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A multi‑source molecular 
network representation model 
for protein–protein interactions 
prediction
Hai‑Tao Zou 1, Bo‑Ya Ji 2* & Xiao‑Lan Xie 1*

The prediction of potential protein–protein interactions (PPIs) is a critical step in decoding diseases 
and understanding cellular mechanisms. Traditional biological experiments have identified plenty of 
potential PPIs in recent years, but this problem is still far from being solved. Hence, there is urgent to 
develop computational models with good performance and high efficiency to predict potential PPIs. 
In this study, we propose a multi-source molecular network representation learning model (called 
MultiPPIs) to predict potential protein–protein interactions. Specifically, we first extract the protein 
sequence features according to the physicochemical properties of amino acids by utilizing the auto 
covariance method. Second, a multi-source association network is constructed by integrating the 
known associations among miRNAs, proteins, lncRNAs, drugs, and diseases. The graph representation 
learning method, DeepWalk, is adopted to extract the multisource association information of proteins 
with other biomolecules. In this way, the known protein–protein interaction pairs can be represented 
as a concatenation of the protein sequence and the multi-source association features of proteins. 
Finally, the Random Forest classifier and corresponding optimal parameters are used for training 
and prediction. In the results, MultiPPIs obtains an average 86.03% prediction accuracy with 82.69% 
sensitivity at the AUC of 93.03% under five-fold cross-validation. The experimental results indicate 
that MultiPPIs has a good prediction performance and provides valuable insights into the field of 
potential protein–protein interactions prediction. MultiPPIs is free available at https://​github.​com/​
jiboy​alab/​multi​PPIs.

Keywords  Protein–protein interactions, Multi-source molecular network, Graph representation learning, 
Random forest

Protein–protein interactions (PPIs) play an essential role in biological processes, such as cell metabolism, immune 
response1, and signal transduction2. Therefore, it is essential to develop effective strategies for correctly identify-
ing potential PPIs to understand better protein functions and model complex protein structures. In recent years, 
some small-scale experimental methods (such as chromatography and biochemical assays) are always utilized to 
predict the potential PPIs. However, these methods are often inefficient, high time-consuming, and not suitable 
for large-scale prediction3. Hence, several high-throughput experimental methods have also been invented for 
identifying potential protein–protein interactions, including immune precipitation, yeast two-hybrid screens 
(Y2H)4, crystallography, and protein chips5. These methods have generated copious known protein–protein 
interaction pairs, which is of great importance for analyzing potential PPIs. Nevertheless, these high-throughput 
technologies still have obvious drawbacks, such as a high false-positive rate, small coverage, and time-intensive6,7. 
Accordingly, due to these limitations of traditional experimental methods, there is an urgent need to develop 
effective and accurate computational models to identify potential PPIs. In recent years, more and more compu-
tational methods8–12 have been developed as an aid to biological experiment methods with the aim of solving 
their high false-positive, small converge and time-intensive problems. More specifically, computational methods 
employ sophisticated algorithms and statistical models to analyze biological data, helping to minimize false-
positive results8–12. They take advantage of the availability of vast amounts of biological data generated through 
high-throughput techniques. By analyzing large-scale datasets, these methods can identify patterns, trends, and 
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associations that may be undetectable with traditional experimental approaches. Furthermore, biological experi-
ments can be time-consuming and costly, requiring extensive sample preparation, data collection, and analysis. 
Computational methods provide a more efficient and cost-effective alternative. Once the necessary algorithms 
and models are developed, computational analyses can be performed relatively quickly on powerful computer 
systems. This saves time and resources, allowing researchers to explore a broader range of hypotheses or conduct 
large-scale investigations more feasibly.

