compute this statistic, we used the Statsmodels 
module, a well-known Python package for statistical analysis.

Ethical approval
This study adhered to the principles of the Declaration of Helsinki and was approved by the Institutional Review 
Board of Kong Eye Hospital (KIRB-202202-HR-001-01), which waived the requirement for obtaining informed 
consent because this was a retrospective observational study of medical records and was retrospectively registered.

Data availability
The data are not available for public access owing to patient privacy concerns; however, data are available from 
the corresponding author upon reasonable request.
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