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Strain‑dependent grain boundary 
properties of n‑type germanium 
layers
Kota Igura 1,3, Koki Nozawa 1,3*, Takamitsu Ishiyama 1,2, Takashi Suemasu 1 & Kaoru Toko 1*

Polycrystalline Ge thin films have attracted considerable attention as potential materials for use 
in various electronic and optical devices. We recently developed a low‑temperature solid‑phase 
crystallization technology for a doped Ge layer and achieved the highest electron mobility in a 
polycrystalline Ge thin film. In this study, we investigated the effects of strain on the crystalline and 
electrical properties of n‑type polycrystalline Ge layers. By inserting a  GeOx interlayer directly under 
Ge and selecting substrates with different coefficients of thermal expansion, we modulated the strain 
in the polycrystalline Ge layer, ranging from approximately 0.6% (tensile) to − 0.8% (compressive). 
Compressive strain enlarged the grain size to 12 µm, but decreased the electron mobility. The 
temperature dependence of the electron mobility clarified that changes in the potential barrier height 
of the grain boundary caused this behavior. Furthermore, we revealed that the behavior of the grain 
boundary barrier height with respect to strain is opposite for the n‑ and p‑types. This result strongly 
suggests that this phenomenon is due to the piezoelectric effect. These discoveries will provide 
guidelines for improving the performance of Ge devices and useful physical knowledge of various 
polycrystalline semiconductor thin films.

Although Ge is the oldest semiconductor used, it has once again attracted attention as its electrical and opti-
cal properties are useful for various next-generation electronics such as  transistors1–3, solar  cells4,5, optical 
 communication6–8, and thermoelectric  devices9,10. Particularly, there is an urgent need for a synthesis technol-
ogy for Ge thin films on insulators for the following reasons: (i) although single-crystal (sc-) Ge is expensive, 
thinning the film can significantly reduce costs. (ii) Ge has a high optical absorption coefficient (~  104  cm−1 at 
0.8 eV), so even a thin film can absorb sufficient  light11. (iii) The leakage current in transistors due to the nar-
row bandgap can be solved by thinning the Ge  film3,12,13. (iv) Owing to the low crystallization temperature and 
Young’s modulus, it can be synthesized on general-purpose substrates, such as glass and  plastic14–17. Since most 
insulators are amorphous, Ge films synthesized directly on insulators become polycrystalline with various defects, 
including grain boundaries. Moreover, since the defects in Ge behave as  acceptors18–22, all undoped polycrystal-
line (poly-) Ge films exhibit p-type  conduction23–27. Furthermore, the activation rate of the n-type dopants in 
Ge is  low28–31. This makes it difficult to control the Fermi level, which is important in all semiconductor devices.

In recent years, it has been discovered that in the solid-phase crystallization (SPC) of Ge thin films, increas-
ing the density of amorphous Ge precursors or adding impurities significantly affects the crystallinity of the 
resulting poly-Ge thin  films32–34. We achieved the lowest hole concentration (2 ×  1016  cm−3) for a poly-Ge thin 
 film35 and also realized control of n-type conduction by doping with impurities (Sb, As, and P) 36. The carrier 
mobility reached the highest value for a poly-Ge thin film (holes: 690  cm2  V−1  s−1, electrons: 450  cm2  V−1  s−1)37,38. 
The best performance of a low-temperature thin film transistor using a poly-Ge layer was also  demonstrated39,40.

