
1

Vol.:(0123456789)

Scientific Reports | (2024) 14:6420 | https://doi.org/10.1038/s41598-024-56259-z

www.nature.com/scientificreports

Defense against adversarial
attacks: robust and efficient
compressed optimized neural
networks
Insaf Kraidia 1*, Afifa Ghenai 1 & Samir Brahim Belhaouari 2*

In the ongoing battle against adversarial attacks, adopting a suitable strategy to enhance model
efficiency, bolster resistance to adversarial threats, and ensure practical deployment is crucial. To
achieve this goal, a novel four-component methodology is introduced. First, introducing a pioneering
batch-cumulative approach, the exponential particle swarm optimization (ExPSO) algorithm
was developed for meticulous parameter fine-tuning within each batch. A cumulative updating
loss function was employed for overall optimization, demonstrating remarkable superiority over
traditional optimization techniques. Second, weight compression is applied to streamline the deep
neural network (DNN) parameters, boosting the storage efficiency and accelerating inference. It also
introduces complexity to deter potential attackers, enhancing model accuracy in adversarial settings.
This study compresses the generative pre-trained transformer (GPT) by 65%, saving time and memory
without causing performance loss. Compared to state-of-the-art methods, the proposed method
achieves the lowest perplexity (14.28), the highest accuracy (93.72%), and an 8 × speedup in the
central processing unit. The integration of the preceding two components involves the simultaneous
training of multiple versions of the compressed GPT. This training occurs across various compression
rates and different segments of a dataset and is ultimately associated with a novel multi-expert
architecture. This enhancement significantly fortifies the model’s resistance to adversarial attacks
by introducing complexity into attackers’ attempts to anticipate the model’s prediction integration
process. Consequently, this leads to a remarkable average performance improvement of 25% across
14 different attack scenarios and various datasets, surpassing the capabilities of current state-of-the-
art methods.

Keywords  Adversarial attacks, Generative pre-trained transformer (GPT), Compression, Multi expert

In the ever-evolving landscape of cybersecurity, where digital communication plays a pivotal role, adversarial
attacks have expanded to encompass traditional vectors with more insidious and sophisticated methods. One
such intriguing facet is the realm of adversarial black box text attacks, in which the attacker lacks access to the
internal workings or parameters of the target neural network (NN) models1. Defending against black-box attacks
poses a formidable challenge, primarily due to defenders’ limited access to the inner parameters of the target NN
model2. Nonetheless, researchers have proposed various defense approaches to improve the robustness of natural
language processing (NLP) models and mitigate the impact of attacks. Some of these defense techniques include
adversarial training3, which incorporates adversarial examples into the training data; defensive distillation4,
which adds an extra layer of protection by training a different model; input transformation5, which uses random
resizing, rotations, and crops; and ensemble methods6, which combine multiple models.

However, these defense approaches have their drawbacks. Strengthening defense approaches can sometimes
reduce the accuracy of clean data and may not generalize well to unseen or sophisticated attacks7. Additionally,
they often necessitate additional computations during training or inference, which can significantly increase
computational complexity8, leading to longer training times and slower real-time deployment9. Specifically,
approaches such as ensemble methods or defensive distillation can require the storage of multiple models or
intermediate data, which increases memory usage10,11. Consequently, we are searching for adversarial attack

OPEN

1LIRE Laboratory, University of Constantine 2 - Abdelhamid Mehri, Ali Mendjeli Campus, 25000 Constantine,
Algeria. 2Division of Information and Computing Technology, College of Science and Engineering, Hamad Bin
Khalifa University, Ar‑Rayyan, Qatar. *email: insaf.kraidia@univ-constantine2.dz; sbelhaouari@hbku.edu.qa

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-56259-z&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2024) 14:6420 | https://doi.org/10.1038/s41598-024-56259-z

www.nature.com/scientificreports/

protection techniques that enhance NN models and enable the smooth integration of machine learning models
into real-world applications.

As shown in Fig. 1, attackers often query the target model repeatedly to acquire the necessary information for
optimizing their strategy. Many attacks rely on a searching algorithm (e.g., greedy or genetic) to iteratively replace
each character/word in a sentence with a perturbation candidate to optimize the choice of characters/words and
how they should be crafted to attack the target model. Even though this process is effective in terms of attack
performance, they assume that the model’s parameters remain “unchanged” and that the model outputs “coher-
ent” signals during the iterative search. However, our essential intuition is to obfuscate attackers by violating
this assumption. Specifically, we want to develop an algorithm that automatically utilizes diverse models during
inference. This can be done by training a stochastic multi-expert approach enhancing the deep neural network
model, particularly the generative pre-trained transformer, by exclusively modifying its final layer. This modifica-
tion transforms the model into an ensemble of multiple expert predictors associated with stochastic weights12.

However, despite the advantage of enhanced accuracy, this method may not fully capture the diversity of
predictions. When consistently selecting the single best performing architecture, there is a potential risk that
the model may not sufficiently diversify its predictions13. A limited range of model outputs could restrain its
ability to uncover new insights or handle unexpected data patterns. To address these challenges, we developed an
innovative adversarial defense methodology. Our methodology introduces a stochastic multi-expert approach,
combining the outputs of expert architectures within each head and averaging them to generate more balanced
and robust predictions. To enhance the ability of the model to generalize across diverse scenarios and data dis-
tributions in an adversarial environment, we create multiple model variants instead of depending on a single
base model. To obfuscate the attackers more, base models employ distinct compression settings and undergo
training on randomly selected and diverse portions of the dataset. Adopting a random selection method among
the base model versions for making final predictions introduces an element of unpredictability into the model’s
decision-making process, making it more challenging for adversaries to craft effective adversarial examples.

Concerning the temporal and memory constraints of defensive models, researchers have focused their efforts
on compressing the PLMs within textual defense models14–16. Most of the existing research in this domain has
focused primarily on optimizing encoder-based or decoder-based models, such as QuantGPT17, KnGPT18, and
SparseGPT19. However, certain compression techniques are tailored to specific pre-trained language model archi-
tectures. For instance, the KnGPT technique is explicitly designed for GPT-2. Applying this approach to other
GPT versions or models does not yield the same benefits. On the other hand, some techniques, such as Quant-
GPT, provide compression methods that efficiently reduce computational resource requirements but impact
the model’s performance and generality. Conversely, techniques such as KnGPT and SparseGPT do not affect
performance but require significant computational resources for the compression process. To address resource
challenges, we present a novel smart compression approach to alleviate computational demands, encompassing
decoder and encoder-based PLMs and DNNs. Furthermore, we propose a novel batch approach that integrates
ExPSO to consolidate the model performance during the compression process. This integration accelerates con-
vergence and mitigates the risk of encountering local optima. Our contributions can be summarized as follows:

Figure 1.   The process of black-box adversarial attacks. Attackers assemble a dataset of input texts and
their correct labels from the target model. Subsequently, they iteratively submit these texts to the black-
box model, observe outputs, and generate adversarial examples. Techniques such as genetic algorithms,
transfer-based attacks, or optimization algorithms are often employed to craft adversarial examples that cause
misclassifications.

3

Vol.:(0123456789)

Scientific Reports | (2024) 14:6420 | https://doi.org/10.1038/s41598-024-56259-z

www.nature.com/scientificreports/

–	 We propose a new approach for DNNs that efficiently defends against 14 adversarial attacks and assesses its
effectiveness using three public datasets.

–	 We introduce a novel compression approach designed for differentiable decoder-based and encoder-based
pre-trained language models (PLMs) and assess its effectiveness using GPT.

–	 To the best of our knowledge, the research presented in this paper is the first work to integrate ExPSO with
a compression technique to optimize DNN parameters.

–	 We develop a novel, effective batch approach for enhancing DNN performance.

The rest of the paper is organized as follows. We provide related work in the “Related work” section. We
present our methodology in “The proposed methodology” section. We describe the experiments, results, and
discussion in the “Experimental evaluation” section. Finally, we conclude in the “Conclusion” section.

