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Dual ensemble system for polyp 
segmentation with submodels 
adaptive selection ensemble
Cun Xu 1, Kefeng Fan 2*, Wei Mo 1, Xuguang Cao 1 & Kaijie Jiao 1

Colonoscopy is one of the main methods to detect colon polyps, and its detection is widely used to 
prevent and diagnose colon cancer. With the rapid development of computer vision, deep learning-
based semantic segmentation methods for colon polyps have been widely researched. However, the 
accuracy and stability of some methods in colon polyp segmentation tasks show potential for further 
improvement. In addition, the issue of selecting appropriate sub-models in ensemble learning for 
the colon polyp segmentation task still needs to be explored. In order to solve the above problems, 
we first implement the utilization of multi-complementary high-level semantic features through the 
Multi-Head Control Ensemble. Then, to solve the sub-model selection problem in training, we propose 
SDBH-PSO Ensemble for sub-model selection and optimization of ensemble weights for different 
datasets. The experiments were conducted on the public datasets CVC-ClinicDB, Kvasir, CVC-ColonDB, 
ETIS-LaribPolypDB and PolypGen. The results show that the DET-Former, constructed based on the 
Multi-Head Control Ensemble and the SDBH-PSO Ensemble, consistently provides improved accuracy 
across different datasets. Among them, the Multi-Head Control Ensemble demonstrated superior 
feature fusion capability in the experiments, and the SDBH-PSO Ensemble demonstrated excellent 
sub-model selection capability. The sub-model selection capabilities of the SDBH-PSO Ensemble will 
continue to have significant reference value and practical utility as deep learning networks evolve.

The third most common form of cancer worldwide is colorectal cancer, and its prevalence is increasing every 
 year1. About the precursors of colon cancer, it is commonly accepted that most colorectal cancers evolve from 
adenomatous  polyps2. Recent surveys and statistics underline polypoid lesions are precursors to most ( 85%) 
colorectal  cancers3. Colonoscopy is the ‘gold standard’ method for examining colon and  rectum4,5. Importantly, 
it has been assessed that the proportion of colon polyps missing during endoscopies could range from 20 to 47 
 percent6. A review article noted that an early detection of the CRC increases the 5-year survival rate from 18% 
when CRC is detected in the highest grade to 88.5% when it is detected in an initial grade due to  symptoms7. 
Along with the development of artificial intelligence, semantic segmentation methods of AI assisted colonoscopy 
detection can significantly reduce the risk of misclassification and omission of polyp cancer, colorectal tumor 
lesions and colorectal cancer from early to late stages due to various  reasons8. Therefore, the accuracy of semantic 
segmentation of colon polyps needs to be improved to achieve better support for colonoscopy detection.

Many networks for deep learning have achieved advanced performance in polyp-by-pixel  segmentation9. 
The backbone of many of these excellent networks is the Pyramid Vision Transformer V2 (PVTv2)10 or the 
Mixed Transformer (MiT)11. High-level semantic features are more appropriate for the model to achieve a 
higher  performance12. Feature fusion, a common technique in polyp segmentation tasks, has shown exceptional 
 results13,14. However, there are still advanced semantic features that can further improve the segmentation accu-
racy through feature fusion. The process of discovery is to select the location of the feature maps according to Di 
et al15. and refer to Han WC et al16. to generate the feature maps of FCB-Former17 and  ESFPNet18 in the form of 
heat maps, as shown in Fig. 1. The darker the warm color on the feature map indicates the more obvious features 
of the polyp or the background, while there is a clear change from warm to cold color at the polyp-background 
junction. It can be found that the features are not complete enough to lead to accurate segmentation results. In 
order to solve this problem, we propose a fusion strategy, Multi-Head Control Ensemble, which fuses comple-
mentary features step-by-step and integrates different feature results optimally to achieve efficient utilization of 
complementary features.

Colon polyps are thought to vary widely in size, orientation, color and  texture19. It is difficult for a single 
network to produce accurate predictions in various  situations20. Employing a multi-network ensemble strategy 
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is anticipated to both enhance and stabilize performance. However, variability among polyps, coupled with the 
risk of networks converging to a local optimum during training, may result in a network that adversely affects the 
effectiveness of the ensemble at the end of training. The proactive identification and removal of such a network 
before the conclusion of training represent a challenge. A review article points out that generalisability studies 
are very limited in medical image  analysis21. To solve the above problems, we propose a generalisability ensemble 
learning strategy that adaptively selects the most suitable network for the ensemble for different datasets, thus 
stabilizing the output of high-performance segmentation results.

The main contributions of this paper are as follows:

(1) In order to maximize the use of complementary features, we propose Multi-Head Control Ensemble (MHC 
Ensemble), which can effectively supervise the network and output high-precision segmentation results.

(2) In order to achieve stable and high-performance segmentation on discrepant data, we propose an improved 
Particle Swarm Optimization algorithm for optimizing sub-model weights in ensemble learning. And based 
on this, we propose a strategy SDBH-PSO Ensemble that can perform adaptive selection of sub-models 
under different datasets.

Related work
Ensemble learning
Ensemble learning methods are broadly categorized into: bagging, boosting, and  stacking22. Bagging ensemble 
improves accuracy by training a single network with multiple copies of the  dataset23. Boosting ensemble opti-
mizes the ensemble results by assigning greater weights to the erroneous copies on top of the bagging ensemble 
by assigning greater weights to the erroneous copies to optimize the integration  results24. Combining multiple 
models helps to improve and stabilize the  results25. Stacking ensemble’s approach of integrating multiple networks 
as sub-models can provide strong  robustness26. Stacking ensemble and ensemble multi-output is expected to 
solve the task of colon polyp segmentation, which is difficult for a single network. For the sake of simplicity, we 
will refer to “ensemble multi-output” as “ensemble” elsewhere in this paper.

