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Decreased AdipoR1 
signaling and its implications 
for obesity‑induced male infertility
Toshiko Kobori 1, Masato Iwabu 2,3*, Miki Okada‑Iwabu 3,4*, Nozomi Ohuchi 3, Akiko Kikuchi 1, 
Naoko Yamauchi 5, Takashi Kadowaki 3,6, Toshimasa Yamauchi 3 & Masato Kasuga 1

Obesity is among the risk factors for male infertility. Although several mechanisms underlying 
obesity‑induced male subfertility have been reported, the entire mechanism of obesity‑induced male 
infertility still remains unclear. Here, we show that sperm count, sperm motility and sperm fertilizing 
ability were decreased in male mice fed a high‑fat diet and that the expression of the AdipoR1 gene 
and protein was decreased, and the expression of pro‑apoptotic genes and protein increased, in the 
testis from mice fed a high‑fat diet. Moreover, we demonstrate that testes weight, sperm count, 
sperm motility and sperm fertilizing ability were significantly decreased in AdipoR1 knockout mice 
compared to those in wild‑type mice; furthermore, the phosphorylation of AMPK was decreased, and 
the expression of pro‑apoptotic genes and proteins, caspase‑6 activity and pathologically apoptotic 
seminiferous tubules were increased, in the testis from AdipoR1 knockout mice. Furthermore, 
study findings show that orally administrated AdipoRon decreased caspase‑6 activity and apoptotic 
seminiferous tubules in the testis, thus ameliorating sperm motility in male mice fed a high‑fat diet. 
This was the first study to demonstrate that decreased AdipoR1/AMPK signaling led to increased 
caspase‑6 activity/increased apoptosis in the testis thus likely accounting for male infertility.

According to the World Health Organization (WHO), approximately 13% of the world’s adult population were 
obese in 2016, and the worldwide prevalence of obesity nearly tripled between 1975 and  20161. Obesity is 
known to cause insulin resistance, which is in turn associated with type 2 diabetes and cardiovascular  disease2–4, 
and decreased adiponectin in plasma in obesity are shown to be implicated as a cause of these obesity-linked 
 diseases5–7.

Adiponectin8–11, a protein secreted from and highly specifically expressed in adipose tissue and known as an 
 adipokine12–14, has anti-inflammatory and insulin-sensitizing  properties15. Adiponectin is shown to be decreased 
in plasma in obesity, insulin resistance and type 2 diabetes, while adiponectin supplementation is shown to 
ameliorate insulin resistance and impaired glucose tolerance in  mice16–19.

We previously reported cloning of AdipoR1 and AdipoR2 as receptors for  adiponectin20. AdipoR1 and Adi-
poR2 were each assumed to have a seven-transmembrane topology with an internal N-terminus and an external 
C-terminus, opposite to that of G-protein-coupled receptors (GPCRs)20, and the crystal structures of human 
AdipoR1 and AdipoR2 are shown to represent a novel class of receptor structures with the seven-transmembrane 
helices, conformationally distinct from those of GPCRs, shown to enclose a large cavity where three conserved 
histidine residues coordinating a zinc  ion21,22. AdipoR1 and AdipoR2 serve as the most physiologically important 
receptors for adiponectin, with AdipoR1 and AdipoR2 shown to activate the  AMPK23 and PPAR-α24 pathways, 
 respectively20,25,26. With its expression shown to be decreased in  obesity27, similarly to adiponectin, AdipoRs are 
assumed to play important roles in the regulation of glucose and lipid metabolism, as well as in inflammation 
and oxidative stress, in vivo28–30.