Related work
In the Blackbox attack, the generated adversarial examples can be categorized into three major types based on
the level at which the attacker manipulates the input text20: character-level attacks, which manipulate individual
characters or introduce new examples for model confusion; word-level attacks, which perturb individual words
in the text using synonyms or antonyms to alter the text’s sentiment and meaning; and sentence-level attacks,
which involve rearranging word order, adding irrelevant information, negating original statements, or revers-
ing their intended meaning21. Table 1 provides more detailed information on the attack models involved in the
OpenAttack framework22 and outlines their main concepts. Moreover, Table 2 illustrates how each adversarial
text attack can manipulate text inputs to deceive NLP models.

In the realm of defending against adversarial attacks, different techniques have introduced a spectrum of
enhancements. A variation of the ensemble baseline known as diversity training (DT) was created, in which
a regularization component was added to enhance the alignment of gradient vectors among sub-models and
encourage a wider range of expertise4. By emphasizing the diversification of each sub-model competence at the
class level inside the ensemble baseline, adaptive variety promotion (ADP) further contributed to the enhance-
ment of variety, particularly in nonmaximal predictions6. Conversely, mixup training aims to increase the model’s
flexibility in response to linear transformations between continuous embeddings of the training data36. To maxi-
mize the negative log-likelihood loss on both the initial training data and adversarial inputs, adversarial training
(AdvT) uses semi-supervised learning, which improves model robustness37. To ensure the model’s resilience
against adversarial perturbations and misspelling in the input text, a robust word recognizer (ScRNN) was
implemented as a preprocessing step before the base model made predictions38. Finally, to generate a stochastic

Table 1.   Adversarial text attack methods and their main ideas across different levels.

Attack level Attack Main idea

Character-level

Generating Adversarial Text Against Real-world Applications (TextBugger)23 Greedy word substitution and character manipulation

Universal Adversarial Triggers for Attacking and Analyzing NLP (UAT)1 Gradient-based word or character manipulation

Visually Attacking and Shielding NLP Systems (VIPER) 24 Visually similar character substitution

Black-box Generation of Adversarial Text Sequences to Evade Deep Learning Classifiers (DeepWord-
Bug) 25 Greedy character manipulation

TextFooler (TF)26 Greedy word substitution

Word-level

White-Box Adversarial Examples for Text Classification (HotFlip)27 Gradient-based word or character substitution

Generating Natural Language Adversarial Examples through Probability Weighted Word Saliency
(PWWS)28 Greedy word substitution

Generating Natural Language Adversarial Examples (Genetic)29 Genetic algorithm-based word substitution

Word-level Textual Adversarial Attacking as Combinatorial Optimization (SememePSO)30 Particle swarm optimization-based word substitution

Adversarial Attack Against BERT Using BERT (BERT-ATTACK)31 Greedy contextualized word substitution

BERT-based Adversarial Examples for Text Classification (BAE)32 Greedy contextualized word substitution and insertion

Semantically Equivalent Adversarial Rules for Debugging NLP Models (SEA)33 Rule-based paraphrasing

Sentence-level
Adversarial Example Generation with Syntactically Controlled Paraphrase Networks (SCPN)34 Paraphrasing

Generating Natural Adversarial Examples (GAN)35 Text generation by encoder–decoder

Table 2.   Adversarial text attack levels and corresponding text modification examples. Significant values are in
bold and underline.

Adversarial text attack level Original text Modified text

Character-level "The quick brown fox jumps over the lazy dog." "The quxck b!own fox jumps ov3r the 14zy d@g."

Word-level "The movie was really good." "The movie was quite bad."

Sentence-level "Climate change is a global concern. We must take action to reduce
carbon emissions."

"Climate change isn’t a concern. There’s no need to reduce carbon emis-
sions."

4

Vol:.(1234567890)

Scientific Reports | (2024) 14:6420 | https://doi.org/10.1038/s41598-024-56259-z

www.nature.com/scientificreports/

weighted ensemble, the SHIELD adopts a novel strategy by altering and retraining the last layer of a textural
neural network12.

In defending against adversarial attacks, each prior study has contributed substantially to addressing specific
challenges; however, certain limitations persist. Both DT and ADP concentrate on diminishing the dimensionality
of the adversarial subspace and promoting transferability. Nevertheless, these methods necessitate training mul-
tiple diverse sub-models or ensembles, incurring computational and resource-intensive demands. Furthermore,
they compel adversaries to simultaneously target a predetermined ensemble of diverse sub-models, potentially
limiting adaptability to evolving attack strategies and failing to cover the full spectrum of potential adversarial
scenarios. On the other hand, AdvT, ScRNN (semi-character-based RNN), and Mixup adopt relatively straight-
forward training processes that may not thoroughly explore the complete range of potential adversarial perturba-
tions or attack strategies39. While the SHIELD aims to prevent model specialization and enhance generalization, it
falls short of fully mitigating adversarial inputs. This approach may restrict insights due to its reliance on a single
best-performing architecture. These considerations highlight the need for further advancements in adversarial
attack defense to overcome existing limitations and create more robust and adaptable solutions.

In contrast to existing approaches, our innovative methodology employs a multifaceted approach to address
prevailing challenges. By placing a greater emphasis on diluting direct attacks rather than focusing solely on
transferability, we strategically prompt adversaries to target stochastic sub-model variations during every infer-
ence pass21. This intentional diversification mitigates the challenges traditionally posed by diversity training and
adaptive variety promotion, providing a robust defense strategy. The nuanced focus is on disrupting direct attacks
and introducing stochastic elements into the inference process (e.g., heads expert’s learnable params.) sets our
approach apart, offering a more adaptive and effective defense mechanism against adversarial threats25,40. We
present a more stochastic approach to address the constraints posed by AdvT, ScRNN, and Mixup, heightening
the difficulty of adversarial attacks. First, our solution incorporates a multi-version training method employing
various base model versions, each of which undergoes compression with distinct values. This multi-version train-
ing allows the model to learn from equivalent yet diverse perspectives41. Leveraging random selection further
enhances the stochasticity of the model’s internal structure42, making it more challenging for potential attackers
to discern the network’s intricacies (increased unpredictability). Second, our solution incorporates a multi-expert
architecture based on Gumbel noise, which has been shown to act as a regularizer, preventing models from
over-relying on specific features43. Unlike the SHIELD, our stochastic system emphasizes utilizing an average-
performing architecture instead of a single best-performing architecture. This strategic choice enables the model
to integrate insights from various architectures, encompassing different facets of the data. Doing so enhances
the model’s generalization capabilities, allowing it to capture a broader spectrum of patterns and features44,45.

Researchers have proposed several techniques for dealing with memory and temporal limitations in defensive
models, including Adam and Particle Swarm Optimization variants. Table 3 presents a comprehensive com-
parison study that clarifies the distinctive features and uses of different optimization strategies. However, due
to the distinctive qualities of language datasets and inputs, the generic nature of these methodologies becomes
inadequate when working with pre-trained language models46. Moreover, PLMs require particular techniques
that consider the massive datasets on which they are trained and the sequential nature of language, necessitating
the development of specialized optimization algorithms47.

In recent research endeavors, innovative techniques have been introduced to address the challenges posed by
PLMs. Tao et al.17 present QuantGPT, a technique incorporating token-level contrastive distillation and module-
wise dynamic scaling and demonstrates significant improvements over existing compression methods. Edalati
et al.18 introduced another approach known as KnGPT2, which employs Kronecker decomposition to compress
linear transformations within the GPT-2 model. This mathematical method breaks down intricate matrices into
simpler components, reducing computational demands while preserving representational capacity. Song et al.19
propose LightPAFF, a two-stage knowledge distillation method enabling the transmission of knowledge from a
larger teacher model to a more compact student model, empowering the lightweight model to retain comparable
accuracy. On the other hand, SparseGPT introduces a one-shot pruning strategy, framing pruning as an extensive
sparse regression problem solved using an approximate sparse regression solver, thereby eliminating the need for
retraining57. While recent advancements have been made to address computational demands and eliminate the

Table 3.   Optimization techniques: a detailed comparative analysis.