Kang et al27. used ensemble learning to ensemble segmentation results from Mask R-CNN networks using 
ResNet50 and ResNet101 as the backbone. Thanh et al28. used ensemble learning to ensemble UNet segmenta-
tion results from EfficientNet B4 and EfficientNet B5. Nanni et al29. used the PvTv2 segmentation ensemble on 
other tasks and achieved excellent segmentation results. The sub-models used for the ensemble have changed as 
the model performance has improved. A review article on ensemble learning points out that a major challenge 
in deep ensemble learning is model selection for building the ensemble  architecture30.

In the model selection problem, Zhang et al31. used neighborhood mutual information to select the models 
involved in the ensemble on carbon emission prediction. Djellali et al32. selected the models involved in the 
ensemble in a data mining task based on k-fold cross-validation. Both of the above methods perform sub-model 
selection at the end of training. Birman et al33. used reinforcement learning for sub-model selection during 
training in malware detection tasks. Labeling for colon polyp segmentation is more expensive, which limits the 
application of reinforcement learning in this area. To explore the application of model selection to colon polyp 
segmentation, we propose the SDBH-PSO Ensemble.

Ensemble learning with improved PSO optimization
The most critical aspect of the ensemble is the optimization of the ensemble weights and the selection of sub-
models, and the Particle Swarm Optimization (PSO)  algorithm34 is commonly used for the optimization of the 
ensemble  weights35. PSO algorithms have been used to solve a variety of mathematical, engineering, design, net-
work, robotics, and image processing optimization  problems36. The solution in the PSO algorithm is represented 

Figure 1.  Feature heat maps and polyp segmentation results under CVC-ColonDB and ETIS-LaribPolypDB 
datasets.
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as a particle, which holds a position vector and a velocity vector. PSO searches for the optimal solution by 
iteration. In each iteration, the velocity vid(t) of each particle is updated based on its previous optimal position 
Ppd(t) , the current optimal position Pgd(t) of all particles, random numbers r1 and r2 in [0, 1], adjustable iner-
tia parameter ω , and adjustable learning parameter c1 and c2 , while the position xid(t) is varied as the velocity 
changes, as defined in Eqs. (1) and Eqs. (2).

The PSO algorithm is considered to continue to be dynamic in interdisciplinary research in the  future37. In recent 
years, Gu et al38. proposed a resampling PSO algorithm for optimizing the scheduling of multi-star, large-area 
target observations. Subsequently, Song et al39. proposed a large-scale nonconvex joint optimization method 
based on PSO in order to solve the active control problem of wind farm layout and turbine yaw. Fontes et al40. 
proposed an improved PSO algorithm based on the job shop scheduling problem of transportation resources to 
be solved. Similarly, Qian et al41. proposed an improved PSO algorithm, which successfully realized the intelligent 
selection of the piston sealing groove for the designed domestic cylinder. Du et al42. proposed an improved PSO 
algorithm for ordered charging strategy, which can reduce the charging cost and peak variance of electric vehicles. 
Thus, on the problems that can be optimized by PSO algorithms, designing and improving PSO algorithms based 
on the problem to be solved or optimized is expected to solve the problem in a better way.

Image segmentation on colon polyps
On the task of semantic segmentation of colon polyps, this paper focuses on realizing high-precision and stable 
segmentation of polyps by building branches and feature fusion, and the relevant state of the art in this regard 
is as follows.

On branch building, Guo et al43. proposed a two-branch approach called ThresholdNet to collaborate segmen-
tation and threshold learning in alternative training strategies. Fang et al44. proposed a new boundary-sensitive 
loss to model the interdependence between region branches and boundary branches. In order to better extracte 
the detail information, Zhang WC et al45. used to capture the local appearance details through the dual branch 
structure of Transformer and CNN. Chen et al46. built a depth feature extraction branch and depth bootstrapping 
for extracting the depth information between pixels. Wang et al47. built a new anchor-free instance segmentation 
framework by performing object detection branching for classification and localization with mask generation 
branching for generating instance-level masks. Fan et al48. achieved a more stable training process in federated 
learning by building a multi-branch network.

For feature fusion, Huang et al49. re-weighted encoder features in space and channel to enhance key features 
for segmentation task. To enhance the features on the boundary, Zhou et al50. merged the boundary informa-
tion into the segmentation network to generate finer segmentation maps. Liu et al51. achieved adaptive feature 
fusion and selection for the network by channel attention. In addition, Chen et al52. utilized rich global context 
information to refine the fused features for informative feature representation. Patel et al53. improved the quality 
of features layer by layer, which in turn enhanced the final feature representation. Wang et al54. suggested that 
the region around the polyp has more detailed features that facilitate polyp segmentation.