Recently, several computational methods for potential protein–protein interaction prediction have been 
proposed. Of these, some methods take advantage of 3D structure13, gene ontology and annotations14, gene 
fusion, and co-expression15–18 technologies. However, these technologies usually require prior knowledge of 
the collected proteins, which dramatically limits their accuracy and reliability. For example, the 3D structure of 
many proteins is difficult to obtain, and the gene ontology annotation of proteins is incomplete19–23. In contrast, 
abundant sequence data of proteins from multiple sources is relatively easy to obtain. Thence, several compu-
tational methods based on sequence features of proteins have been developed to predict potential PPIs. For 
example, Shen et al.24 developed a novel model for protein–protein interaction prediction only utilizing protein 
sequence information. In their work, protein sequence information was first extracted based on amino acids’ 
triad characteristics. Then the model was constructed by using support vector machines (SVM) combined with 
a kernel function. This experiment fully proves that the computational methods only using protein sequence 
features also have a good prediction ability of protein–protein interactions. Guo et al.25 constructed a new protein 
sequence feature representation method to predict potential PPIs. Specifically, they selected the auto covariance 
(AC) method to extract the characteristics of protein sequences based on seven physicochemical properties of 
amino acids. This method thoroughly considered the interactions between amino acids at different distances in 
the protein sequence and ultimately performed better than other sequence-based methods. Furthermore, their 
study demonstrated that extracting protein sequence features by the auto-covariance (AC) method is feasible 
and effective for potential protein–protein interactions prediction.

In addition, machine learning algorithms have also attracted the attention of many researchers in the field 
of potential protein–protein interactions prediction. For example, Wang et al.26 developed a feature-weighted 
Rotation Forest model for protein–protein interaction prediction by eliminating useless information to use the 
valuable features fully. In the results, their proposed method achieved excellent prediction performance under 
the cross-validation experiment. You et al.27 presented a new method to transform the protein sequence features 
into matrix representation and then utilized the support vector machine (SVM) for training and prediction. 
Their model finally achieved excellent prediction results in the yeast PPIs datasets. Finally, You et al.28 developed 
an ensemble weighted sparse representation model classifier and replaced the matrix representation with the 
integrated protein sequence-function to predict potential protein–protein interactions. Compared with many 
previous advanced methods, this model has better performance.

Human cells are part of a complex biomolecular network, involving interactions and associations among vari-
ous biomolecules, such as proteins, miRNAs, and diseases. Proteins often interact with each other based on their 
shared relationships with other biomolecules. Leveraging this associated information can help predict potential 
protein–protein interactions (PPIs). In this study, we introduce a new computational model (called MultiPPIs) 
to predict PPIs. This model combines protein sequence physicochemical features with multi-source biomolecular 
association data (including drugs, miRNAs, lncRNAs, and diseases). First, we use the auto-covariance method to 
extract features from protein sequences based on amino acids’ physicochemical properties. Second, we create a 
network that integrates known associations among various biomolecules, as depicted in Fig. 1. Using DeepWalk29, 

Figure 1.   The multi-source molecular network.
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a graph representation method, we extract association information from this network. We then utilize 19,237 
known PPI pairs from the STRING database (2017)30 as our positive dataset. A matching number of random 
non-interacting pairs form the negative dataset. These datasets are combined to create our final training set. The 
prediction model is constructed using a Random Forest (RF) classifier, optimized for best performance. The 
process flow of MultiPPIs is outlined in Fig. 2. In our study, the proposed model, under fivefold cross-validation, 
achieves an average accuracy of 0.8603 and an AUC of 0.9304. These results are better than many current com-
putational methods. We also compared two feature combination strategies. Our method is more effective than 
using only protein sequence information by combining multiple types of data. Additionally, we test four popular 
classifiers and find the Random Forest classifier to be the most suitable for our model, offering superior predic-
tion performance. These experiments demonstrate that our model is an efficient tool for predicting potential 
protein–protein interactions. Compared with previous computational methods8–12, our method mainly has the 
following specific advantages: (1) Considering the holistic nature of biomolecular networks, our method collects 
a large amount of association data to construct a multi-source molecular network, and extracts the higher-order 
network features of proteins based on the graph representation learning method to improve the accuracy of the 
prediction of PPIs. (2) Our method fully takes advantage of the local property of residues in protein sequences 
and describes the level of correlation between two protein sequences based on their specific physical and chemi-
cal properties. This not only improves the prediction performance of our method, but also solves the cold-start 
problem often encountered by graph neural network-based methods. (3) By conducting extensive experiments, 
including comparison of feature combinations, comparison of classification models, optimization and adjustment 
of model parameters, and comparison with previous experimental methods, our method has been confirmed to 
have excellent performance in predicting PPIs and is better than most previous computational methods.