Optimization method Description

Adagrad (Adaptive Gradient Algorithm)48 Adapts learning rates for each parameter based on historical gradient information

Adam (Adaptive Moment Estimation)49 Combines advantages of Adagrad and Root Mean Squared Propagation (RMSprop) and
adapts the learning rates individually for each parameter

Adadelta50 Extension of Adagrad addressing diminishing learning rate

ADAPLUS51 Integrates Nesterov momentum and precise step size adjustment on an AdamW basis

Adan52 Adaptive Nesterov momentum algorithm for optimizing deep models faster

Phasor Particle Swarm Optimization (PPSO)53 Replaces control parameters with a scalar phasor angle based on trigonometric functions

Fitness-based Multirole PSO (FMPSO)54 Integrates a sub-social learning part into standard PSO to enhance search mechanisms

Multi-Swarm PSO (MSPSO)55 Utilizes dynamic strategies to divide swarms, regroup them, and avoid local minima based
on historical information

Expanded PSO (XPSO)56 Integrates forgetting ability and multi-exemplar concept into standard PSO for improved
optimization

5

Vol.:(0123456789)

Scientific Reports | (2024) 14:6420 | https://doi.org/10.1038/s41598-024-56259-z

www.nature.com/scientificreports/

need for retraining, challenges persist with current methods. KnGPT2, for instance, exhibits limited applicability
to specific GPT versions. On the other hand, QuantGPT introduces performance and generality concerns, and
both SparseGPT and LightPAFF demand considerable computational resources during compression58.

Our compression technique is designed to operate autonomously from the internal model architecture. Its
design hinges on taking the objective function as input, encompassing the model structure, training, and evalu-
ation functions. This level of flexibility enables the technique to adapt seamlessly to various model structures and
dimensions, contrasting KnGPT2, which is tailored explicitly for a predetermined architecture. We have incor-
porated a batch portion strategy to alleviate the need for extensive computational resources in the compression
process. This approach involves utilizing a fraction of the overall data in each compression iteration. By adopting
this strategy, we optimize efficiency, allowing particles to identify the optimal global position without imposing
excessive computational demands59. Traditional compression methods for neural network models often raise
concerns about their potential negative impact on model robustness3,14,15,17,19. In our approach, we avoid directly
reducing or compressing the model, as such actions have been associated with detrimental effects on model
parameters. Instead, our technique adopts a two-fold strategy. First, we embrace a gradual compression approach,
progressively applying different compression percentages while closely monitoring the model’s accuracy. This
step-by-step compression allows us to assess the impact on model performance before advancing further with
the compression process. Second, we leverage an optimization technique for compression, namely, exponential
particle swarm optimization (ExPSO). In each iteration, ExPSO selectively identifies the best and fundamental
weights of the model, mitigating potential damage resulting from compression. Our technique facilitates a
graceful return to the best-performing weights when the iteration produces suboptimal weights. This approach
preserves model accuracy and creates opportunities for improvement rather than merely stabilizing performance.

The proposed methodology
In this paper, we build a novel methodology to protect neural models against adversarial textual attacks. This
methodology consists of four methods: batch-cumulative exponential particle swarm optimization (BC-ExPSO)
approach to reduce the risk of overfitting to specific batch characteristics; weight compression approach to avoid
the time and memory consumption of the model; stochastic multi-expert (SME) approach to increase the resist-
ance of the model to adversarial attacks; and multi-version compressed neural network training (MVC-NNT)
approach to enhance the training efficiency and generalization capabilities of the detection method. Incorporat-
ing these approaches strengthens defenses against adversarial attacks, improves optimization, and maximizes
resource utilization.

The overall methodology is depicted in Fig. 2, beginning with the compression phase. During this phase,
the weights of the GPT undergo optimization through a weight compression algorithm, illustrated by the black
flows. This algorithm utilizes batch cumulative strategies (yellow flows) based on ExPSO (red flows), resulting
in three distinct base models, each with varying compression percentage rates (30%, 50%, 65%). Following the
compression phase, the multi-version training approach is implemented. It associates the three compressed model
versions with a multi-expert system (green flows). Each model underwent training with different dataset parti-
tions, yielding three trained models with distinct sets of weights and compression percentages but comparable
performance. In the comprehensive model, one of the trained models is randomly selected for the final prediction
(blue flows). The incorporation of stochastic methods introduces increased complexity, increasing perplexity
levels and, consequently, reducing the likelihood of successfully inducing generalization changes, providing a
defense mechanism against potential attackers.

Batch‑cumulative exponential Particle Swarm Optimization (BC‑ExPSO)
In this section, a cumulative performance approach is used for optimizing the deep neural network. By consider-
ing the model’s performance over multiple batches, the optimization method becomes more stable, and the risk of
overfitting to specific batch characteristics is reduced. We initially explored the PSO60 optimizer, which exhibits
powerful exploration capability within the solution space, leveraging swarm intelligence for rapid convergence.
However, this approach may struggle with local exploitation55, heavily relying on the initial swarm configuration
and requiring careful parameter tuning54. Additionally, its exploration might lead to prolonged computation
times due to excessive exploration. On the other hand, gradient descent (GD) excels in exploiting local search for
obtaining local optima; this method is deterministic, computationally efficient, and widely adopted in machine
learning48. However, it may become stuck in local minima, become sensitive to the initial point, and need help
with nondifferentiable or discontinuous objective functions61. To overcome these challenges, we use an advanced
version of PSO60 called exponential particle swarm optimization for global optimization. Comparative analyses
with various well-known heuristic search algorithms on 29 benchmark problems reveal that ExPSO significantly
contributes to convergence velocity and optimization accuracy62. ExPSO employs an exponential search strategy,
allowing particles to make leaps in the search space, effectively exploring the entire space and mitigating the
limitation of GDs (trapped in local minima). The algorithm divides the swarm into three equal subpopulations
(N1,N2 and N3) for balanced exploration and exploitation and incorporates a dynamic cognitive parameter and
inertia weight strategy for optimal convergence63,64. This division enhances convergence and allows for improved
adaptation to various regions of the solution space.

After dividing the data into batches, ExPSO optimizes the model parameters and iteratively updates the
cumulative updating loss function. The next steps outline this method:

1.	 Data segmentation: The dataset is partitioned into more compact segments. The specific size of each segment
is determined by the available resources, including memory and computational capabilities.

2.	 Initialization phase:

6

Vol:.(1234567890)

Scientific Reports | (2024) 14:6420 | https://doi.org/10.1038/s41598-024-56259-z

www.nature.com/scientificreports/

–	 The ExPSO process is initiated by configuring crucial parameters such as a, b, c, d, e, c1, c2, and r.
–	 Random and uniform initialization is introduced for the particle positions and velocities, denoted as xi

and vi(i = 1, 2, ...,N), , respectively.
–	 The fitness values of the particles are evaluated based on their positions and initial best and worst posi-

tion values, denoted as pbesti and pworsti , respectively.
–	 The global best and worst positions across the entire particle swarm are identified and denoted as pgbest

and pgworst, respectively.

Figure 2.   Flowchart of the proposed methodology.

7

Vol.:(0123456789)

Scientific Reports | (2024) 14:6420 | https://doi.org/10.1038/s41598-024-56259-z

www.nature.com/scientificreports/

3.	 Batch optimization: As shown in Fig. 3, the ExPSO algorithm62 is used for each batch to optimize the model
parameters (positions) while keeping track of the best-found position. A cumulative updating loss function
CumLossFunc is employed to evaluate the model’s performance with a given set of parameters. This function
considers the current model parameters θ (particle position), the training data batch D , and the previous
loss value from the previous iteration Li−1 . The algorithm updates the batch loss by adding the current loss
Li(θ ,D) to the previous loss Li−1 , allowing the ExPSO algorithm to consider the cumulative performance of
the model during optimization. The cumulative updating loss function is expressed in Eq. (1).

	  The batch loss Li(θ ,D) for multiclass classification is calculated using the binary cross-entropy loss formula,
which can be summarized as follows:

where N is the number of samples in the batch, C is the number of classes, yij represents the ground truth
probability distribution for the ith sample, and the function f(θ, xij) is the model’s output, which represents
the predicted probability distribution over all classes for the input xi.

	  During each iteration of ExPSO, particles undergo comprehensive updates involving their positions,
velocities, and best-found positions. This iterative process entails several key steps:

–	 The particle velocities are adjusted using Algorithm 1, which involves the integration of personal and
global factors related to the best and worst positions ( pbest, gbest, pworst, gworst ), as well as the con-
sideration of the inertia weight ( w ), a random vector ( Rvec ), and predefined parameters ( a, b, c, d, e )
representing exponential weight, cognitive acceleration coefficients for the best and worst cases, and
social acceleration coefficients for the best and worst cases.