Method
Overview
In order to fuse complementary features and perform stable high-performance segmentation on the disparate 
colon polyp dataset, we built the Dual Ensemble System, as shown in Fig. 2. Among them, in order to provide 
complementary features, we built Three-branch Architecture, which fuses complementary features through 
MHC Ensemble. In addition, in order to achieve stable and high-precision segmentation on different datasets, 

(1)vid(t + 1) = ωvid(t)+ c1r1(Ppd(t)− xid(t))+ c2r2(Pgd(t)− xid(t))

(2)xid(t + 1) = xid(t)+ vid(t + 1)

Figure 2.  The architecture of Dual Ensemble System with Treble Transformer.
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we choose FCB-Former and ESFPNet, which have complementary phenomena in the output results, and also 
take into account that there are differences in the adaptability of different datasets to the optimal network depth. 
The sub-models selected for the SDBH-PSO Ensemble range from sub-model 1 to sub-model 6 and include the 
following: Treble-Former-L(MiT-B4, PvTv2-B4), Treble-Former-S(MiT-B2, PvTv2-B2), FCB-Former-L(PvTv2-
B4), FCB-Former-S(PvTv2-B2), ESFPNet-L(MiT-B4), ESFPNet-S(MiT-B2). Finally, the best real-time ensemble 
model and the best sub-model optimized by SDBH-PSO are again subjected to final ensemble. In addition, 
DET-Former is an ensemble structure that allows segmentation across multiple devices. It has an FPS of 3.9 for 
single-image input.

Three-branch architecture
Mix Transformer Branch (MTB). In order to stabilize the performance during training so as to facilitate the 
integration with other branches, we constructed the MTB as shown in Fig. 3a. In order to improve the consistency 
of the convergence speed of the training parameters in each branch of Treble-Former, we add GroupNormal as 
a normal layer before the linear layer, which can stabilize the performance and reduce the effect of batch size 
on the model, and ultimately make it easier for MTB to integrate with the other branches to become a powerful 
network. In addition, both polyp and background features should be concerned in polyp segmentation. There-
fore, we use SiLu as the activation function, which can better preserve both polyp and background features in 
each feature map.

Pyramid transformer branch (PTB). In order to maintain the complementarity of the features in Fig. 1, 
we retain some of the structures in FCB-Former. Since the Transformer Branch in FCB-Former uses PVTv2 as 
the backbone, and PVTv2 uses convolutional layers instead of the linear layers of the traditional Transformer, 
PVTv2 is able to capture the information of the polyp boundaries when sensing the global field of view as well 
as CNN. So we remove the full convolutional branch of FCB-Former and keep the Transformer Branch as the 
PTB in Treble-Former.

Swin transformer branch (STB). In order to make the STB output different features from the first two 
branches, we adopt  DoubleUNet55 as the structure of the STB. DoubleUNet has good feature fusion capability on 
a network with UNet as the encoder. Since Swin  Transformer56 does not use a convolutional layer, the improve-
ment of the extraction ability of features on the details of colon polyps can be realized by combining VGG19 
with a stacked 3 × 3 convolution. Therefore, we fused the  SwinUNetR57 equipped with Swin Transformer with the 
UNet equipped with VGG19 for coarse and fine features by using the structure of DoubleUNet.

Multi-head control ensemble
Multi-head control ensemble (MHC Ensemble). As shown in Fig. 3b, three branches output branching features. 
In order to fuse the complementary branch features, the branch outputs are cascaded step by step through the 
RB module and LB module of FCB-Former. In addition, multi-loss function supervises and multi-head output 
Ensemble are also performed on the results of multi-head output, and this whole process is collectively called 
Multi-Head Control Ensemble.

Multi-loss function supervises. In the problem of binary classification of polyp and background, we expect 
the deep model to learn the polyp and background features while paying more attention to the representative 

Figure 3.  (a) The architecture of Mix Transformer Branch. (b) The architecture of Multi-Head Control 
Ensemble.
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features of the polyp. Therefore, we then chose the combination of the cross entropy loss function (CE loss), which 
pays attention to the background and polyps, and the Dice loss function, which pays attention to the polyps only, 
as the loss function supervised training for each output header.

Multi-head output Ensemble. In order to complement the output results in the multi-head output, we first 
empirically categorize the five multi-head outputs in Fig. 3b into three categories according to performance from 
highest to lowest: ( α ) MTB concatenated PTB concatenated STB’s output head; ( β ) MTB’s output header and 
the output header after PTB concatenate STB; and ( γ ) the output header of PTB and STB. In order to take into 
account, the performance differences of each output head in a specific case, when integrating the output results 
of multiple output heads, the definition of weights will be based on the specific division of weights according to 
the mDice coefficients, the evaluation indexes of each output head on the validation set.

where J ∈ {α, (α + β), (α + β + γ )} . d denotes the evaluation index mDice corresponding to the corresponding 
output head. Outputhead i denotes the output result of the output head. The mDice coefficients corresponding 
to each class in J are Softmaxed and then accumulated to generate the ensemble weights Whead . The weights are 
weighted and summed with the outputs of the header Outputhead i to generate the integrated prediction result 
OutputEns.

SDBH-PSO
Since the global optimal solution before iteration in the real-time ensemble task is not necessarily the global 
optimal solution in this epochs, there is a need to prevent the optimal particle from being a local optimal solution. 
Therefore, it is necessary to initialize the particles that are too close to the optimal particles when the whole is 
too aggregated. The degree of proximity of each particle to the optimal particle is defined by Pearson’s correlation 
 coefficient58, and the overall aggregation of particles is defined by Renxoa Wan’s aggregation coefficient C(k)59.

where C(k) is the aggregation degree of the particle population in the kth generation and n is the popula-
tion size. Since the iterations are all relatively homogeneous and may lead to excessive oscillations in particle 
aggregation in later iterations, an adaptive function θ(k) controlled by a nonlinear function is added to assess 
the degree of particle  overlap59. Whether the particles have a tendency to fall into local optimum is judged by 
H · θ(k) < C(k) · simj , where H is a constant used for adjustment. Through many experiments, it is found that 
SDBH-PSO has the best effect on weight adjustment when H is taken around 3.