Infertility is a global public health issue affecting 10–15% of couples in reproductive  age31. Male factors per se 
account for 25–30% of all cases of infertility but also account for another 30% when combined with female factors. 
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Thus, approximately 50% of infertility is attributable to male  factors32. While known etiologies of male infertility 
include cryptorchidism, testicular torsion or trauma, varicocele, seminal tract infections, antisperm antibodies, 
hypogonadotropic hypogonadism, gonadal dysgenesis, and obstruction of the reproductive  channels32, obesity 
has been reported to represent a risk factor for male  subfertility33–36. Several mechanisms underlying obesity-
induced male subfertility have been reported, which include hypogonadism, chronic inflammation, oxidative 
stress, impaired sperm parameters, such as sperm concentration, sperm motility and morphology, sperm DNA 
damage, altered sperm lipid composition, and sperm epigenetic  modification37. However, the entire mechanism 
of obesity-induced male subfertility remains poorly elucidated.

A previous clinical cross-sectional study reported that serum and seminal plasma adiponectin levels were 
significantly lower in men with body mass index (BMI) ≥ 25 kg/m2 compared to those with BMI < 25 kg/m2 and 
that adiponectin concentration in seminal plasma significantly is positively correlated with sperm parameters, 
such as sperm concentration, sperm count and total normomorphic  spermatozoa38. Furthermore, administra-
tion of recombinant adiponectin was shown in an in vivo study to ameliorate testicular dysfunction in diabetes 
model mice induced by high-fat diet and/or  streptozotocin39,40.

In this study, AdipoR knockout (KO) mice were analyzed to investigate whether decreased adiponectin/
AdipoR signaling might be associated with obesity-induced male infertility, and if so, to clarify the mechanism 
by which decreased adiponectin/AdipoR signaling might induce male infertility.

Results
Impaired spermatogenesis and infertility in high‑fat‑diet‑induced obese mice
In order to investigate the impact of high-fat diet on the fertility of male mice, we analyzed testis and semen 
from mice fed a normal chow diet or a high-fat diet. Although there was no significant difference in testes weight 
between the mice fed a normal chow diet and a high-fat diet (Fig. 1a), sperm count and sperm motility were 
significantly decreased in high-fat diet-induced obese mice (Fig. 1b,c). Next, we assessed male mice for fertil-
ity using a mating assay and showed that the pregnancy rate in male mice fed a high-fat diet was significantly 
lower than that in mice fed a normal chow diet (Fig. 1d). These results suggest that high-fat diet induced male 
infertility by impairing spermatogenesis. Furthermore, sperm count, sperm motility and sperm fertilizing ability 
were also significantly decreased in a male mouse model of type 1 diabetes (Fig. S1a–c); it was also suggested 
that the fertility rate might be more decreased in mice fed a high-fat diet than that in the mouse model of type 
1 diabetes (Fig. 1d, Fig. S1c).

Decreased expression of the AdipoR1, increased expression of pro‑apoptotic genes and pro‑
teins, and increased TUNEL‑positive seminiferous tubules in the testis from mice fed a high‑fat 
diet
To clarify the molecular mechanism by which high-fat diet affects male infertility, we performed gene expression 
and western blot analyses. High-fat diet significantly decreased the expression of AdipoR1 in the testis compared 
to that in normal chow diet both in the mRNA and the protein levels (Fig. 2a,b) although there was no significant 
difference in the expression of AdipoR2 (Adipor2) (Fig. 2c). Moreover, high-fat diet significantly increased the 
expression of the pro-apoptotic genes, such as Bcl-2-associated X protein (Bax) (Fig. 2d) and caspase-9 (Casp9) 
(Fig. 2e), as well as the expression of caspase-9 at the protein level (Fig. 2f). Furthermore, we went on to evaluate 
apoptosis in the testis by terminal transferase-mediated deoxyuridine triphosphate nick end labeling (TUNEL) 
staining and demonstrated that high-fat diet increased the number of apoptotic seminiferous tubules (Fig. 2g,h).

Impaired spermatogenesis and infertility in AdipoR1 KO mice
Based on evidence of decreased expression of the AdipoR1 gene in the testis from mice fed a high-fat diet, we next 
examined male AdipoR1 KO mice for fertility, and demonstrated that, interestingly, testes weight was significantly 
decreased (Fig. 3a) and seminiferous tubules were atrophied (Fig. 3b) in AdipoR1 KO mice compared to those 
in wild-type mice. Moreover, sperm count (Fig. 3c), sperm motility (Fig. 3d), and pregnancy rate (Fig. 3e) were 
significantly decreased in AdipoR1 KO mice compared to those in wild-type mice.