Based on these techniques, we have studied strains naturally applied to poly-Ge thin  films41. The amount of 
strain mainly depended on the difference in the thermal expansion of the substrate. Although it was not suf-
ficiently large to modulate the band structure of  Ge42, it significantly affected the grain boundary barrier height 
(EB) of the p-type Ge thin film. In this study, we investigate the effects of strain on the crystallinity and electrical 
properties of n-type Ge thin films. The strain dependence of EB in the n-type Ge thin films was inversely cor-
related with that in the p-type Ge thin films. This behavior suggests that the change in EB owing to strain is due 
to the piezoelectric  effect43–46.
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Experimental
Various substrates with different coefficients of thermal expansion (CTEs) were used to modulate widely the 
strain applied to the Ge layer, including  SiO2, Si (111),  CaF2 (001), and polyimide (PI). We denote the CTE dif-
ference between Ge and substrate as Δα; the values are presented in Table 1. Before thin-film deposition, the 
substrates were cleaned with acetone, methanol, and distilled water. We fabricated 15-nm thick  GeOx layers on 
the substrates using radio-frequency magnetron sputtering (base pressure: 4.0 ×  10–4 Pa) at 10 sccm. Ar plasma 
(working pressure: 0.5 Pa) was used with the radio-frequency power set to 50 W. The  GeOx layer excluded the 
influence of the substrate-interface species and extracted the influence of the difference in CTEs on the Ge 
 layer37,41. The samples were then air-transferred from the sputtering chamber to a molecular beam deposition 
system (base pressure: 5 ×  10−7 Pa) within five minutes to avoid the reaction of  GeOx with air. Subsequently, the 
phosphorus-doped amorphous Ge layers were prepared using a Knudsen cell with a solid Ge source (purity: 
99.999%). The Ge thickness was maintained at 200 nm, with a constant Ge deposition rate of 3.4 nm  min−1. The 
phosphorus concentration in Ge was 2 ×  1020  cm−3. The sample stage was heated at 125 °C during deposition 
to densify the amorphous Ge  layer33,38. The samples were then loaded into a conventional tube furnace (Koyo 
Thermo Systems, KTF035N1) with  N2 flow (purity: 99.9%, flow rate: 0.1 L  min−1) and annealed at 400 °C for 
50 h to induce SPC. The temperature was calibrated by placing a thermocouple directly on the tube furnace and 
was confirmed to be uniform within the sample stage.

Optical microscopy was employed during annealing using a Linkam 10042 D microscope with Keyence 
VH-5500. The resulting samples were evaluated using Raman spectroscopy, atomic force microscopy (AFM), 
scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), and Hall-effect measurements. 
Raman spectra were measured using a JASCO NRS-5100 with a frequency-doubled Nd: YAG laser (wavelength: 
532 nm, power: 0.5 mW, spot diameter: 5 μm), where the laser power was weak enough not to affect the crystal 
phase and peak shift. The penetration depth of the laser in poly-Ge was estimated to be approximately 30 nm 
from the absorption coefficient of Ge at the laser wavelength. The absolute Raman shift (detector resolution: 
0.42  cm−1) was calibrated using the transverse optical phonon line (300  cm−1) of sc-Ge(100). The root mean 
square (RMS) values were measured by AFM using a Shimadzu SPM-9600 instrument. The SEM and EBSD 
were performed using a Hitachi High-Tech SU7000 instrument (voltage: 15 kV) equipped with an Oxford AZtec 
analysis attachment. Hall effect measurements using the Van der Pauw method were performed using an M91 
FastHall and AX-2022041R with a 0.45 T permanent magnet.

Results and discussion
Figure 1a shows how strain is introduced into the Ge layer during the annealing process. During temperature 
rise, strain is applied to Ge according to Δα. Subsequently, strain relaxation in Ge happens during the nuclea-
tion and grain growth at 400 °C as a dynamic process. During temperature reduction, strain is reintroduced 
into Ge according to Δα, which is in the opposite direction to that applied during the temperature rise. Fig-
ure 1b shows that the Ge crystallization progresses with increasing annealing time. According to the optical 

Table 1.  Coefficients of thermal expansion (CTEs) and CTE differences between Ge and substrate (Δα) at 
room temperature.