Where kmax is the maximum number of iterations and k is the current number of iterations. s is an exponential 
factor. We set s = 1.0 , �max = 0.9 , �min = 0.4 in our experiments, while the adjustable inertia parameter in Eqs. 
(1) is also set to 0.9− 0.5(k \ kmax)

2 with reference to the nonlinear tuning method.
The potential global optimal point is usually within a certain distance from the current optimal point, and 

we found that in our task, the variation of the distance between the previous generation global optimal point 
and the next generation is roughly concentrated in the range of [0.04, 0.23] through analysis. The strategy of 
RBH-PSO60 to search for the potential global optimum is used to randomly select a point within a certain range 
as the location of the potential optimum x̃id . Compared to the RBH-PSO in which the radius ζ = 0.01 is taken 
as the range, the global optimum solution of the real-time ensemble is subjected to the influence of the model 
training and has a large variation. So, the search for potential optimal solutions needs to be expanded. There-
fore, the position of the particle to be reset is placed into the black hole combined with randomizing the initial 
velocity to ṽid0 for resetting.

where ζ is randomly derived from a uniform distribution over the interval [−ξ , ξ ] , and ξ is taken as 0.1. Rand 
is a random number in the range [0, 1], xid max and xid min are the upper and lower bounds of the search space, 
and Gaussian(µ, σ 2) is a Gaussian function. We set σmax = 1.0 and σmin = 0.1.

(3)Whead =
∑I

i Softmax(dj)

(4)OutputEnsemble =
∑I

i (Outputhead i ·Whead i)

(5)simi =
Cov(Xid , Pgd)√

Var(Xid)
√

Var(Pgd)

(6)C(k) =
n∑

j=1

simj∑n
i=1 simi

simj

(7)θ(k) =
(
kmax − k

kmax

)s

· (�max − �min)+ �min

(8)x̃id(t + 1) = Pgd + ζ

(9)ṽid0 = (vidmax − vidmin) · Pgd · rand · Gaussian(µ, σ 2)

(10)σ = (σmax − σmin) ·
k

K
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Similarity degree black hole PSO can be summarized simply in Algorithm 1.

Algorithm 1.  SDBH-PSO algorithm 

SDBH-PSO ensemble
We use the ensemble weights as the positions of the particles in SDBH-PSO, and the mDice coefficients achieved 
by the Ensemble Learning outputs as the fitness of the particles in the validation set, and achieve the optimal 
allocation of the ensemble weights to the validation set through the SDBH-PSO algorithm: every ten epochs. 
In addition, the initial learning rate is 0.001, and the learning rate is adjusted with the strategy that the learning 
rate decreases to half if the Dice coefficient has not improved for five consecutive generations on the validation 
set. When the learning rate of all sub-models has decreased an equal number of times, the weights of Ensemble 
Learning are optimized by the SDBH-PSO Ensemble algorithm. The sub-models with weights less than or equal 
to 0 are marked. When the sub-model has been labeled 3 times, the learning rate corresponding to the learning 
rate adjustment strategy is already very low, so even if we continue to train this sub-model, it will not improve 
much, so we choose to eliminate it.

Regarding parameter configurations, the SDBH-PSO Ensemble performs five iterations for every ten epochs, 
utilizing 50 particles per iteration. Where the iterative process is the same. The running speed of the SDBH-PSO 
Ensemble, which optimizes parameters via validation sets, is contingent upon the size of this set. Specifically, for 
a validation set of 100 images, the iteration time per generation is approximately one minute. Conversely, if the 
validation set contains 61 images, the iteration time is reduced to around 35 s.

In contrast to other semantic segmentation that Ensemble Learning performs Ensemble by best sub-model, 
SDBH-PSO Ensemble performs real-time ensemble every ten epochs during the training process. The SDBH-
PSO Ensemble’s best ensemble model’s checkpoint of the SDBH-PSO Ensemble is not necessarily the checkpoint 
of the best sub-model, we perform the final ensemble of the best ensemble model with the best sub-model, and 
the final ensemble is defined as follows.

where Lrt is the output of the best real-time ensemble model, Lsubi is the output of the best sub-model, Wrt is the 
weight hyperparameter of the best real-time ensemble model, Wrt = 0.5 , Wsubi is the weight hyperparameter of 
each best sub-model, Wsubi = 0.5 \ Ĩ  , and Ĩ  is the weight hyperparameter of each sub-model filtered by SDBH-
PSO according to different data sets. LDET−Former is the final output of SDBH-PSO Ensemble.

Experiments
Dataset
The following datasets are used in this paper: the  Kvasir61, CVC-ClinicDB62, CVC-ColonDB63, ETIS-Larib-
PolypDB1 and  PolypGen64. The PolypGen comes from 6 unique centers suitable for Generalisation testing com-
pared to other datasets. The information of the datasets is shown in Table 1. Due to the different image sizes 
of different datasets, we scale all the sizes to 352× 352 and set the batch size to 4. In this paper, we combine 
ESFPNet, SS-Former, and an analytical paper illustrating the effect of polyp segmentation dataset enhancement 
on  segmentation66, and choose random flip, scale, rotate, as well as random expansion and erosion as the data 
augmentation operations.