Increased expression of pro‑apoptotic genes and proteins in the testis from AdipoR1 KO mice
We next performed gene expression and western blot analyses on the testis from AdipoR1 KO mice and demon-
strated that the expression of pro-apoptotic genes and proteins, such as caspase-9 (Fig. 4a,d), caspase-3 (Fig. 4b,d) 
and caspase-6 (Fig. 4c,d) were significantly increased in the testis from AdipoR1 KO mice compared to that in 
wild-type mice.

Decreased phosphorylation of AMPK and increased apoptosis in the testis from AdipoR1 KO 
mice
Given the report that AdipoR1 activates AMP-activated protein kinase (AMPK) pathways in the  liver28, we next 
focused attention on AMPK and demonstrated that the phosphorylation of AMPK was significantly suppressed 
in the testis from AdipoR1 KO mice compared to that in wild-type mice (Fig. 5a). Then, in light of a recent 
important finding that AMPK deficiency increases caspase-6 activation in the liver in nonalcoholic steatohepa-
titis model  mice41, we hypothesized that the suppression of AMPK activation might induce caspase-6 activation 
in the testis from AdipoR1 KO mice and investigated caspase-6 activity in the testis from AdipoR1 KO mice. 
Interestingly, caspase-6 activity was significantly increased in the testis from AdipoR1 KO mice compared to 
that in wild-type mice (Fig. 5b).

Furthermore, we went on to evaluate apoptosis in the testis by TUNEL staining and demonstrated that the 
knockout of AdipoR1 increased the number of apoptotic seminiferous tubules (Fig. 5c,d).
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Adiponectin/AdipoR1 signaling decreased caspase‑6 activity in TM4 cells
AdipoR1 KO mice present with hyperglycemia and insulin  resistance28, thus suggesting the possibility that 
hyperglycemia and insulin resistance might contribute to increased apoptosis in the testis from the AdipoR1 KO 
mice. Then, we studied adiponectin/AdipoR1 signaling in vitro to investigate its direct effect. In TM4 cells incu-
bated with 30 μg/ml adiponectin and 2 mM acadesine (AICAR), caspase-6 activity was significantly decreased 
(Fig. 6a). Under suppression of AdipoR1 expression with a specific short interfering RNA (siRNA) (Fig. 6b), 
however, no significant difference was noted in caspase-6 activity between TM4 cells incubated or unincubated 
with adiponectin (Fig. 6c). These experiments combined to show that adiponectin significantly reduced caspase-6 
activity via AdipoR1.