Figure 2.   The flowchart of our proposed model.
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Results and discussion
The five‑fold cross‑validation performance of our proposed model
Cross-validation is a standard method used in machine learning to construct and validate model parameters. 
In this work, fivefold cross-validation was adopted to evaluate the performance of our model. First, we equally 
divided the sample data into five parts. Second, we sequentially selected four parts as the training set and the 
remaining 1 part as the test set. The experiment repeated 5 times. Finally, six standard parameters were used as 
evaluation indicators for our experiments, including specificity (Spec.), Matthews’s correlation coefficient (MCC), 
precision (Prec.), sensitivity (Sen.), accuracy (Acc.), and the areas under the ROC curve (AUC). Table 1 lists the 
detailed results of each validation. The last line shows the average value and the standard deviation of the results 
across five runs of the classifier. These experimental results demonstrated that our model could achieve good 
results and stability in the protein–protein interaction prediction.

The Receiver Operating Characteristic (ROC) curve is an essential and common statistical analysis tool 
widely used to judge the quality of classification and prediction results in medical research and machine learn-
ing. It first sorts the samples according to the prediction results of the classifier and then predicts the samples 
as positive samples one by one in this order. This way calculates two important values (True Positive Rate, False 
Positive Rate) each time and plots them as the horizontal and vertical coordinates, respectively. Besides, the AUC 
is defined as the areas under the ROC curve, and its value range is generally between 0.5 and 1. Generally, the 
ROC curve cannot indicate which classifier has better performance, so the AUC value is selected as the evalua-
tion index. The classifier with a larger AUC has better performance. The Precision-Recall (PR) curve is another 
tool to evaluate the performance of a classifier. For the category imbalance problem, the PR curve is widely 
considered superior to the ROC curve. Similarly, the AUPR is defined as the areas under the PR curve. Figures 3 
and 4 respectively show our method’s ROC and PR curves under fivefold cross-validation. These results once 
again demonstrated our model’s good effect and stability in predicting potential protein–protein interactions.

Compare the effect of our feature combination strategy
To further compare the effect of our feature combination strategy, a different feature combination was utilized 
to represent protein nodes. More specifically, we used the only protein sequence features (combination 1) and 
the combination of the protein sequence features and the multi-source associated information of proteins used 
by MultiPPIs (combination 2) to represent proteins before carrying out the fivefold cross-validation experi-
ment. One important thing that must be mentioned is that the experimental environment of the two different 
combinations is the same to ensure the fairness of comparison. Table 2 lists the results of the experiment results 

Table 1.   The fivefold cross-validation results of our proposed model.

Folder Spec. (%) MCC (%) Prec. (%) Sen. (%) ACC. (%) AUC (%)

0 89.97 73.62 89.27 83.50 86.73 93.55

1 89.60 73.21 88.93 83.47 86.54 93.37

2 90.07 71.59 89.11 81.24 85.65 93.15

3 88.96 72.09 88.26 83.00 85.98 92.81

4 88.27 70.66 87.52 82.26 85.27 92.30

Average 89.37 ± 0.76 72.23 ± 1.20 88.62 ± 0.72 82.69 ± 0.95 86.03 ± 0.61 93.03 ± 0.49

Figure 3.   The ROC curves and AUC values of our model under fivefold cross-validation.
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of combination 1 under the fivefold cross-validation experiment. The experiment results of combination 1 is 
shown in Table 1. Figures 5 and 6, respectively, show the comparative experiment’s ROC curves and PR curves. 
As the results show, our feature combination strategy performs better than most computational methods that 
only use protein sequence features. This once again proves that the multi-source association information with 
other biomolecules of proteins is helpful for protein–protein interaction prediction.