Evaluation metrics
Almost all of the colon polyp segmentation papers adopt the mDice coefficient and the mIoU coefficient as the 
evaluation performance metrics to measure segmentation accuracy. Furthermore, we choose the 95th percentile 
of the asymmetric Hausdorff distance (HD95) as a performance metric for the boundary of interest. mDice, mIoU 
and HD95 are calculated using the following formulae:

(11)LDET−Former = Wrt · Lrt +
∑Ĩ

i (Wsubi · Lsubi )

Table 1.  The most commonly used public dataset for polyp segmentation.

Dataset Kvasir ClinicDB ColonDB ETIS-LaribPolypDB PolypGen

Images 1000 612 380 196 1537

Object of ratio 0.79–62.13% 0.34–45.88% 0.30–63.15% 0.11–29.05% _

Input size Variable 384× 288 574× 500 1225× 966 Variable
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where nii denotes the number of real numbers and is predicted to be j and k is the category of polyp and back-
ground (polyp abbreviated as P and background abbreviated as B). nii is the number of correctly predicted values, 
and nij and nji denote the false positives and false negatives respectively. The one-way Hausdorff distances d(X, Y) 
measure how far the predicted results are from the actual results and d(Y, X) as well as vice versa.

Regarding the evaluation of the success of polyp categorization without calculating the background, we choose 
Dice, which is formulated as follows:

Compare experiment
In the compare experiment of DET-Former, we use UNet, UperNet and DoubleUNet as the base networks and 
SS-Former, FCB-Former, ESFPNet, HarDNet-DFUS65 amd Nanni’s Ens (Nanni et al67. proposed Ens1) as the 
comparison models. Experiments were conducted on five datasets: Kvasir, CVC-ClinicDB, CVC-ColonDB, ETIS-
LaribPolypDB, and PolypGen. Each model was trained for 100 epochs, and the optimal values of the evaluation 
metrics were documented. The metrics of each model that differ most from DET-Former are taken for t-test 
statistical analysis and the p-value is generated. The results of tests using different datasets or data sources were 
more closely aligned with clinical scenarios and were selected to generate visual segmentation maps.

An article on polyp segmentation pointed out that it is difficult for a single network to make accurate pre-
dictions in many  situations20. As shown in Table 2, excluding DET-Former and Nanni’s Ens, no single network 
consistently emerged as optimal across different datasets, reinforcing the challenge of achieving robust per-
formance in colon polyp segmentation when faced with dataset variability. The models’ learning abilities were 
evaluated by training and testing them on identical datasets. In experiments where Kvasir and CVC-ClinicDB 
were used for training and testing, the performance metrics of DET-Former exceeded those of the compara-
tor models, highlighting its superior learning capabilities. However, the results of statistical analyses show that 
DET-Former cannot significantly outperform some networks in terms of learning ability. DET-Former and 
Nanni’s Ens outperformed individual networks regarding Dice, mDice and mIoU metrics. These results suggest 
that the strategy of multi-model ensemble is expected to solve the problem of unstable learning ability of a single 
network on different data.

As shown in Table 3, DET-Former’s evaluation metrics - Dice, mDice and mIoU - show superiority over 
other models on the ETIS-LaribPolypDB and CVC-ColonDB datasets, suggesting superior generalisation ability. 
Statistical analysis reveals that DET-Former significantly outperforms other models on the ETIS-LaribPolypDB 
dataset, except FCB-Former and Nanni’s Ensemble. However, this significant advantage is not evident when 
analysing the CVC-ColonDB dataset. Among them, CVC-ClinicDB and CVC-ColonDB were used to form CVC-
EndoSceneStill68 in the MICCAI2015  challenge69. The significant difference between DET-Former and the com-
parison model is larger in ETIS-LaribPolypDB and CVC-ColonDB. To better analyse whether the generalisation 

(12)mDice =
1

2

k∈(P,B)∑

i

2× nii∑k
j nij +

∑k
j nji

(13)mIoU =
1

2

k∈(P,B)∑

i

nii∑k
j nij +

∑k
j nji − nii

(14)HD95 = max
k95%

[d(X,Y), d(Y ,X)]

(15)Dice =
2× nPP∑k

j nPj +
∑k

j njP

Table 2.  The test results of the compare study in Kvasir and CVC-ClinicDB.

Train/Val Kvasir 80%/10% CVC-ClinicDB 80%/10%

Test Kvasir 10% CVC-ClinicDB 10%

Metric Dice mDice mIoU p Dice mDice mIoU p

UNet 0.814 0.857 0.822 < 0.05 0.871 0.87 0.876 < 0.05

UperNet 0.855 0.884 0.861 < 0.05 0.882 0.913 0.886 < 0.05

Double-UNet 0.794 0.824 0.797 < 0.05 0.832 0.841 0.841 < 0.05

SS-Former 0.898 0.940 0.896 < 0.05 0.923 0.958 0.929 < 0.05

FCB-Former 0.901 0.942 0.904 0.15 0.944 0.969 0.945 0.26

ESFPNet 0.896 0.938 0.898 < 0.05 0.945 0.971 0.946 0.41

Nanni’s Ens 0.916 0.948 0.912 0.35 0.946 0.973 0.949 0.69

HarDNet-DFUS 0.908 0.943 0.905 0.18 0.943 0.969 0.944 0.21

DET-Former 0.923 0.954 0.924 _ 0.953 0.975 0.953 _
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ability of DET-Former can be significant due to the comparison model, we performed generalisation experiments 
on the multi-centre PolypGen.