AdipoRon improved sperm motility, and decreased caspase‑6 activity and TUNEL‑positive 
seminiferous tubules in the testis from mice fed a high‑fat diet
Our research group previously showed that the orally active AdipoR agonist AdipoRon activates AMPK and 
PPAR-α  pathways22,29, ameliorates insulin resistance and glucose  intolerance22,29, and reverses life shortening 
in obese diabetic  mice29. Based on evidence that adiponectin/AdipoR1 signaling decreases caspase-6 activity in 
TM4 cells, we next studied the effects of AdipoRon on sperm parameters and apoptosis in the testis from mice 
fed a high-fat diet. Interestingly, oral administration of AdipoRon (50 mg per kg body weight) for 14 days had 
no effect on testes weight (Fig. 7a), however, AdipoRon improved sperm motility (Fig. 7b), activated AMPK in 
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Figure 1.  Sperm count, sperm motility and sperm fertilizing ability in male mice fed a high-fat diet were 
decreased. Testes weight (a), sperm count (b), and sperm motility (c) in mice fed a normal chow diet (NC) and 
a high-fat diet (HF) for 22–23 weeks. Pregnancy rate in mice fed a NC and a HF for 28 weeks (d). All values are 
presented as means ± s.e.m. **P < 0.01 compared to mice fed a NC. P values were determined by the unpaired 
two-tailed t-test. NS, not significant. NC, n = 15 (a–c), n = 10 (d); HF, n = 16 (a–c), n = 10 (d).
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Figure 2.  Expression of AdipoR1 was decreased and expression of pro-apoptotic genes, proteins and TUNEL-
positive seminiferous tubules were increased in the testis from mice fed a high-fat diet. Adipor1 (a), Adipor2 (c), 
Bax (d) and Casp9 (e) mRNA levels, and AdipoR1 (b) and caspase-9 (f) protein levels in the testis from mice fed 
a normal chow diet (NC) and a high-fat diet (HF) for 22–23 weeks. Results of real-time PCR were normalized to 
Rn18s. Results of western blot were normalized to α-tubulin. Representative micrographs from TUNEL staining 
of the testis from mice fed a NC and HF (g) and percentage of seminiferous tubules with TUNEL-positive cells 
in mice fed a NC and HF (h). All values are presented as means ± s.e.m. *P < 0.05 and **P < 0.01 compared to 
mice fed a NC. P values were determined by the unpaired two-tailed t-test. Scale bar, 100 μm. The red arrows 
indicate TUNEL-positive cells. NS, not significant. NC, n = 15 (a, c-e), n = 5 (b, h), n = 6 (f); HF, n = 16 (a, c-e), 
n = 5 (b, h), n = 6 (f).
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Figure 3.  Testes weight, sperm count, sperm motility and sperm fertilizing ability in AdipoR1 KO mice 
were decreased. A representative macrograph of testes and testes weight (a), representative micrographs from 
hematoxylin and eosin staining of the testis (b), sperm count (c), sperm motility (d) and pregnancy rate (e) in 
wild-type (WT) mice and AdipoR1 knockout (KO) mice. All values are presented as means ± s.e.m. *P < 0.05 
and **P < 0.01 compared to WT. P values were determined by the unpaired two-tailed t-test. Scale bar, 1 cm (a), 
100 μm (b). WT, n = 20 (a, c, d), n = 12 (e); AdipoR1 KO, n = 20 (a, c, d), n = 12 (e).



6

Vol:.(1234567890)

Scientific Reports |         (2024) 14:5701  | https://doi.org/10.1038/s41598-024-56290-0

www.nature.com/scientificreports/

Figure 4.  Expression of pro-apoptotic genes and proteins were increased in the testis from AdipoR1 KO mice. 
Casp9 (a), Casp3 (b) and Casp6 (c) mRNA levels and caspase-9, caspase-3 and caspase-6 protein levels (d) in the 
testis from wild-type (WT) mice and AdipoR1 knockout (KO) mice. Results of real-time PCR were normalized 
to Rn18s. Results of western blot were normalized to α-tubulin. All values are presented as means ± s.e.m. 
*P < 0.05 and **P < 0.01 compared to WT. P values were determined by the unpaired two-tailed t-test. WT, n = 19 
(a, b, c), n = 6 (d); AdipoR1 KO, n = 20 (a, b, c), n = 6 (d).
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the testis (Fig. 7c), and decreased caspase-6 activity in the testis (Fig. 7d) and TUNEL-positive seminiferous 
tubules (Fig. 7e,f).

Discussion
In this study we showed that decreased adiponectin/AdipoR1 signaling is implicated in obesity-induced male 
infertility and demonstrated for the first time that decreased adiponectin/AdipoR1 signaling involves an increase 
in caspase-6 activity via the AMPK-caspase-6 axis, thus resulting in suppressed spermatogenesis.