Substrate CTE  [10–6  K–1] Δα  [10–6  K–1]

SiO2 0.5 –5.3

Si 3.9 –1.9

CaF2 18.9 13.1

PI 27.0 21.2
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Figure 1.  Annealing process of the samples. (a) Temperature profile and strain history in Ge. The inset shows 
the schematic of the sample structure. (b) Annealing-time evolution optical micrographs showing the crystal 
growth of the sample with a  SiO2 substrate. The light- and dark-colored areas indicate amorphous (a-) and 
crystalline (c-) Ge, respectively.
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microscopy observations, crystallization was completed within 5 h at 400 °C for all samples. Therefore, the 
long-time annealing for 50 h would sufficiently relax the strain in Ge at 400 °C, leaving the strain only due to 
Δα in Ge after cooling.

As shown in Fig. 2a, a uniform mirror-like Ge film was formed in all samples. The AFM image in Fig. 2b 
shows that the surface of the Ge layer is flat, which is one of the advantages of SPC. The SEM image in Fig. 2c 
shows a contrast on the order of micrometers. When considered together with the AFM results, the contrasts 
in the SEM image is due to the electron channeling effect: a phenomenon in which the penetration depth of an 
electron beam changes depending on the crystal  orientation47. This suggests that the Ge layer has high crystal-
linity, which is similar in all samples.

Figure 3a shows a sharp peak around 300  cm−1 caused by Ge crystals in the Raman spectra of all samples. 
Although the full width at half maximum (FWHM) of the Ge peaks was approximately the same, the Raman 
shift changed depending on the sample. Figure 3b shows the peak shift (Δω) from the Ge peak of the sc-Ge 
wafer in each sample. It can be seen that as Δα becomes larger, Δω becomes larger. The strain ε in the Ge layer 
is expressed as ε = Δω / b using the strain phonon coefficient b. The ε value of the Ge film on each substrate was 
calculated by substituting b =  − 395  cm−1, as proposed by Manganelli et al.48. A positive ε corresponds to tensile 
strain, and a negative ε corresponds to compressive strain. It can be seen that tensile strain is applied when 
Δα < 0, and compressive strain is applied when Δα > 0. Furthermore, the theoretical strain εth obtained from Δα 
is shown by a dotted line defined using

where ΔT is the difference between the annealing temperature (400 °C) and room temperature (300 K), and ν 
is the Poisson’s ratio of the thin  film49. The trend of ε roughly matches the trend of εth, which indicates that the 
difference in CTEs with the substrate mainly causes the strain in the Ge layer. Moreover, ε showed a slightly 
higher value than εth in all samples. One possible reason for the difference could be that Δα was calculated as 
a constant, while CTE depended on  temperature50. From the above, it can be seen that a reasonable strain is 
applied to the Ge film in response to Δα.

(1)εth =
�α�T
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Figure 2.  Sample appearance after annealing. (a) Photograph of the samples with an  SiO2, Si,  CaF2 and PI 
substrate. (b) AFM and (c) SEM images of the sample with a  SiO2 substrate.
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Figure 3.  Raman spectroscopy analysis of the samples. (a) Raman spectra of the samples after annealing, where 
the crystal Ge peak position for a sc-Ge wafer is shown as a dotted line. The FWHM values of the Ge peaks are 
shown near each spectrum. (b) Δω and ε as functions of Δα, where ε > 0 corresponds to tensile strain and ε < 0 
corresponds to compressive strain. The dotted line shows εth obtained from Eq. (1).
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Figures 4a–d show inverse pole figure images of the Ge layers obtained by EBSD. A random orientation 
was observed in all samples, and no difference in orientation was observed depending on the substrate. This is 
due to the insertion of an a-GeOx layer at the Ge/substrate  interface37,41. By contrast, the grain size depends on 
the type of substrate used. The RMS roughness of each sample was evaluated using AFM, as shown in Fig. 4e. 
Although the RMS roughness was similar for the samples with the  SiO2, Si, and  CaF2 substrates, it was higher 
for the sample with the PI substrate. Since these values are comparable to the RMS of each substrate, it can be 
seen that the Ge layer inherits the irregularities of the substrate. Figure 4e shows results summarizing changes in 
the average grain size and twin grain boundary density concerning Δα. As Δα increased, the grain size increased 
and then decreased, while the twin grain boundary density exhibited the opposite trend. It is known that both 
strain and roughness in thin films affect the nucleation frequency and growth  rate14,51–53. The fact that the Ge 
grain size varied for the  SiO2, Si, and  CaF2 samples with similar roughness suggests that the strain applied to 
the a-Ge layer during temperature rise affects the crystal growth (Fig. 1a). Conversely, the small grains in the PI 
sample are explained as a pronounced interfacial inhomogeneous nucleation due to the rough substrate surface.