Tables 4 and 5 shows the performance of DET-Former on the PolypGen multi-centre dataset. DET-Former 
shows a significant improvement over competing models in centres C1 and C4. However, its performance advan-
tage is less pronounced in centres C2, C3, C5 and C6, where it outperforms only some models. Although DET-
Former exhibits superior generalisation capabilities on the multi-centre PolypGen dataset, it does not achieve 
significant dominance in all centres. To further investigate the limitations of DET-Former’s generalisation ability 
in certain centres, we analyse this in conjunction with the visual segmentation results in Fig 4. Figure 4c shows 
a decrease in the segmentation accuracy of DET-Former, especially in cases where different networks produce 
different false-negative segmentations. This problem arises because the DET-Former ensemble has multiple 
sub-models, and the false negatives from these sub-models are variable, especially in complex scenarios such as 

Table 3.  The test results of the compare study in ETIS-LaribPolypDB and CVC-ColonDB.

Train/Val Kvasir and CVC-ClinicDB 90%/10%

Test ETIS-LaribPolypDB CVC-ColonDB

Metric Dice mDice mIoU p Dice mDice mIoU p

UNet 0.668 0.798 0.741 < 0.05 0.704 0.842 0.775 < 0.05

UperNet 0.671 0.804 0.774 < 0.05 0.714 0.833 0.786 < 0.05

Double-UNet 0.633 0.795 0.760 < 0.05 0.631 0.801 0.743 < 0.05

SS-Former 0.802 0.894 0.856 < 0.05 0.789 0.882 0.836 0.18

FCB-Former 0.803 0.899 0.861 0.09 0.792 0.887 0.839 0.42

ESFPNet 0.793 0.891 0.849 < 0.05 0.794 0.892 0.843 0.51

Nanni’s Ens 0.806 0.903 0.863 0.32 0.795 0.891 0.843 0.56

HarDNet-DFUS 0.748 0.862 0.821 < 0.05 0.746 0.861 0.817 < 0.05

DET-Former 0.825 0.910 0.873 _ 0.798 0.894 0.851 _

Table 4.  The test results of the compare study in polypGen.

Train/Val (C2, C3, C4, C5, C6) 90%/10% (C1, C2, C4, C5, C6) 90%/10% (C1, C2, C4, C5, C6) 90%/10%

Test C1 C2 C3

Metric Dice mIoU HD95 p Dice mIoU HD95 p Dice mIoU HD95 p

UNet 0.737 0.805 35.62 < 0.05 0.714 0.785 36.42 < 0.05 0.742 0.812 34.18 < 0.05

UperNet 0.818 0.853 23.05 < 0.05 0.806 0.832 28.54 < 0.05 0.820 0.856 21.64 < 0.05

Double-UNet 0.672 0.749 43.23 < 0.05 0.658 0.726 53.12 < 0.05 0.682 0.762 39.54 < 0.05

SS-Former 0.837 0.865 18.39 < 0.05 0.820 0.874 19.87 0.26 0.894 0.910 9.08 0.09

FCB-Former 0.848 0.875 17.65 < 0.05 0.803 0.862 23.32 0.08 0.902 0.916 9.06 0.20

ESFPNet 0.846 0.873 17.92 < 0.05 0.836 0.881 18.09 0.69 0.898 0.912 9.33 0.11

HarDNet-DFUS 0.831 0.867 18.82 < 0.05 0.813 0.869 21.67 0.19 0.852 0.879 12.61 < 0.05

DET-Former 0.872 0.894 12.91 _ 0.843 0.886 17.37 _ 0.912 0.922 7.63 _

Table 5.  The test results of the compare study in polypGen.

Train/Val (C1, C2, C3, C5, C6) 90%/10% (C1, C2, C3, C4, C6) 90%/10% (C1, C2, C3, C4, C5) 90%/10%

Test C4 C5 C6

Metric Dice mIoU HD95 p Dice mIoU HD95 p Dice mIoU HD95 p

UNet 0.491 0.697 69.50 < 0.05 0.520 0.701 58.23 < 0.05 0.713 0.798 33.70 < 0.05

UperNet 0.671 0.784 40.85 < 0.05 0.594 0.751 50.00 < 0.05 0.783 0.853 27.57 < 0.05

Double-UNet 0.367 0.615 99.86 < 0.05 0.509 0.677 59.68 < 0.05 0.617 0.733 50.81 < 0.05

SS-Former 0.597 0.750 53.72 < 0.05 0.672 0.790 38.09 0.23 0.835 0.883 17.74 0.85

FCB-Former 0.647 0.783 46.31 < 0.05 0.698 0.798 31.54 0.52 0.830 0.876 19.95 0.65

ESFPNet 0.616 0.763 51.40 < 0.05 0.645 0.774 40.99 < 0.05 0.836 0.885 12.76 0.98

HarDNet-DFUS 0.682 0.790 41.90 < 0.05 0.652 0.779 38.21 < 0.05 0.831 0.877 17.26 0.73

DET-Former 0.729 0.826 33.04 _ 0.710 0.809 31.19 _ 0.843 0.886 19.38 _
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the independent distribution of multiple polyps. The complexity of these divergent false-negative segmentations 
poses a significant challenge for ensemble learning in colon polyp segmentation. Conversely, false-positive seg-
mentations are less frequent and tend to occur sporadically across models, as shown in Fig. 4a, b. DET-Former is 
an ensemble learning structure that can optimise the false-positive results of individual false-positive segmenta-
tion models through multiple sub-models. Thus, ensemble learning has advantages in false-positive segmentation. 
In the future, more effective balancing of false-negative and false-positive results in ensemble learning needs to 
be achieved to address the problem of false negatives in colon polyp segmentation.