AMPK directly phosphorylates caspase-6 to inhibit its cleavage and  activation41, thus suppressing  apoptosis41. 
Caspase-6 has been suggested as an important target in Alzheimer’s  disease42,43 as well as in nonalcoholic 
 steatohepatitis41, both of which are characterized by decreased AMPK  activity41,44. Indeed, it is shown that 

Figure 5.  AMPK activity was decreased, and caspase-6 activity and TUNEL-positive seminiferous tubules 
increased, in the testis from AdipoR1 KO mice. Phosphorylation and amount of AMPK (a), and caspase-6 
activity (b) in the testis from wild-type (WT) mice and AdipoR1 knockout (KO) mice. Representative 
micrographs from TUNEL staining of the testis from WT mice and AdipoR1 KO mice (c) and percentage of 
seminiferous tubules with TUNEL-positive cells in WT mice and AdipoR1 KO mice (d). Phosphorylation of 
AMPK were normalized to amount of AMPK. All values are presented as means ± s.e.m. *P < 0.05 and **P < 0.01 
compared to WT. P value was determined by the unpaired two-tailed t-test. Scale bar, 100 μm. The red arrows 
indicate TUNEL-positive cells. WT, n = 6 (a), n = 10 (b), n = 5 (d); AdipoR1 KO, n = 6 (a), n = 10 (b), n = 5 (d).
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caspase-6 mediates a feedforward loop to sustain the caspase cascade, where increased activity of upstream 
executioner caspases, such as caspase-9, -3 and -7, activate the downstream executioner caspase-6, and activated 
caspase-6 cleaves BH3 interacting-domain death agonist (Bid) and increases mitochondrial cytochrome c release, 
and then increased cytochrome c release activates caspase-9 in the intrinsic  pathway41.

The activity of AMPK is regulated by multiple factors, such as nutrients, exercise, hormones and cytokines 
in physiological or pathological  conditions45,46. Our research group previously demonstrated that adiponectin/
AdipoR1 signaling activates AMPK in the  liver20,25,28 and the skeletal  muscle30. AdipoR1 is relatively ubiquitously 
expressed throughout the body but expressed abundantly in the skeletal muscle, whereas AdipoR2 is found to 
be predominantly expressed in the  liver46. Moreover, our research group has shown that adiponectin/AdipoR 
signaling is decreased in obesity, and decreased adiponectin/AdipoR signaling accounts in part for metabolic 
syndrome or type 2  diabetes28,29. In this study, we showed that testicular adiponectin/AdipoR1 signaling was 
decreased in obesity. Moreover, we demonstrated that decreased AMPK activity and increased caspase-6 activ-
ity in the testis from AdipoR1 KO mice and that AdipoR1 KO mice were associated with male infertility due 
to smaller testis, lower sperm counts and lower sperm motility. Our study showed that decreased adiponectin/
AdipoR1 signaling accounts for male infertility as it involves apoptosis via the AMPK-caspase-6 axis.

Several reports have shown protective effects of adiponectin on the testis in diabetes model  mice39,40. In strep-
tozotocin-induced diabetic mice, it was shown that sperm parameters and the protein expression of autophagy 
were decreased, and the testicular endoplasmic reticulum stress and oxidative stress increased, while recom-
binant adiponectin treatment reversed these  changes40. Another research group reported that administration 
of adiponectin elevated serum testosterone, the expression of testicular steroidogenic marker proteins, insulin 
receptor, and glucose transporter 8, and intra-testicular concentrations of glucose and lactate and activity of lac-
tate dehydrogenase and antioxidant enzymes in high-fat diet-/streptozotocin-induced diabetic mice, compared 
to untreated diabetic  mice39. These findings suggest that adiponectin improves testicular function by increasing 
the transport of glucose and lactate as well as by reducing oxidative stress. Thus, alongside these, in this study, 
another mechanism by which adiponectin/AdipoR1 signaling influences testicular functions has been demon-
strated for the first time.