Compare the effect of different classifiers
To choose the most suitable classifier for our model, we conducted a comparison experiment with the four most 
commonly used classifiers, including Decision Tree, Naive Bayes, KNN, and Random Forest. We used these four 
classifiers with default training parameters to train and predict the protein–protein interactions and kept other 
experimental conditions consistent. Finally, the Random Forest classifier performed better by observing the 

Figure 4.   The PR curves and AUPR values of our model under fivefold cross-validation.

Table 2.   The results of different feature combinations under fivefold cross-validation.

Feature Folder Spec.(%) MCC(%) Prec.(%) Sen.(%) ACC.(%) AUC(%)

Combination 1

0 80.64 61.02 80.59 80.38 80.51 88.12

1 78.64 57.56 78.70 78.92 78.78 86.34

2 79.44 57.10 79.07 77.65 78.55 86.73

3 78.92 57.93 78.94 79.00 78.96 86.48

4 79.79 57.98 79.46 78.18 78.99 86.28

Average 79.49 ± 0.78 58.32 ± 1.55 79.35 ± 0.74 78.83 ± 1.03 79.16 ± 0.78 86.79 ± 0.76

A B C

Figure 5.   The ROC curves and AUC values of two different feature combination strategies. (A) the ROC curves 
and AUC values of the only protein sequence features. (B) The ROC curves and AUC values of the combination 
of protein sequence features and the multi-source associated information of proteins. (C) Comparison of the 
ROC curves and AUC values of two different feature combination strategies.
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prediction results. Table 3 lists the average parameter values of different classifiers under fivefold cross-validation. 
Figures 7 and 8, respectively, show the ROC and PR curves of the comparative experiment. The comparison 
experiment results proved that the Random Forest is more suitable for our model than other classifiers, especially 
in terms of the AUC and accuracy, which can represent the ability of a model.

Compare the effect of random forest classifier parameter
Random Forest (RF) is a flexible and efficient supervised learning algorithm Breiman proposed in 2001. This 
algorithm has achieved good results in solving problems in many fields. It has the characteristics of preventing 
overfitting, strong model stability, and easy to deal with nonlinear regression problems. It is also a particular 
bootstrap aggregating (bagging) method which uses the decision tree as the training model. It first uses the 
bootstrap method to generate training sets and then constructs a decision tree for each training set. Finally, all 
these decision trees are combined to form the classifier to improve the overall effect. Additionally, when segment-
ing node features, the Random Forest method does not select all features that can maximize the index (such as 
information gain). Instead, it randomly extracts a subset of features and then finds the optimal solution within 
this subset. For the Random Forest model parameters, we need to set the regression tree number N. In detail, 
and we started to train the model at an interval of 20 from N = 180 and observed the relationship between the 
number of N and the final prediction accuracy. We terminated the model training if the prediction accuracy 
decreased with the increase of N. Table 4 lists the accuracy results of the Random Forest classifier with different 
N parameters under fivefold cross-validation. As a result, we can see that the Random Forest classifier has the 
best performance when the number of regression trees is 300.

Performance comparison with the state‑of‑the‑art methods
To further evaluate the effectiveness of MultiPPIs, we conduct a detailed comparative analysis between it and sev-
eral existing protein–protein interaction prediction methods, including LR_PPI31, DPPI32, WSRC_GE33, LPPI34 
and PIPR35. Our evaluation framework encompasses five distinct performance metrics, as detailed in Table 5. 
These metrics include specificity (Spec.), Matthews’s correlation coefficient (MCC), precision (Prec.), sensitivity 
(Sen.), accuracy (Acc.), and the areas under the ROC curve (AUC), providing a comprehensive view of each 
method’s predictive capabilities. Our findings reveal a significant enhancement in performance with MultiP-
PIs. This substantial leap in accuracy underscores the effectiveness of MultiPPIs in identifying protein–protein 
interactions, marking a notable advancement in the field.