Model ensemble experiment
In the model ensemble experiments, the optimal sub-model of the previous compare experiments of DET-Former 
on Kvasir and CVC-ClinicDB datasets is chosen as the sub-model of the model ensemble experiments. Then to 
measure the effectiveness of the improvement, we choose the RBH-PSO algorithm and CSPSO algorithm, which 
are the closest to SDBH-PSO, as well as the classical PSO algorithm and weight averaging as the BASELINE 
algorithm to adjust the weights of the ensemble model. The weight optimization results are shown in Table 6.

As shown in Table 6, under the CVC-ClinicDB data, the results of the outputs of various strategies are basi-
cally the same, and it can be seen that the method of improving the ensemble effect through weight optimization 
is not applicable to all cases. Even so, by comparing Table 2, it can be seen that compared with single network 
segmentation, the ensemble learning improves the segmentation accuracy greatly. As shown in Table 7, It is worth 
noting that the superiority of PSO over RBH-PSO and CSPSO under the Kvasir dataset also indicates that not 
all of the proposed improved algorithms based on the PSO algorithm are well suited for the ensemble task of the 
colon polyp segmentation network. While our ensemble model does not demonstrate statistically significant 
superiority in performance compared to the comparison method, the ensemble model of our method eliminates 

Table 6.  The results of comparison with other weight optimization algorithms in CVC-ClinicDB.

Ensemble strategy

CVC-ClinicDB

Weight Dice mIoU p

Average weight [0.17, 0.17, 0.17, 0.17, 0.17, 0.17] 0.952 0.952 0.95

Base PSO [0.21, 0.09, 0.17, 0.34, 0.00, 0.19] 0.951 0.951 0.90

Base CS–PSO [0.34, 0.23, 0.43, −  0.14, 0.45, 0.26] 0.951 0.952 0.93

Base RHB–PSO [0.28, 0.22, − 0.10, 0.24, 0.36, 0.04] 0.951 0.950 0.83

Our [0.16, 0.03, 0.46, _ , 0.44, 0.05] 0.953 0.953 _

Table 7.  The results of comparison with other weight optimization algorithms in Kvasir.

Ensemble strategy

Kvasir

Weight Dice mIoU p

Average weight [0.17, 0.17, 0.17, 0.17, 0.17, 0.17] 0.908 0.909 0.19

Base PSO [0.23, 0.60, − 0.15, 0.85, 0.08, −  0.61] 0.910 0.911 0.25

Base CS–PSO [0.44, 0.97, 0.06, 1.20, −  1.08, −  0.74] 0.907 0.908 0.16

Base RHB–PSO [−  0.32, 0.85, 0.01, 0.52, 0.21, −  0.28] 0.904 0.907 0.13

Our [0.39, 0.22, −  0.21, 0.68, _ , −  0.15] 0.923 0.924 _

Figure 4.  Visual segmentation results. (From top to bottom, there are CVC-ColonDB, ETIS-LaribPolypDB, and 
PolypGen datasets).
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the sub-models and improves the performance instead of degrading it. Despite utilizing only five-sixths of the 
model usage compared to the comparative methods, our method maintains performance levels. This suggests that 
the proposed SDBH-PSO Ensemble based on the polyp segmentation task is better than PSO weight optimization 
with average weights, which verifies that our improvement is suitable for this task.

To further explore the effectiveness of the sub-modeling strategy of SDBH-PSO Ensemble eliminated sub-
models, we engage the eliminated sub-models in real-time ensemble, and their ensemble weights computed by 
SDBH-PSO for every ten epochs are shown in Fig. 5.

As shown in Tables 6 and 7, the 5th sub-model is eliminated on the Kvasir dataset and the 4th sub-model is 
eliminated on the CVC-ClinicDB dataset. As shown in Fig. 5, the sub-model eliminated on the Kvasir dataset is 
eliminated by the SDBH-PSO Ensemble strategy at epoch 60. The sub-model eliminated on the CVC-ClinicDB 
dataset is eliminated at epoch 70. On the Kvasir dataset, SDBH-PSO Ensemble improved performance by filter-
ing out models that were not suitable for ensemble. On the CVC-ClinicDB dataset, the elimination of the sub-
models filtered out by the SDBH-PSO Ensemble does not improve the performance, but also does not degrade 
the overall performance.

The experiments verify the ability of SDBH-PSO Ensemble to select sub-models and the effectiveness of sub-
model selection by eliminating sub-model strategy. A review article pointed out that model selection is a major 
challenge for ensemble  learning30. It is believed that the ensemble method is not only applicable to colon polyp 
segmentation, but also can realize adaptive sub-model selection for different datasets by pairing with suitable 
sub-models in other tasks.

Feature fusion experiments
In the feature fusion experiments, since the ability of feature extraction and fusion can be better demonstrated 
on datasets that have never been involved in training, we train and validate on Kvasir and CVC-ClinicDB data-
sets and test on CVC-ColonDB and ETIS-LaribPolypDB datasets, and the results of the tests are shown in Fig. 6 
and Table 8.