–	 A constant k within the range of (0, 1) is set to control the reduction in velocity. Subsequently, velocity
constraints are enforced using vi = max(vi , vmin) and vi = min(vi , vmax) , with a designated velocity
range of [vmin, vmax].

–	 The particle positions are updated by xi = xi + vi , ensuring that they remain within the bounds where
xi = max(xi , xmin) and xi = min(xi , xmax) . Here, xmin and xmax denote the lower and upper limits of the
variables, respectively. Figure 4 shows an example in which each particle considers its previous velocity,
global best position (social component), and personal best position (cognitive component) to determine
the new velocity and update its position.

–	 Next, the fitness value is evaluated, and the personal and global positions for the best/worst cases are
updated.

–	 The dynamic parameter a is adapted by using a = r · a , where r represents the damping coefficient, which
belongs to the range r ∈ [0.5, 2].

–	 Finally, the application of velocity damping, as described in Algorithm 2, is used to conclude the iterative
process.

(1)CumLossFunc(θ ,D, Li−1) = Li(θ ,D)+ Li−1

(2)L(θ ,D) = −
1

N

N∑

i=1

C∑

j=1

yij · log
(
f
(
θ , xij

))
,

Figure 3.   Batch-cumulative exponential Particle Swarm Optimization process.

8

Vol:.(1234567890)

Scientific Reports | (2024) 14:6420 | https://doi.org/10.1038/s41598-024-56259-z

www.nature.com/scientificreports/

4.	 Parameter Updates for Deep Neural Network Optimization: The Deep Neural Network parameters are updated
by the optimal set of parameters obtained from the global best position in step 3. The optimization process is
iterated for multiple batches to further improve the model’s performance. This approach promotes the gen-
eralization of unseen data, as the model learns to perform well across various data distributions rather than
being biased toward any single batch. Additionally, optimizing overall cumulative performance enables faster
convergence and improves model performance in fewer iterations than training each batch independently,
which is valuable when computational resources are limited. Furthermore, by balancing learning dynamics
across batches, the model is prevented from getting stuck in local optima65 associated with individual batches.

1 = 2 = 3

1, 2, 3

≤ 1

=
(

1

‖ − ‖+
)

= + + 1(−) + 2(−)

+ 3(−) + 4(−)

1 < ≤ 1 + 2

= + + 1(−) + 2(−)

= + + 1 1(−) + 2 2(−)

Algorithm 1.   ExPSO Subpopulations Algorithm.

=

=

≥

=

=

= (
1 −

1 +
)

Algorithm 2.   Velocity Controller Algorithm.

Weights compression of the deep neural network
In this section, a novel algorithm (see Algorithm 3) is designed to optimize the weights of the deep neural net-
work while considering compression. The algorithm aims to find a balance between accuracy and model size
by iteratively compressing certain percentages of positive and negative weights while optimizing the model’s
accuracy. Initially, the model’s weights W are initialized. Next, the algorithm applies the BC-ExPSO method for
each compression to optimize the model weights. Then, the algorithm identifies positive and negative weights

Figure 4.   The position update process in ExPSO.

9

Vol.:(0123456789)

Scientific Reports | (2024) 14:6420 | https://doi.org/10.1038/s41598-024-56259-z

www.nature.com/scientificreports/

separately, sorts them, and selects the first P1 and P2 percent of positive and negative weights, respectively. These
selected weights are set to zero and frozen definitively to perform the compression. The DNN is then reinitialized
and retrained with the previous compressed weights Wt−1 . During the training process, the model’s parameters
Wt (the current compressed weights) are updated based on the gradients computed during backpropagation
using the previously compressed weights, as shown in Eq. (3).

where ∇L(Wt−1,D) is the gradient of the loss function for the compressed weights at compression t − 1 and η is
the learning rate. Next, the algorithm assesses the performance of the compressed deep neural network on the
test dataset. Finally, the variable W is updated if the new accuracy is superior to or equal to the previous values.

The deep neural network weight is a crucial parameter that defines the strength of connections between nodes.
When the compression algorithm sets the weight of a connection to zero, it essentially eliminates the impact of
the connection on the output of the target node. This action disconnects the influence of that particular connec-
tion. However, the nodes remain within the network and can potentially contribute to computations through
their connections to other nodes. Figure 5 exemplifies the freezing weight technique across different compression
iterations. In tandem, Fig. 6 offers insights into the distribution of weights across various compression percentages
through the proposed approach. The initial weights of the generative pre-trained model before any compression
are depicted in the first figure. As compression initiates, the noticeable increase in frozen weights, drawn from
both positive and negative initial values within the range of [− 1, 1], represents the lower and upper boundaries
of the ExPSO algorithm. This process simplifies decision boundaries, contributing to improved generalizability.
Less convoluted decision boundaries are more likely to capture underlying patterns in the data rather than fitting
to noise or specificities of the training set, enhancing the model’s performance on new, unseen data40.

(3)Wt = Wt−1 − η ∗ ∇L(Wt−1,D),

Figure 5.   The frozen weight technique across various compression percentages.

Figure 6.   Weight distributions across various compression percentages.

10

Vol:.(1234567890)

Scientific Reports | (2024) 14:6420 | https://doi.org/10.1038/s41598-024-56259-z

www.nature.com/scientificreports/

1, 2

ℎ

 ℎ ℎ

, , , , , 1, 2, …

 (= 1, 2, . . . ,)

()

()

(, , −1) = (,) + −1

1 2

 = −1 − ∗ (−1,)

Algorithm 3.   Weights Compression of Deep Neural Network algorithm.
Setting some weights to zero could speed up inference by reducing the multiplications and additions required

during the forward pass. To illustrate this concept, let us consider a fully connected layer within a deep model
containing a single neuron. This neuron has n input connections, each represented by weights wi , a bias term b ,
and y as the output of the neuron. The computation for this neuron can be expressed in Eq. (4).

However, when some weights are intentionally set to zero (for example, k weights), the computation simpli-
fies to Eq. (5).

In this scenario, we effectively skip the multiplications by zero, reducing the number of operations. The
degree of speedup in inference time depends on the ratio k/n . For instance, if half of the weights in the layer are
set to zero

(
k = n

2

)
 , we can reduce the number of multiplications in that layer by half, potentially resulting in a

noteworthy acceleration during inference.

(4)y =

n∑

i=1

wixi + b

(5)y =

n−k∑

i=1

wixi + b

11

Vol.:(0123456789)

Scientific Reports | (2024) 14:6420 | https://doi.org/10.1038/s41598-024-56259-z

www.nature.com/scientificreports/

Stochastic Multi‑expert approach (SME)
A novel stochastic multi-expert approach is built to protect against adversarial attacks; this approach focuses
on enhancing GPT, denoted as f (x, θ) , by exclusively modifying its final layer. The result is the model’s conver-
sion into an ensemble of several expert predictors, each associated with stochastic weights. Depending on the
input, these predictors are designed to be strategically selected with different weights during inference. First,
we transform f (·) into a randomized ensemble of different heads. To facilitate a stochastic weighted ensemble
among heads, we extend the last layer of f (·) , which is typically a fully connected layer, to an ensemble of K
prediction heads, denoted as H = {h(·)}kj  . Each head, denoted as hj(·) and parameterized by θhj , serves as an
expert predictor. It receives a feature representation learned by f (·) up to the second-last layer and produces a
prediction logit score, as depicted in Eq. (6).

where θ∗L−1 are fixed parameters of f up to the last prediction head layer, L is the number of head layers, Q is the
size of the feature representation x generated by the base model , and M is the number of labels.

Our primary focus is optimizing the diversity inherent in how each head generates predictions. To address
this objective, the average expert architectures of each head were considered. This averaging mechanism allows
the model to incorporate knowledge from various architectures, capturing different aspects of the data and
increasing its generalization capabilities. Figure 7 illustrates the structure of this approach, which employs the
Gumbel-Softmax transformation method, which involves sampling from a categorical distribution using Gumbel-
distributed noise. The Gumbel noise Gj is created by utilizing Uj , which represents samples from the uniform
distribution within the range of (0, 1). The noise is derived from a Gumbel distribution and generated by apply-
ing the function −log

(
−log

(
Uj

))
 . Then, the softmax function is applied to the Oj vector with a temperature

parameter τ , as illustrated in Eq. (7).

let Oj represent a vector of values {Oj(1),Oj(2), . . . ,Oj(T)} for the jth possible architecture to be selected for
hj ∈ H.