Materials and methods
Protein sequence features based on the physicochemical properties of amino acids
In this study, we downloaded the sequence information of proteins from the STRING: in 201730 database. 
Proteins are biopolymers composed of up to 20 different amino acids as basic units. The sequence of amino 
acid residues in the peptide chain is called the primary structure of proteins. Consequently, we selected the six 
physicochemical properties of amino acids to represent the protein sequence features in this work, including 

A B C

Figure 6.   The PR curves and AUPR values of two different feature combination strategies. (A) The PR curves 
and AUPR values of the only protein sequence features. (B) The PR curves and AUPR values of the combination 
of protein sequence features and the multi-source associated information of proteins. (C) Comparison of the PR 
curves and AUPR values of two different feature combination strategies.

Table 3.   The average parameter values of different classifiers under fivefold cross-validation.

Classifier Spec. (%) MCC. (%) Prec. (%) Sen. (%) ACC. (%) AUC. (%)

DecisionTree 77.47 ± 0.82 60.76 ± 1.30 78.25 ± 0.69 80.27 ± 0.63 78.87 ± 0.65 82.97 ± 0.65

KNN 84.39 ± 0.71 69.42 ± 1.07 84.49 ± 0.63 85.03 ± 0.59 84.71 ± 0.53 90.14 ± 0.48

Naive Bayes 82.73 ± 0.66 66.08 ± 1.05 82.84 ± 0.53 83.34 ± 0.95 83.04 ± 0.53 88.98 ± 0.44

RandomForest 89.37 ± 0.76 72.23 ± 1.20 88.62 ± 0.72 82.69 ± 0.95 86.03 ± 0.61 93.03 ± 0.49
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A B C

ED

Figure 7.   The ROC curves and AUC values of different classifiers. (A) The ROC curves and AUC values of the 
Decision Tree classifier. (B) The ROC curves and AUC values of the KNN classifier. (C) The ROC curves and 
AUC values of the Naive Bayes classifier. (D) The ROC curves and AUC values of the random forest classifier. 
(E) Comparison of the ROC curves and AUC values of different classifiers.

A B C

ED

Figure 8.   The PR curves and AUPR values of different classifiers. (A) The PR curves and AUPR values of the 
decision tree classifier. (B) The PR curves and AUPR values of the KNN classifier. (C) The PR curves and AUPR 
values of the Naive Bayes classifier. (D) The PR curves and AUPR values of the Random Forest classifier. (E) 
Comparison of the PR curves and AUPR values of different classifiers.
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polarity (P1), hydrophobicity (H), net charge index of side chains (NCISC), volumes of side chains of amino 
acids (VSC), solvent-accessible surface area (SASA) and polarizability (P2). The original physicochemical values 
of these 20 amino acids are listed in Table 6.

Performance evaluation criteria for our experiments
In order to verify the quality of our proposed method, six standard parameters were calculated as evaluation 
indicators for our experiments, including specificity (Spec.), Matthews’s correlation coefficient (MCC), preci-
sion (Prec.), sensitivity (Sen.), accuracy (Acc.), and the areas under the ROC curve (AUC). The description of 
all computational formulas is as follows:

where TN, FN, TP, and FP represent the total number of true negative, false negative, true positive, and false 
positive. Furthermore, the AUC (the area under the ROC curve) was also implemented to evaluate the perfor-
mance of our model.

Auto covariance (AC) method
The extraction of protein sequence features using the auto covariance (AC) method was completely proposed 
by Guo et al.36. This method fully takes advantage of the local property of residues in protein sequences and 
describes the level of correlation between two protein sequences based on their specific physical and chemical 

(1)Spec =
TN

FP + TN

(2)MCC =
TP × TN − FP × FN

√
(TP + FN)× (TN + FP)× (TP + FP)× (TN + FN)

(3)Prec =
TP

FP + TP

(4)Sen =
TP

TP + FN

(5)Acc =
TP + TN

TP + FP + TN + FN

Table 4.   The accuracy results of the Random Forest classifier with different N parameters.