As shown in Table  8, the outputs of STB, PTB and MTB after fusion are better for STB+PTB and 
STB+PTB+MTB than STB, PTB and MTB before fusion, and the segmentation performance is further improved 
after integration. As shown in Fig. 6, the visualization of the features by heat map shows that the features extracted 
from different branches are quite different, and along with the feature fusion, the output results appear to be 
improved accordingly. Our ensemble strategy successfully compensates for the different branch segmentation 
defects. In this case, Treble-Former is used to fuse multiple branches and ensemble multiple output heads through 
MHC Ensemble, so the ensemble output results are the output results of Treble-Former.

Through Fig. 6 and Table 8, it can be seen that no branch in STB, PTB and MTB can perform the segmenta-
tion ability stably, but through feature fusion, the boundary features of the polyps become more obvious, which 
further compensates for the deficiency of some branches after weighted ensemble. Statistical analyses reveal 
that the MHC Ensemble significantly surpasses the branch STB only after the fusion of multi-branch advanced 
features on the CVC-ColonDB dataset. However, it significantly outperforms all three branches prior to fusion on 
the ETIS-LaribPolypDB dataset. These findings underscore the MHC Ensemble’s capacity to leverage advanced 
semantic features effectively. High-level semantic features are more appropriate for the model to perform  better12. 
Our research confirms that this improvement extends to colon polyp segmentation. As artificial intelligence 
progresses, we anticipate the introduction of more sophisticated backbones and networks that will surpass the 
performance of current models such as PvTv2, Mix Transformer, Double UNet, and FCB-Former. The MHC 

Figure 5.  The green line indicates the ensemble weights of the sub-models retained during training under 
the SDBH-PSO calculation. The yellow line indicates that the training was stopped after setting the sub-model 
weights to zero, where the mean intersection and union set (mIoU) of the real-time ensemble models are shown 
around the corresponding points.
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Ensemble, which performs layer-by-layer fusion of advanced semantic features on them, will continue to exist 
as a reference value.

Conclusion
In this study, we propose a novel Dual Ensemble System with Treble Transformer (DET-Former). The system 
first constructs a multi-branch ensemble network Treble-Former with three different Transformers. Then, to 
improve the stability under different datasets, we propose DET-Former with SDBH-PSO Ensemble structure. 
Among them, the Treble-Former’s approach, which employs a multi-branch, layer-by-layer fusion of high-level 
semantic features, represents a promising direction for developing more accurate segmentation models in the 
future. Meanwhile, DET-Former maintains stable, high-performance segmentation relative to other networks, 
suggesting that ensemble learning is expected to solve the problem of unstable performance of a single network 
on different colon polyp datasets. In addition, experimental evidence shows that the SDBH-PSO ensemble can 
adaptively select sub-models during training, providing valuable insights into model selection for ensemble 
learning.

Data availability
 The datasets used in this study are publicly available at: Kvasir-SEG: https:// datas ets. simula. no/ kvasir- seg/. 
CVC-ClinicDB: https:// polyp. grand- chall enge. org/ CVCCl inicDB/. ETIS-LaribpolypDB: https:// drive. google. 
com/ drive/ folde rs/ 10QXj xBJqC f7PAX qbDvo ceWmZ- qF07t Fi? usp= share_ link. CVC-ColonDB: https:// drive. 
google. com/ drive/ folde rs/1- gZUo1 dgsdc WxSdX V9OAP mtGEb wZMfDY? usp= share_ link.

Code availability
We want to clarify that all codes employed for data analysis, including training, validation, testing, and the trained 
colonic polyp segmentation networks, have been separately at https:// github. com/ xucun cun/ Dual- Ensem ble- 
System- with- Treble- Former and https:// github. com/ xucun cun/ Treble- Former.

Table 8.  The performance of different branches in Treble-Former.

Output head

CVC-ColonDB ETIS-LaribPolypDB

Dice mIoU p Dice mIoU p

STB 0.632 0.713 <0.05 0.540 0.640 <0.05

PTB 0.776 0.833 0.66 0.796 0.856 <0.05

MTB 0.785 0.836 0.76 0.753 0.814 <0.05

STB+PTB 0.783 0.835 0.72 0.802 0.857 0.08

STB+PTB+MTB 0.786 0.837 0.79 0.807 0.858 0.17

MHC ensemble 0.794 0.843 _ 0.821 0.868 _

Figure 6.  Feature heat maps of the five branches with the segmentation results of the corresponding branches. 
The results after multi-output ensemble by MHC Ensemble are shown as red clippings pointing to.

https://datasets.simula.no/kvasir-seg/
https://polyp.grand-challenge.org/CVCClinicDB/
https://drive.google.com/drive/folders/10QXjxBJqCf7PAXqbDvoceWmZ-qF07tFi?usp=share_link
https://drive.google.com/drive/folders/10QXjxBJqCf7PAXqbDvoceWmZ-qF07tFi?usp=share_link
https://drive.google.com/drive/folders/1-gZUo1dgsdcWxSdXV9OAPmtGEbwZMfDY?usp=share_link
https://drive.google.com/drive/folders/1-gZUo1dgsdcWxSdXV9OAPmtGEbwZMfDY?usp=share_link
https://github.com/xucuncun/Dual-Ensemble-System-with-Treble-Former
https://github.com/xucuncun/Dual-Ensemble-System-with-Treble-Former
https://github.com/xucuncun/Treble-Former
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