After the softmax probabilities are obtained, as depicted in Eq. (8), they are combined with the Gumbel
noise Gj to introduce stochasticity and enable exploration during selection. Here, ⊙ represents elementwise
multiplication.

Finally, the method outlined in Ref.12 is adopted, where randomness is introduced in the process by assigning
prediction heads with stochastic weights in both the training and inference phases. More precisely, we employ
the aggregation mechanism, as illustrated in Eq. (9).

(6)hj : f
(
x, θ∗L−1

)
∈ RQ → ỹj ∈ RM ,

(7)softmax
(
Oj , τ

)
=

[
eOj(1)/τ

∑T
t=1 e

Oj(t)/τ
,

eOj(2)/τ

∑T
t=1 e

Oj(t)/τ
, . . . ,

eOj(T)/τ

∑T
t=1 e

Oj(t)/τ

]
,

(8)ỹj = softmax(Oj , τ)⊙ Gj

Figure 7.   Stochastic multi-expert process.

12

Vol:.(1234567890)

Scientific Reports | (2024) 14:6420 | https://doi.org/10.1038/s41598-024-56259-z

www.nature.com/scientificreports/

where the weight wj scale ỹj corresponds to the expertise of the head j for the current input x . The scalar αj , rang-
ing between 0 and 1, probabilistically determines how much the weight wj contributes. Equations (10) and (11)
are employed to compute the values of w and α. These vectors belong to the vector space RK contain the scalars
wj ​ and αj , ​respectively. Additionally, ỹ ∈ R(K×M) represents the concatenation of ỹj ​ vectors returned from each
head, while W ∈ R(K×M+Q)×K and b ∈ RK serve as the trainable parameters.

Multi‑version compressed neural network training (MVC‑NNT)
To improve the training efficiency and enhance the generalization capabilities of our method for detecting
adversarial attacks, we adopted an approach that employs multiple versions of the base model, each utilizing
distinct compression values. The multi-version training process comprises training three variations of the base
model on distinct dataset partitions, each with different compression rates, as depicted in Fig. 8. First, the dataset
is partitioned into three subsets: D1,D2, andD3 . Then, a common NN architecture f is defined to be employed
across all base model versions. Subsequently, the final predictions are made through a random selection method
among the base model versions ( β∗

1 , β∗
2 , and β∗

3) . For each version i , the training objective is to minimize the
loss of function L for the Neural Network parameters in Eq. (12):

here,β∗
i represents the optimal set of parameters for the base model version i , which are the values of βi that

minimize the average loss over the dataset Di . The variables βi are the updated compressed base model param-
eters. The values x and y represent the input data and the target labels, respectively.

Experimental evaluation
This section provides a detailed account of the datasets utilized, the metrics applied, and the experimental set-
tings configured to evaluate our proposed methodology. We also discussed the results of these evaluations and
outlined the limitations and potential avenues for future research.

Datasets
Our research paper aims to evaluate the efficacy of our defense methodology against adversarial attacks. For that
purpose, we utilized three publicly available datasets: Clickbait detection (CB)66, Hate Speech Detection (HS)67,
and Movie Reviews classification (MR) datasets68. Table 4 provides an overview of the statistical information
about these experimental datasets.

(9)ŷ =

(
1

K

)
∗

k∑

j=1

(
αj ∗ wj ∗ ỹj

)
,

(10)w = WT (ỹ ⊕ f (x, θ∗L−1))+ b

(11)α = softmax((w + G)/τ)

(12)β∗
i = argminβi

1

|Di|

∑

(x,y)ǫDi

L(f (x;βi), y),

Figure 8.   Multi-version compressed neural network training for the enhanced adversarial attack detection
process.

13

Vol.:(0123456789)

Scientific Reports | (2024) 14:6420 | https://doi.org/10.1038/s41598-024-56259-z

www.nature.com/scientificreports/

The datasets above undergo adversarial attacks to generate diverse, challenging samples or perturbations. To
achieve this goal, we employed the OpenAttack framework22, a Python-based open-source toolkit specifically
designed for conducting textual adversarial attacks. To increase the complexity of our datasets, we meticulously
select the applied adversarial attacks through a comprehensive review of various attacks based on multiple crite-
ria. Figure 9 visually categorizes attacks based on their perturbation methods. For instance, the SEA attack relies
solely on swapping perturbations, whereas the DeepWordBug attack utilizes addition and dropping perturba-
tions. In Fig. 10, we provide a visual representation of the application of 14 attacks, considering their success rates
and percentages of perturbation on three datasets using a simple pre-trained GPT. Notably, TextFloor, TextBug-
ger, DeepWordBug, and PWWS from OpenAttack perturb only 5–40% of words in the input but yield more
successful attacks than the other methods in the three datasets. Following this analysis, we utilized 14 attacks
employing different perturbation methods, with variations in perturbation percentages and diverse success rates.

Metrics
We aim to provide a thorough assessment of our methodology. To accomplish this, we employ widely recognized
metrics commonly used in the literature.

To assess the prediction performance, we utilized the weighted F1-score and accuracy, as defined in Eqs. (13)
and (14), respectively. These metrics evaluate the model’s accuracy across diverse classes. The prediction accuracy
under adversarial attacks is presented to gauge the robustness of our methodology (the ratio of failed attacks
to the total number of examples69). A failed attack is recorded only when the adversary’s attempt to perturb an
input fails, resulting in the label remaining unchanged for correctly predicted clean examples.

To evaluate the effectiveness of the optimization method, we conduct a dynamic loss test in which we utilize
categorical cross-entropy, a suitable loss function for multiclass classification tasks, as defined in Eq. (15). Next,
we conduct two nonparametric statistical tests. Initially, we employ the Friedman test to comprehensively com-
pare the performance of each algorithm across a set of functions70. The procedure entails collectively ranking
each row (or block) and examining the rank values by columns to gain insights into the algorithms’ overall per-
formance. Instead of using a set of functions in our experiment, we use the Friedman mean of the benchmarks of
23 functions, which contain unimodal, multimodal, and composite problems55,56,62. Second, we employ the Wil-
coxon signed-rank test with a 5% significance level to assess the validity of the results, discern which algorithms
perform better or worse than ExPSO, and gauge the meaningfulness of the improvements achieved by ExPSO.

(13)F1-score = 2
(precision ∗ recall)

precision+ recall

(14)Accuracy =
True Positive + True Negative

FalsevPositive + False Negative + True Positive + True Negative

Table 4.   Overview of the experimental datasets and partitioning information.

Dataset Class Vocabulary Examples

MR Binary 19,000 11,000

CB Binary 25,000 32,000

HS Multiclass 35,000 25,000

Figure 9.   Word perturbation methods for 14 adversarial attacks.

14

Vol:.(1234567890)

Scientific Reports | (2024) 14:6420 | https://doi.org/10.1038/s41598-024-56259-z

www.nature.com/scientificreports/

where n is the number of data points, yi is the actual value, and ŷi is the predicted value.
To gauge the effectiveness of the compression technique, we assess the model’s performance using process-

ing speed, which is measured through two key performance indicators, namely, Throughput and Inferences Per
Second (IPS), as illustrated in Eqs. (16) and (17), respectively, where Throughput signifies the rate at which a
text classification model processes and classifies a batch of textual documents71. Moreover, the IPS quantifies the
number of inferences, such as predictions, that the model can generate per second.

For a more comprehensive evaluation, we introduce another metric known as perplexity. This metric is cru-
cial for assessing language models such as the GPT, as it evaluates the model’s accuracy in predicting sequences
of tokens72. Perplexity entails encoding the entire test dataset using the model’s tokenizer, segmenting it into
numerous token segments, and calculating the average language modeling loss. The resulting exponentiated
number represents the reported perplexity, as illustrated in Eq. (18).

(15)Loss = −

n∑

i=1

yi · logŷi ,

(16)Throughput =
Number of units produced

Time period

(17)IPS =
Number of Inferences

Time taken for the inferences

Figure 10.   The average percentage of words perturbed per successful attack: a visual representation of the
application of 14 attacks, considering their success rates and percentages of perturbation on three datasets using
a simple pre-trained GPT.