Fold

0 1 2 3 4 AverageN

180 0.8647 0.8654 0.8565 0.8577 0.8505 0.8590 ± 0.62

200 0.8647 0.8627 0.8559 0.8578 0.8476 0.8577 ± 0.67

220 0.8646 0.8643 0.8572 0.8577 0.8498 0.8587 ± 0.61

240 0.8633 0.8677 0.8590 0.8599 0.8477 0.8595 ± 0.74

260 0.8671 0.8649 0.8588 0.8598 0.8469 0.8595 ± 0.78

280 0.8663 0.8664 0.8572 0.8603 0.8490 0.8598 ± 0.72

300 0.8673 0.8654 0.8565 0.8598 0.8527 0.8603 ± 0.61

320 0.8645 0.8628 0.8589 0.8604 0.8505 0.8594 ± 0.54

340 0.8658 0.8649 0.8562 0.8578 0.8495 0.8588 ± 0.67

Table 5.   Performance comparison of MultiPPIs with the state-of-the-art methods.

Methods AUPR.(%) Prec.(%) Sen.(%) ACC.(%) AUC.(%)

LR_PPI31 84.11 ± 0.58 73.29 ± 0.92 75.51 ± 0.90 77.17 ± 0.66 84.82 ± 0.60

DPPI32 89.03 ± 0.78 76.77 ± 0.90 76.23 ± 0.99 80.07 ± 0.87 87.26 ± 0.76

WSRC_GE33 89.75 ± 0.86 79.87 ± 1.23 76.23 ± 0.97 82.25 ± 1.05 90.22 ± 0.89

LPPI34 80.22 ± 1.54 72.32 ± 1.03 82.75 ± 1.24 80.62 ± 1.16 84.24 ± 1.73

PIPR35 82.46 ± 0.96 74.56 ± 0.98 76.78 ± 1.00 75.36 ± 0.90 83.31 ± 0.94

MultiPPIs 93.08 ± 0.45 88.62 ± 0.72 82.69 ± 0.95 86.03 ± 0.61 93.03 ± 0.49
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properties37–39. First, we normalized the original physicochemical values of 20 amino acids to unit standard 
deviations (SD) and zero means according to Eq. (1):

where Pij is the jth descriptor value for ith amino acid, Pj  is the mean of jth descriptor over the 20 amino acids and 
Sj is the corresponding standard deviations, given by:

In this way, each amino acid in a protein sequence is converted to the corresponding standardized physico-
chemical value. Then, the AC method is used to encode the protein sequence into a feature vector:

where Xi,j is the jth descriptor value of the ith amino acid, N is the length of the protein sequence, d is the width of 
the sliding window. In this article, the parameters d and j are respectively set to 30 and 6. On this basis, a protein 
sequence is finally encoded as a 30*6 = 180-dimensional feature vector.

The multi‑source molecular network construction
In order to utilize the associated information of proteins with other biomolecules, we systematically and com-
prehensively constructed the association information network by integrating the known associations among 
proteins, diseases, miRNAs, drugs, and lncRNAs, which were downloaded from multiple databases. The source 
and version of the raw data are shown in Table 7 below. In addition, we have done some operations with the raw 
data, such as removing some irrelevant items and unifying the identifiers. Besides, we also counted the number 
of nodes contained in the original association data, as shown in Table 8.