Importantly, given that decreased AdipoR expression is a hallmark of  obesity27, establishing ways to activate 
adiponectin/AdipoR signal is expected to be the key for definitive treatment of obesity-related diseases. Against 
this background, small-molecule AdipoR agonists are attracting attention as another potential class of drugs 
of interest for obesity-related diseases including type 2  diabetes47,48. An orally active synthetic small-molecule 
AdipoR agonist identified by screening a library of candidate  compounds29, AdipoRon is shown to activate AMPK 
and PPAR-α  pathways22,29, ameliorate insulin resistance and glucose  intolerance22,29, and reverse life shortening 

Figure 6.  Adiponectin/AdipoR1 signaling decreased caspase-6 activity in TM4 cells. Caspase-6 activity in TM4 
cells treated with 30 μg/ml adiponectin for 10 min or 2 mM acadesine (AICAR) for 60 min (a). Adipor1 mRNA 
levels in TM4 cells transfected with the indicated specific short interfering RNA (siRNA) (b), and caspase-6 
activity in TM4 cells transfected with the indicated siRNA and treated with 30 μg/ml adiponectin or phosphate 
buffered salts (PBS) for 10 min (c). Results of real-time PCR were normalized to Actb. All values are presented 
as means ± s.e.m. *P < 0.05 and **P < 0.01 compared to PBS, unrelated siRNA (negative control) or as indicated. P 
values were determined by the Dunnett’s multiple comparison test (a), unpaired two-tailed t-test (b), or Tukey’s 
honestly significant difference test (c). NS, not significant. PBS, n = 4; adiponectin, n = 4; AICAR, n = 4 (a). n = 3 
each (b, c).
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Figure 7.  AdipoRon improved sperm motility, and decreased caspase-6 activity and TUNEL-positive 
seminiferous tubules in the testis from high-fat diet-fed mice. Testes weight (a), sperm motility (b), 
phosphorylation and amount of AMPK (c), caspase-6 activity in the testis (d), representative micrographs 
from TUNEL staining of the testis (e), and percentage of seminiferous tubules with TUNEL-positive cells (f), 
in mice on a high-fat diet, treated once daily with oral administration of AdipoRon (50 mg per kg body weight) 
for two weeks. Phosphorylation of AMPK were normalized to amount of AMPK. All values are presented as 
means ± s.e.m. *P < 0.05 and **P < 0.01 compared to control mice. P values were determined by the unpaired 
two-tailed t-test. NS, not significant. Scale bar, 100 μm. The red arrows indicate TUNEL-positive cells. 
AdipoRon (−), n = 10 (a, b), n = 5 (c, d, f); AdipoRon (+), n = 10 (a, b), n = 5 (c, d, f).
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in obese diabetic  mice29. Moreover, it was recently reported that a PEGylated AdipoRon derivative was more 
effective in reducing ceramides and dihydroceramides in the liver from mice fed a high-fat diet than  AdipoRon49. 
In this study, we demonstrated for the first time that AdipoRon ameliorated sperm motility and apoptosis in the 
testis from mice fed a high-fat diet. Our data suggested that activating adiponectin/AdipoR1 signaling might be 
one of the therapeutic targets for obesity-induced male infertility. Given that, based on the structural informa-
tion of  AdipoRs21, much progress has been made to date not only in the analysis of the co-crystal structures of 
AdipoRs and AdipoRon but in the development of small-molecule AdipoR agonists for clinical  use22, expectations 
are mounting for AdipoR agonists as an effective therapeutics for obesity-induced male infertility.

Methods
Mouse studies
All procedures were carried out in accordance with relevant guidelines and regulations as approved by the Ani-
mal Care Committees of The University of Tokyo and the Institute of Medical Science, Asahi Life Foundation, 
and complied with the standards stated in the “Guide for the Care and Use of Laboratory Animals” (National 
Institutes of Health, revised 2011). The study is reported in accordance with ARRIVE guidelines. Male mice were 
6–55 weeks of age at the time of the study. They were housed in cages and maintained on a 12 h light–dark cycle 
with access to chow and water ad libitum. In these experiments, we used normal chow diet consisting of 24.9% 
(wt/wt) proteins, 4.6% fibers, 7.1% ashes, 49.5% carbohydrates, 4.8% fat and 9.1% water (CE-2, CLEA Japan Inc.) 
or high-fat diet consisting of 25.5% (wt/wt) protein, 2.9% fibers, 4.0% ashes, 29.4% carbohydrates, 32.0% fat and 
6.2% water (High Fat Diet 32, CLEA Japan Inc.). High-fat diet was fed to male mice from 6 weeks old onwards. 
C57Bl/6 mice were purchased from Charles River Laboratories Japan, Inc. and Japan SLC, Inc. Akita mice were 
purchased from Japan SLC, Inc.