15

Vol.:(0123456789)

Scientific Reports | (2024) 14:6420 | https://doi.org/10.1038/s41598-024-56259-z

www.nature.com/scientificreports/

where N is the sample’s number of words (or tokens). P(wi) is the probability assigned to the ith word by the
model.

Additionally, we incorporate GPU and CPU speedup and latency metrics through Eqs. (19)–(21) to further
assess the overall performance and efficiency of the compression technique. These metrics provide valuable
insights into how the compression method impacts the speed and responsiveness of the model on different
hardware platforms.

where QueueingCPU is the time spent in the CPU queue before the task is executed and TimeCPU is the time the
CPU takes to execute the task.

Experimental setting
Regarding hardware, CPU experiments were conducted on a standard Windows (v8.1) server with an Intel
Core i7 processor. GPU experiments were performed using an online Intel framework with an Intel Data Center
GPU Flex 140, employing a batch size of 8 sentences and a maximum sequence length of 512 tokens. All the
software implementations were coded in Python (v3.7) using PyTorch (v1.5.1), NumPy (v1.19.1), and Scikit-
learn (v0.21.3). The choice of the pre-trained model was GPT-2, primarily due to its readily available codebase.
The selected GPT-2 model consists of 24 layers, a hidden size of 1024, 16 attention heads, and 345 million
parameters73.

We have devoted careful attention to specifying hyperparameters at every stage of developing and assessing
our proposal. These hyperparameters have been carefully selected to ensure optimal performance and generali-
zation across various tasks. Table 5 lists the hyperparameters utilized in our approach and their corresponding
values. In global optimization, the coefficients for both cognitive and social aspects are set to 2, emphasizing the
influence of personal and social experiences on particle movement. The choice of − 1 for the worst-case coef-
ficients introduces a competitive element among particles, promoting diverse exploration and contributing to
efficient convergence. This configuration has been observed to facilitate effective convergence, particularly in
complex and multimodal real-world optimization engineering scenarios62,74. The remaining values of the hyper-
parameters were chosen based on Refs. 55, in which the authors tested each parameter with different values to find
the best value, ensuring the robust performance of ExPSO across a range of optimization scenarios. To determine
the compression hyperparameters, we thoroughly reviewed the standard settings reported in the literature17–19,57.
Drawing upon established practices, we systematically identified and chose the parameters that consistently
produced optimal results across different experiments. On the other hand, when adopting optimization meth-
odologies in the literature, such as PPSO53, FMPSO54, MSPSO55, and XPSO56, we use the same hyperparameters
that have demonstrated superior performance. This approach allows us to ensure the stability and effectiveness
of the optimization method by preserving configurations known to be robust and high-performing.

Results
For our multi-version compressed neural network training, the primary objective is to promote diversity among
machine learning model parameters. This diversity is crucial for discouraging attackers from predicting model
parameters effectively. The key strategy involves predefining a base model, such as GPT (Base), and compress-
ing it to create three distinct models (Models 1, 2, and 3) with compression percentages set at 30%, 50%, and
65%, respectively.

The focus is on preventing excessive similarity, especially in gradient vectors, among the models within an
ensemble during training. Figure 11 evaluates the alignment degree among gradient vectors in various datasets.
The evaluation involved comparing the distribution of coherence values for various target models, including
the base model (Base) and the compressed models (Models 1, 2, and 3). Figure 11 illustrates those combina-
tions of Base + Model 1, Base + Model 2, and Base + Model 3 exhibit lower coherence, particularly in the case of
Base + Model 3. This observation implies that the compressed models demonstrate more misaligned gradient
vectors, indicating reduced correlation among their gradients with the base model in different datasets. This
demonstrates that the proposed multi-version compressed neural network training method effectively creates
ensembles with diverse models and misaligned gradients, enhancing adversarial robustness.

In our evaluation, we assess the predictive performance of our methodology in the absence of adversarial
attacks. As depicted in Table 6, our methodology consistently maintains superior F1 scores (0.94) on average
across all the datasets. Notably, even when compared with the SHIELD, our methodology achieves a marginal
performance reduction in the context of the Hate Speech dataset. However, this decrease is practically insig-
nificant when contrasted with our methodology’s substantial gains in adversarial robustness (expounded upon

(18)PPL = exp

(
1

N

N∑

i=1

−logP(wi)

)
,

(19)SpeedUp =
ExecutionTimeBaseline

ExecutionTimeImproved

(20)LatencyGPU =
1

ThroughputGPU

(21)LatencyCPU = TimeCPU + QueueingCPU ,

16

Vol:.(1234567890)

Scientific Reports | (2024) 14:6420 | https://doi.org/10.1038/s41598-024-56259-z

www.nature.com/scientificreports/

below). Importantly, our methodology showed a notable 1.8% enhancement in the F1 score across all the datasets
compared to SHIELD model results.

Table 7 summarizes the performance of our methodology under various adversarial attacks across different
datasets. The methodology consistently exhibited enhanced performance after these attacks, with an average
improvement of 17%. Attacks such as SCPN and SEA achieve perfect scores, indicating high effectiveness, while

Table 5.   Hyperparameter configurations for training and testing the overall methodology.

Processes Hyperparameters Parameters setting

ExPSO

Exponential weight parameter a = 2

Cognitive acceleration best-coefficient b = 2

Social acceleration best-coefficient c = 2

Cognitive acceleration worst-coefficient d = −1

Social acceleration worst-coefficient e = −1

Cognitive scaling parameter c1 = −1

Social scaling parameter c2 = 2

Inertia weight W = 0.9

Damping coefficient r = 0.9

Exploration number of iterations t = 10

Decreasing velocity coefficient k = 0.2

Number of particles of subpopulation 1,2, and 3 N1,N2,N3 = 10

Compression

Learning rate (We maintain a fixed learning rate for our initial evaluation. However, for optimization problems with complex landscapes, we
recommend starting with a fixed learning rate and subsequently considering updates to it as needed) Lr = 3e − 5

Epsilon Eps = 1e − 8

Compression dimensionally D = 50257 ∗ 1024

Max iteration limit MaxIt = 100

Early stopping patience 20 epochs

Epochs 100 epochs

Lower bounds Lb = −1

Upper bounds Ub = 1

Multi-expert
Number of heads H = 5

Number of experts L = 3

XPSO n = 0.2, Stagmax = 5, p = 0.5

MSPSO X = 0.7298, c1 = c2 = 1.49445,R2 = 10

FMPSO cH = 1.2, cm = 0.7, cl = 0.2

PPSO Inertia weight w = 0

Figure 11.   Comparative coherence analysis of the base model and compressed models (Models 1, 2, and 3) on
the HS, MR, and CB datasets.

17

Vol.:(0123456789)

Scientific Reports | (2024) 14:6420 | https://doi.org/10.1038/s41598-024-56259-z

www.nature.com/scientificreports/

others such as BERT-ATTACK and DeepWordBug yield mixed results. The methodology exhibited the strongest
performance on the Movie Reviews dataset, demonstrating a remarkable 25% relative improvement. This dataset
is closely followed by the Hate Speech dataset, with a substantial 17% enhancement, followed by the Clickbait
dataset, which achieves a commendable 9% boost. For the VIPER and UAT attacks, the employed approach nei-
ther resulted in improvement nor a significant performance drop. Intuitively, one might assume that word-level
models would exhibit greater robustness, as they can leverage the surrounding context. Surprisingly, we observe
that these attacks are more susceptible to attacks. To understand why, consider the word ’beautiful’, which can be
altered in limited ways for word-level models, resulting in either a UNK token or an existing vocabulary word.
In contrast, character-level models treat each unique character combination differently. This diversity provides
attackers with more potential variations to exploit. Consequently, this justifies the observed decrease in accuracy
for certain character-level attacks (VIPER and UAT).

Table 8 illustrates the impressive effectiveness of our methodology across multiple datasets under the Tex-
tFooler, TextBurger, DeepWordBug, and PWWS attacks. These attacks are selected because they are among
the strongest attacks and provide foundation mechanisms upon which other attacks are built (refer to Fig. 10).
Notably, our methodology consistently outperforms the baseline approach, resulting in substantial performance
improvements in various datasets. This finding suggested that our methodology has the potential to significantly
enhance model resilience to adversarial attacks, with an average improvement of 13–49% compared to the
baseline.