DeepWalk algorithms
In order to extract the associated information feature of proteins from the association information network we 
constructed, the graph embedding algorithms: DeepWalk29 was adopted in our work. The input of the DeepWalk 
method is a graph or network, and then the social representation of vertices in the network was learned through 

(6)Pij
′
=

Pij − Pj

Sj
, (i = 1, 2, . . . , 6; j = 1, 2, . . . 20)

(7)Pj =
∑20

i=1Pij

20

(8)Sj =

√

∑20
i=1(Pij − Pj)

2

20

(9)AC =
1

N − d

∑N−d

j=1
(Xi,j −

1

n

n
∑

i=1

Xi,j)(Xi+d,j −
1

n

n
∑

i=1

Xi,j)

Table 6.   The original physicochemical values of 20 amino acids.

Amino acids NCISC VSC P1 SASA H P2

Cys − 0.03661 44.6 5.5 1.461 0.29 0.128

Asp − 0.02382 40 13 1.587 − 0.9 0.105

Glu 0.006802 62 12.3 1.862 − 0.74 0.151

Ile 0.021631 93.5 5.2 1.81 1.38 0.186

Gly 0.179052 0 9 0.881 0.48 0

Leu 0.051672 93.5 4.9 1.931 1.06 0.186

Val 0.057004 71.5 5.9 1.645 1.08 0.14

Met 0.002683 94.1 5.7 2.034 0.64 0.221

Trp 0.037977 145.5 5.4 2.663 0.81 0.409

Asn 0.005392 58.7 11.6 1.655 − 0.78 0.134

His − 0.01069 79 10.4 2.025 − 0.4 0.23

Gln 0.049211 80.7 10.5 1.932 − 0.85 0.18

Ala 0.007187 27.5 8.1 1.181 0.62 0.046

Arg 0.043587 105 10.5 2.56 − 2.53 0.291

Tyr 0.023599 117.3 6.2 2.368 0.26 0.298

Pro 0.239531 41.9 8 1.468 0.12 0.131

Lys 0.017708 100 11.3 2.258 − 1.5 0.219

Ser 0.004627 29.3 9.2 1.298 − 0.18 0.062

Thr 0.003352 51.3 8.6 1.525 − 0.05 0.108

Phe 0.037552 115.5 5.2 2.228 1.19 0.29
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the truncated random walk and the SkipGram model. Finally, it outputs the potential relationship of vertices 
in the network. The basic idea of this algorithm is first to obtain the node sequence as a sentence through the 
random walk, and then to obtain the local information of the network from the truncated random walk sequence 
by maximizing the co-occurrence probability of vertex vj within a window size w to learn the potential represen-
tation of the node based on the local information, which is calculated as follows:

where �(vj) indicates that vertex vj is mapped to its representation space, ϕ(bk) means the parent node of 
the tree node bk . More specifically, the entire DeepWalk method is mainly composed of two algorithms. Algo-
rithm 1 of the DeepWalk model mainly includes 4 steps: (1) Generate γ random walks for each node in the input 
network structure. (2) Uniformly samples a point in the network as the root node in each random walk process. 
(3) Uniformly select the neighbor node as the next node from the current node. (4) Repeat the above steps until 
the walking path reaches the specified length. Algorithm 2 of the DeepWalk model is to perform the SkipGram 
model for training the sequence data to get the network feature vector of each node. The SkipGram model iters 
all possible matches within a window for the random walk sequence. It utilizes nodes to assume the context and 
discovers the representation of the vector by achieving the maximum co-occurrence probability of words in a 
window while neglecting the order in which the nodes occur in the sentence. According to the independent 
presumption, the probability of co-occurrence can be transferred into the conditional probability product. The 
detailed process of the algorithm is respectively shown in Tables 9 and 10. In this way, the associated information 
with other biomolecules of proteins in the association information network is converted to the feature vector, 
which can be used by the machine learning classifiers.

The representation of protein nodes
In this study, the protein nodes were represented by the combination of the physicochemical features of protein 
sequences and multi-source association information with other biomolecules (drugs, miRNAs, lncRNAs, and 
diseases) of proteins in the association information network. The sequence feature of proteins was obtained by the 
auto-covariance (AC) method based on the six physicochemical properties of amino acids. Besides, the associated 
information with other nodes of proteins was obtained by the network representation method DeepWalk based 
on the association information network we constructed. Finally, we combined these two features to represent 
the protein–protein interaction pairs.