Generation of AdipoR1 KO mice
Adipor1−/− mice (C57Bl/6 background) were generated as described  previously28. All experiments in this study 
were conducted on male littermates.

Administration of AdipoRon
For administration, AdipoRon (Combi-Blocks, #QV-9395) was prepared in 0.5% methyl cellulose (WAKO, 
#133-17815). AdipoRon (50 mg per kg body weight) or 0.5% methylcellulose was orally administrated to high-fat 
diet-fed mice from 8 weeks of age once daily for two weeks. The sampling of the mice parameters was performed 
at 10 weeks of age.

Mating assay
Male C57Bl/6 mice fed a high-fat diet for 28 weeks, AdipoR1 KO mice fed standard chow diet, Akita mice fed 
standard chow diet, and age matched control mice fed standard chow diet were used in a mating assay. Each 
male mouse was caged with three or four female C57Bl/6 mice for consecutive five days. The percentage of mice 
achieving a pregnancy were calculated for each male.

Testis and semen analysis in mice
Testis and epididymides were carefully dissected. Bilateral testes were weighed and frozen in liquid nitrogen, and 
then processed for real-time PCR, western blot analysis or caspase-6 activity assay. Separated cauda epididymis 
from each mouse was immediately placed into modified HTF medium with HEPES (KITAZATO, #93421) 
at room temperature. The sperm number in the suspension was counted using a hemocytometer on a Nikon 
DIAPHOT 300 microscope at  200× magnification. At least 200 sperm were counted in each sperm sample. We 
assessed motility rate as the percentage of the sum of sperms with progressive motility and non-progressive 
motility per total sperm number.

Real‑time PCR
Real-time PCR was performed according to the method described  previously22,28–30. Total RNA was prepared 
from whole testis or TM4 cells with ISOGEN (Nippon Gene, #311-02501), according to the manufacturer’s 
instructions. We used the real-time PCR method to quantify  mRNAs20, with slight modification. The real-time 
PCR was performed using specific TaqMan Gene Expression Assays (Thermo Fisher Scientific) for Adipor1 
(Mm01291334_mH), Adipor2 (Mm01184029_m1), Bax (Mm00432051_m1), Casp3 (Mm01195085_m1), Casp6 
(Mm01321726_g1), Casp9 (Mm00516563_m1), Rn18s (Mm03928990_g1) and Actb (Mm00607939_s1). The 
primers for real-time PCR are shown in Table S1.

Histology and TUNEL staining
For histological examination, each whole testis was fixed in Super Fix (Kurabo, #KY-500) at 4 °C overnight, 
washed and then was paraffin-embedded and sectioned. Sections were stained with hematoxylin and eosin, and 
In Situ Cell Death Detection Kit, POD (Roche, #11684817910) following the provided protocol for apoptosis 
detection. Six to eight micrographs from all regions of the testis were captured for analysis. Seminiferous tubules 
were evaluated by a trained pathologist for morphometry. At least 90 tubules from all testicular regions were 
counted for each sample to quantify its apoptotic seminiferous tubules.
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Western blot analysis
The whole mouse testis was homogenized in cold RIPA buffer (Cell Signaling Technology, #9806) containing 
1 mM benzylsulfonyl fluoride (PMSF) (WAKO, #164-12181) and protease inhibitor cocktail (Complete EDTA-
free, Roche, #11873580001). Lysates were centrifuged at 15,000 rpm for 15 min at 4 °C and supernatants were 
used for western blot analysis. Western blot analyses were performed with anti-phosphorylated AMPK (Cell 
Signaling technology, 1:1000; #2535), anti-αAMPK (Cell Signaling technology, 1:1000; #2532), anti-AdipoR1 
(Immuno-Biological Laboratories, 1:1000; #18993), anti-cleaved caspase-3 (Cell Signaling technology, 1:1000; 
#9661), anti-cleaved caspase-6 (Cell Signaling technology, 1:1000; #9761), anti-cleaved caspase-9 (Cell Signaling 
technology, 1:1000; #9509), anti-α-tubulin (Cell Signaling technology, 1:4000; #2125) and HRP-linked anti-rabbit 
IgG (Cell Signaling technology, 1:2000–1:20000; #7074) antibodies. Uncropped western blot images are shown 
in Fig. S2-S5.