To gauge the effectiveness of our optimization method, we chose to benchmark it against other widely used
optimizers for DNNs across three datasets, as illustrated in Fig. 12a,b. While comparing our approach with
various optimization techniques based on Particle Swarm Optimization, XPSO, PPSO, FMPSO, and MSPSO
begin training with the highest loss for the Clickbait, Hate Speech, and Movie reviewer datasets. Conversely,
BC-ExPSO embarked on training with a low initial training loss and consistently achieved the lowest loss by
the end of training. Notably, BC-ExPSO demonstrated significantly faster convergence than did the other opti-
mization methods across the HS dataset. BC-ExPSO consistently outperformed the others in terms of loss and

Table 6.   Comparison of model performance on various datasets (MR, HS, and CB) with baseline methods
such as DT, ADP, Mixup, AdvT, ScRNN, and SHIELD. Significant values are in bold and underline.

Model/dataset MR HS CB AVG

+ DT 0.89 0.86 0.93 0.91

+ ADP 0.87 0.88 0.96 0.90

+ Mixup 0.78 0.87 0.97 0.87

+ AdvT 0.77 0.89 0.92 0.88

+ ScRNN 0.80 0.86 0.95 0.87

+ SHIELD 0.89 0.94 0.97 0.93

+ Our 0.90 0.93 0.98 0.94

Table 7.   Results of the adversarial attack mitigation technique (before and after) on multiple datasets.
Significant values are in bold.

Attack type

Dataset Movie reviews Hate speech Clickbait

Attack Before After Before After Before After

Word-level

TextFloor 0.27 0.79 0.32 0.68 0.65 0.85

PWWS 0.21 0.58 0.35 0.60 0.66 0.80

GENETIC 0.15 0.63 0.23 0.58 0.58 0.76

SememePSO 0.40 0.76 0.67 0.79 0.79 0.90

BAE 0.85 0.99 0.94 0.96 0.98 0.97

BERT-ATTACK 0.8 0.71 0.24 0.75 0.52 0.78

HotFlip 0.47 0.84 0.71 0.88 0.81 0.85

Sentence-level

SEA 1 1 1 1 1 1

GAN 0.63 0.89 0.60 0.66 0.54 0.56

SCPN 1 1 1 1 1 1

Char-level

DeepWordBug 0.58 0.92 0.74 0.83 0.62 0.85

VIPER 0.94 0.93 0.99 0.97 0.98 0.97

UAT​ 0.11 0.74 0.18 0.35 0.39 0.36

TextBugger 0.5 0.64 0.25 0.65 0.61 0.74

Average 0.565 0.815 0.587 0.764 0.723 0.813

Relative ↓↑% ↑25% ↑17% ↑9%

18

Vol:.(1234567890)

Scientific Reports | (2024) 14:6420 | https://doi.org/10.1038/s41598-024-56259-z

www.nature.com/scientificreports/

convergence from the very beginning of training until the 60th–75th epochs in both the Clickbait and Movie
Reviews datasets. After 75 epochs, the BC-ExPSO loss in the MR and CB datasets approached a level similar to
that of other optimizers, such as FMPSO, XPSO, and PPSO.

When comparing our optimization approach with the Adam techniques across various datasets, BC-ExPSO
stands out for its notably swift convergence in the CB and MR datasets. It consistently achieved the lowest loss
after training, particularly in the case of the Hate Speech and Movie Reviews datasets. However, it is worth
mentioning that in the CB dataset, the Adagrad optimizer achieved the lowest loss. In summary, in most cases,
BC-ExPSO is the superior optimization algorithm in this comparison. Not only does it exhibit faster convergence,
but it also attains a significantly lower loss.

Table 9 displays the Friedman and Wilcoxon signed-rank test results with a significance level of 5%. Exam-
ining the Friedman mean rank, ExPSO is the top among the approaches, outperforming the other algorithms

Table 8.   Performance comparison of various defense techniques against four adversarial attacks. The bold text
indicates improvements in the results, the underlined text indicates the second-best results, and the italics text
signifies the worst value.

Attack Dataset DT ADP Mixup AdvT ScRNN SHIELD Our method

TextFloor

MR 0.09 0.11 0.13 0.10 0.02 0.51 0.79

HS 0.25 0.33 0.46 0.40 0.15 0.53 0.68

CB 0.35 0.50 0.38 0.39 0.40 0.78 0.85

TextBugger

MR 0.15 0.22 0.11 0.20 0.11 0.43 0.64

HS 0.33 0.36 0.33 0.54 0.30 0.46 0.65

CB 0.45 0.52 0.63 0.55 0.62 0.77 0.74

DeepWordBug

MR 0.18 0.11 0.05 0.13 0.09 0.61 0.92

HS 0.58 0.31 0.39 0.45 0.25 0.73 0.82

CB 0.54 0.49 0.55 0.47 0.36 0.74 0.85

PWWS

MR 0.17 0.14 0.12 0.3 0.13 0.45 0.58

HS 0.27 0.35 0.55 0.40 0.19 0.58 0.60

CB 0.45 0.49 0.47 0.60 0.43 0.73 0.80

AVG 0.385 0.327 0.347 0.344 0.254 0.61 0.74

Figure 12.   (a) Loss comparison during training for the HS, CB, and MR datasets: BC-ExPSO vs. baseline
optimizers: PPSO, MSPSO, FMPSO, and XPSO. (b) Loss comparison results during training for the HS, CB, and
MR datasets: BC-ExPSO vs. baseline optimizers: ADAM, ADAGRAD, ADADELTA, ADAPLUS, and ADAN.

19

Vol.:(0123456789)

Scientific Reports | (2024) 14:6420 | https://doi.org/10.1038/s41598-024-56259-z

www.nature.com/scientificreports/

across diverse benchmark problems. As the Wilcoxon signed-rank test indicates, the results consistently show
that ExPSO significantly outperforms the other methods (with no p-values exceeding 0.05). This underscores the
power of ExPSO and its ability to strike a proper balance to explore and exploit the search space thoroughly. The
comparisons and statistical findings underscore the significant contribution of the exponential search strategy,
affirming the superiority of ExPSO in terms of convergence velocity and optimization accuracy.

In optimizing model performance, achieving faster inference times is a critical objective. To attain this, we
explore the changes in the inference per second (IPS), throughput, and accuracy values in Fig. 13. This explora-
tion involved applying various compression percentages to the original model, starting from 0%. Our approach
consistently showcases a substantial improvement in Throughput and Inferences Per Second values (Fig. 13a)
synchronized with accuracy values (Fig. 13b) as the compression iterations progress across different datasets. We
emphasize that our primary goal is to maintain the model’s performance throughout the compression process,
and this goal is notably achieved, particularly for weights up to 65% on the CB, MR, and HS datasets. Further-
more, it is important to highlight that in certain instances, our approach not only maintains the model’s perfor-
mance but also enhances it. The illustration reveals that specific compression phases may temporarily decrease
the model’s accuracy, throughput, and IPS. This phenomenon can be attributed to the compression technique,
which selectively prunes connections up to certain nodes rather than removing them entirely. Consequently,
evaluating the model with the current set of weights may involve redundant connections and nodes, potentially
disrupting the decision-making process. In the subsequent compression iterations, ExPSO involves retraining
the model with newly updated positions and retaining only the best global parameters. This strategic retraining
process ensures that the model discards unusual connections and nodes, significantly improving the accuracy.

Table 9.   Friedmann mean rank and Wilcoxon signed test results with 5% significance.

Average rank Algorithm Friedman mean rank

p-value z-value

Wilcoxon signed test

1 BC-ExPSO 4.44 – –

4 FMPSO 8.38 0.004682 − 2.828147

3 PPSO 6.64 0.000068 − 3.984589

5 XPSO 8.55 0.000044 − 4.084250

2 MSPSO 6.58 0.014889 − 2.435076

Figure 13.   (a) Evaluation of our model’s performance (throughput and IPS vs. batch size) on the Clickbait,
Movie Reviews, and Hate Speech datasets. (b) Evaluation of our model’s performance (accuracy vs. compression
percentage) on the Clickbait, Movie Reviews, and Hate Speech datasets. The gold and blue stars emphasize
the optimal compression percentage and the highest compression percentage, respectively, while maintaining
accuracy.