Figure 5a shows the results of the Hall measurements. Similar to the behavior of hole concentration in 
p-type  Ge41, the electron concentration n was almost constant with respect to Δα. Conversely, as Δα increases, 
the electron mobility µ decreases. Generally, µ in polycrystalline semiconductors is limited by grain boundary 
 scattering54,55, but this behavior is inconsistent with the grain size trend shown in Fig. 4. To clarify this, we cal-
culated EB based on the Evans and Nelson  model55, where μ is defined as

where L is the grain size, q is the elementary charge, vr is the recombination velocity, vd is the drift–diffusion 
velocity, kB is Boltzmann’s constant, and T is the measurement temperature. Therefore, we can obtain EB from 
the slope of the Arrhenius plots against µT. Figure 5b shows the Arrhenius plots for µT. It can be seen that µT 
decreases monotonically as a function of 1000 / T, which means that µ is limited by grain boundary scattering. 
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Figure 4.  Crystal properties of the Ge layers. Inverse pole figure images from EBSD analyses for the samples 
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Figure 5c shows the EB calculated from the slope of the regression line indicated by the dotted line in Fig. 5b. As 
Δα increased, EB clearly increased. By contrast, the EB of a similarly prepared undoped p-type Ge layer decreased 
with increasing Δα, as we have previously  reported41. Thus, the poly-Ge layer strain significantly affects the 
electrical properties, especially EB.

The fact that EB shows the opposite behavior with strain for the n-type and p-type layers strongly suggests 
that piezoelectric effects cause changes in EB

43–46. Figure 6 illustrates the strain effects on the grain boundary 
barrier height of the Ge layer. In polycrystalline semiconductors, grain boundary defects act as carrier traps for 
electrons in n-type and holes in p-type, so that the Fermi level (EF) within the grain and at the grain boundary 
are equal. This phenomenon forms potential barriers that prevents carrier transport. When strain is applied to 
a poly-Ge layer, polarization vectors (P) are generated in the grains, corresponding to stain direction. When 
the charge induced near the grain boundary by the polarization (piezo-charge) and the trapped carriers at the 
grain boundary are of different types, EB decreases due to charge compensation (Figs. 6a,d). In contrast, when 
the piezo-charge and trapped carriers are the same type, EB increases (Figs. 6b,c). Thus, the relationship between 
the strain and EB in the poly-Ge layer is consistent with the piezoelectric effect, although it is still a matter of 
speculation.

Conclusions
We investigated the effects of the thermal strain caused by the substrate on the crystallinity and electrical proper-
ties of an n-type Ge layer. Using  SiO2, Si,  CaF2, and PI substrates, the amount of strain in the poly-Ge layer was 
modulated in the range from 0.6% to − 0.8%, where positive values correspond to tensile strain, and negative 
values correspond to compressive strain. Compressive strain expanded the grain size, reaching approximately 
12 μm in the  CaF2 substrate sample, while decreasing μ. We derived EB from the temperature dependence of μ 
and clarified that a decrease in μ is due to an increase in EB. The behavior of EB with strain was opposite between 
the n- and p-types, which strongly suggests that piezoelectric effect caused this phenomenon. These results will 
be crucial for controlling the properties of poly-Ge devices and various polycrystalline semiconductor thin films.

Data availability
The datasets used and/or analyzed in the current study are available from the corresponding author upon rea-
sonable request.
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