Studies with TM4 cells
The mouse Sertoli cell-line TM4 was purchased from American Type Culture Collection (ATCC, #CRL-1715). 
TM4 cells were cultured in a 1:1 mixture of Ham’S F12 medium and Dulbecco’s modified Eagle’s medium with 
1.2 g/L sodium bicarbonate and 15 mM HEPES (D-MEM/Ham’s F-12) (WAKO, #042-30555) containing 5% 
horse serum (Invitrogen, #26050-088), 2.5% fetal bovine serum (FBS) (Bio-West, #S1600-500), and 10% penicil-
lin/streptomycin (WAKO, #168-23191) at 37 °C in a humidified incubator with 5%  CO2. TM4 cells were seeded 
in 100 mm cell culture dishes and 12-well plates coated with Cellmatrix Type I-c (Nitta gelatin, #631-00771). 
Three days later, TM4 cells were incubated with D-MEM/Ham’s F-12 without horse serum, FBS or penicillin/
streptomysin for 10 h, then treated with either 2 mM acadesine (AICAR) (Adipogen Life Sciences, #AG-CR1-
0061-M010) for 60 min, 30 μg/ml adiponectin (Enzo, #ALX-522-063-C050) for 10 min, or phosphate buffered 
salts (PBS) (TaKaRa, #T900) for 10 min. TM4 cells were transfected by using Lipofectamine RNAiMAX Trans-
fection Reagent (Invitrogen, #13778) and following the manufacturer’s instructions.

RNA interference
Silencer Select Pre-Designed siRNA (Thermo Fisher Scientific) for Adipor1 (s91210) or Silencer Select Negative 
Control No.1 siRNA (#4390843) were transfected into TM4 cells by using Lipofectamine RNAiMAX Transfec-
tion Reagent. Forty-two hours after transfection, TM4 cells were incubated with D-MEM/Ham’s F-12 without 
horse serum, FBS or penicillin/streptomycin for 10 h, then treated with 30 μg/ml adiponectin for 10 min, or 
PBS for 10 min, and then the cells were lysed for caspase-6 activity assay. Transfection efficacy was monitored 
based on gene expression levels of Adipor1 using the real-time PCR. The siRNA sequence for downregulating 
AdipoR1 is shown in Table S2.

Caspase‑6 activity assay
The testis or cell was homogenized with lysis buffer. Capase-6 activity was determined with Caspase-6 Assay Kit 
(Colorimetric) (Abcam, #ab39709), according to manufacturer’s instruction. Caspase-6 activity was normalized 
to total protein amount.

Statistical analysis
Results are expressed as mean ± s.e.m. Differences between two groups were assessed for significance using the 
unpaired two-tailed t-test. Data involving more than two groups were assessed by analysis of variance (ANOVA) 
followed by the Dunnett’s multiple comparison test or Tukey’s honestly significant difference test. Representative 
data from one of 2–5 independent experiments are shown. Every experiment was performed several times with 
essentially the same results.

Data availability
The source data for the figures are available in Supplementary Data 1. Uncropped images of western blots are 
shown in Supplementary Fig. 2-5. All other data that support the findings of this study are available from the 
corresponding authors on reasonable request.
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