(10)Pr
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}

s\vj|�
(
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))
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Table 7.   The data information in the multi-source molecular network.

Association information Database Amount

miRNA-disease HMDD v3.040 16,427

drug-protein DrugBank v5.041 11,107

miRNA-lncRNA lncRNASNP242 8374

lncRNA-disease lncRNASNP242, LncRNADisease43 1264

drug-disease CTD: updata 201944 18,416

protein-disease DisGeNET45 25,087

miRNA-protein miRTarBase: updata 201846 4944

lncRNA-protein LncRNA2Target v2.047 690

Total N/A 86,309

Table 8.   The node information in the multi-source molecular network.

Node Amount

LncRNA 769

Protein 1649

MiRNA 1023

Drug 1025

Disease 2062

Total 6528
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Conclusion
The protein–protein interactions (PPIs) play a vital role in the cell biochemical reaction network and are sig-
nificant for regulating cells and their signals. However, the traditional biological experiment methods have the 
limitations of a high time-consuming and long period, which is not suitable for large-scale protein–protein 
interactions prediction. In this study, we proposed a novel computational method to predict potential PPIs by 
combining the sequence feature and associated information with other molecules of proteins. For the sequence 
feature of proteins, we utilized the auto covariance (AC) method to extract it based on the six physicochemical 
properties of amino acids. For the association information feature with other molecules of proteins, we utilized 
the DeepWalk network representation method to extract it based on the association information network we 
constructed. In this way, the proteins were represented by combining these two features. Finally, the Random 
Forest classifier and its corresponding optimal parameters were selected for training and prediction. As a result, 
our proposed method achieved average accuracy and AUC of 86.03% and 93.03% under fivefold cross-validation, 
which is superior to many existing computational models. Besides, to evaluate the effect of our feature com-
bination, we further compared the performance of only the protein sequence feature and the combination of 
protein sequence and association feature. Furthermore, to select the most suitable classifier for our model, we 
also compared the ability of the four most commonly used classifiers. While overcoming many challenges, our 
current method still has its limitations. In our work, we collected 8 associations between 5 biological molecules 
to construct a multi-source molecular network. All the proteins in our dataset are distributed on this network. 
Therefore, we are able to utilize the relationships between different molecules to extract the network features of 
protein nodes. Note that we have removed known protein–protein interactions during training to avoid causing 
label leakage. An independent test set, completely independent of the existing dataset, would result in the inability 
to use molecular network relationships. We designed our model to address this limitation by considering both 

Table 9.   Algorithm 1 of the DeepWalk model.

Input
graph G(V, E)
window size w
embedding size d
walks per vertex γ
1: Initialization: Sample Φ from | |×

2: Build a binary Tree T from V
3: for i = 0 to γ do

4: O = Shuffle(V )

5: for each O do

6: = RandomWalk(G, v ,t)
7: SkipGram(Φ, , w)

8: end for

9: end for

Output 
matrix of vertex representations Φ

Table 10.   Algorithm 2 of the DeepWalk model

1: for each

2: for each [j-w : j+w] do

3: J(Φ) = −log Pr( | ( ))

4: Φ =Φ – α*(∂J / ∂ )
5: end for

6: end for



12

Vol:.(1234567890)

Scientific Reports |         (2024) 14:6184  | https://doi.org/10.1038/s41598-024-56286-w

www.nature.com/scientificreports/

the physicochemical properties of the protein sequence. For new proteins that cannot be added to the network, 
we use this feature for interaction prediction. Our data and code is open source, easily available at https://​github.​
com/​jiboy​alab/​multi​PPIs.

Data availability
The data and source code are available in a public github repository: https://​github.​com/​jiboy​alab/​multi​PPIs

Received: 7 November 2023; Accepted: 5 March 2024
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