20

Vol:.(1234567890)

Scientific Reports | (2024) 14:6420 | https://doi.org/10.1038/s41598-024-56259-z

www.nature.com/scientificreports/

Table 10 shows a comparative analysis of our compression approach with other baseline methods on the CB,
MR, and HS datasets (executed on a GPU). Our approach emerges as the standout performer with the lowest
perplexity (14.28) and the highest model accuracy (93.72%) for the Clickbait and Hate Speech datasets among
the four evaluated methods. This finding suggests that we can effectively compress the language model while
maintaining superior predictive capabilities. SparseGPT demonstrates impressive performance, closely tracking
our method with a perplexity of 16.14 and an accuracy of 92.65% on the HS and CB datasets. Notably, our method
outperforms SparseGPT in terms of perplexity on the HS dataset, while SparseGPT excels in terms of accuracy.
The decrease in accuracy can be ascribed to the well-known trade-off between compression and accuracy in
NLP models. To demonstrate this, we reduced the compression rate of our model from 65 to 50%, resulting in a
noticeable enhancement in accuracy (97.65%). This approach brought the performance close to what SparseGPT
achieved. Finding the ideal compression percentage that consistently yields optimal results across all evaluation
datasets and metrics is challenging.

Table 11 displays the inference latency results of our compression technique vs GPT-2. In achieving a com-
pression rate of 65%, our approach showcases an impressive acceleration, yielding over 6 × speedup on a GPU
and an 8 × speedup on a CPU compared to the baseline GPT-2 model. These findings underscore the effectiveness
of our method in significantly accelerating inference speeds for GPT-2.

Discussion
In our methodology, stochasticity arises from three components: (i) the inherent randomness in the outputs of
base models, (ii) the assignment of the main prediction head, and (iii) the variability in the Gumbel–Softmax
outputs. Concerning point (i), despite the nondeterministic nature of the outputs from multi-version training
base models, the relative ranking of inputs for the expert predictor remains consistent during each inference call.
This consistency is achieved through minor changes in representation, justified by training on randomly differ-
ent portions of the same data. Importantly, these adjustments resulted in high-performing outcomes without
compromising the fidelity of the model across various runs (Fig. 11). (ii) Occurs in a typical iterative black-box
process, where an attacker experiments with various manipulations of a given text. As the attacker manipulates
these, the input text to the model changes at each iterative step. Consequently, the assignment of heads also
changes because each prediction head specializes in different features, such as specific words or phrases in an
input sentence. Therefore, for a given input, the assignment of expert predictors remains consistent for a par-
ticular set of manipulations. Consequently, no additional information is gleaned even if an attacker repeatedly
submits the model with specific changes to the original sentence. Regarding (iii), despite the nondeterministic
nature of Gumbel-Softmax outputs, the relative ranking of the expert predictor is consistently preserved during
each inference call by maintaining a sufficiently small value for τ. This approach ensures that the variability intro-
duced by Gumbel-Softmax does not compromise the model’s fidelity across different runs (Tables 6, 7, and 8).

To evaluate the importance of each stochastic method on the overall effectiveness of the model, we test the
basic GPT-2 model with only the stochastic multi-expert (SME) or multi-version compressed neural network

Table 10.   Comparison of the perplexity and accuracy of our compression method with those of QuantGPT,
KnGPT2, LightPAFF, and SparseGPT. Significant values are in bold.

Dataset CB MR HS

Compression method PPL (↓) Accuracy ( ↑) PPL (↓) Accuracy ( ↑) PPL (↓) Accuracy ( ↑)

QuantGPT 17 45.58 88.13 55.25 80.07 45.93 78.85

KnGPT2 18 23.28 89.25 53.73 81.27 56.8 75.41

LightPAFF 19 20.50 92.18 38.78 85.17 37.50 85.47

SparseGPT57 16.14 92.65 23.88 98.13 30.43 88.36

Our method 14.28 93,72 20.14 91,86 26.84 90.13

Table 11.   Comparison of inference speedup for our compression method on GPT-2. Evaluation is conducted
by generating one sentence at a time autoregressively. Significant values are in bold.

Method Compression percentage Number of parameters

(GPU) (CPU)

Latency Speedup Latency Speedup

GPT-2 0% 345 M 553 ms 1.00× 1,683 ms 1.00×

Our method

10% 280 M 440 ms 1.25× 1,255 ms 1.34×

20% 19 M 307 ms 1.80× 868 ms 1.93×

30% 80 M 234 ms 2.36× 582 ms 2.89×

40% 72 M 167 ms 3.31× 457 ms 3.68×

50% 62 M 132 ms 4.18× 367 ms 4.58×

65% 60 M 90 ms 6.14× 200 ms 8.41×

21

Vol.:(0123456789)

Scientific Reports | (2024) 14:6420 | https://doi.org/10.1038/s41598-024-56259-z

www.nature.com/scientificreports/

training (MVC-NNT) modules. Table 12 shows that (GPT-2 + SME) and (GPT-2 + MVC-NNT) perform dif-
ferently across different datasets and attacks. Specifically, we observe that MVC-NNT performs better than the
SME module in the case of the MR dataset, SME is better than the MVC-NNT module in the case of the HS
dataset, and we have mixed results in the CB dataset. Nevertheless, the final model, which comprises both the
SME and MVC-NNT modules, consistently performs the best across all the cases. This shows that both the SME
and MVC-NNT modules complement each other and are crucial for the final model’s robustness.

Most previous works in adversarial defense have been designed for a specific type of word, synonym substitu-
tion, as in certified training, or misspelling level of attack. Thus, these algorithms are usually evaluated against
a small subset of (≤ 4) attack methods. Although some works propose general defense methods, they are often
built upon adversarial training, which requires training everything from scratch38,75–77. In contrast to previous
approaches, our methodology does not address the characteristics of the resulting perturbations from attackers
but rather addresses their fundamental attack mechanism, which is usually an iterative perturbation optimization
process (Fig. 1). This allows our approach to effectively defend against 14 different black-box attacks (Tables 7 and
8), demonstrating its effectiveness in practice. Furthermore, our method enables us to “hot-fix” a complex NN
by replacing and training only the last layer, removing the necessity of retraining the entire model from scratch.

Additionally, previous methods (e.g., DT and ADP) mainly aim to reduce the dimensionality of the adver-
sarial subspace, i.e., the subspace containing all adversarial examples, by forcing adversaries to attack a single
fixed ensemble of diverse sub-models simultaneously. This helps to improve the transferability of robustness
to different tasks. However, our approach primarily focuses on diluting direct attacks rather than transferring
them. We achieve this by compelling adversaries to target stochastic, different meanings, and ensemble sub-
model variations during each inference pass. Additionally, we increase the model’s generalization capabilities
by utilizing the average expert architectures from each head; this decision mitigates the potential risk of the
model becoming excessively specialized, which could otherwise limit its capacity to discover novel insights, as
exemplified by the SHIELD approach, which selects only the single best-performing architecture. Moreover,
our approach leverages training on diverse dataset partitions and the utilization of various compression rates.
This diversity in training perspectives empowers the model to encompass a more extensive spectrum of patterns
and features, bolstering its robustness against adversarial attacks. In contrast, Mixup, AdvT, and ScRNN employ
relatively straightforward training processes that sometimes do not sufficiently explore the full range of potential
adversarial perturbations or attack strategies39.

Some compression techniques are specific to particular PLM architectures. For example, the KnGPT2 tech-
nique mentioned in 18 was designed for GPT-2. Applying this approach to other GPT versions or models might
not yield the same benefits. As a result, our compression technique can be applied to both encoder and decoder-
based pre-trained language models, independent of the model’s internal architecture. Moreover, careful parameter
pruning and management can significantly reduce the number of model parameters while maintaining high
accuracy (Figs. 12, 13, and Table 10). This approach mitigates memory-intensive demands and requires minimal
additional computational resources during the compression process due to batch-generative exponential par-
ticle swarm optimization. This stands in contrast to methods such as SparseGPT, which still rely on substantial
computational resources for compression.

Limitations and future work
Our compression technique exhibits agnosticism, extending its application to various neural network architec-
tures, including CNNs, RNNs, and transformer-based models78. It makes it adaptable for tasks and domains,
such as question-answering and language generation79.

In this research, we restrict the architecture of each expert to a fully connected layer with a maximum of three
hidden layers (corresponding to the number of experts). While recognizing the potential for enhanced diversity
in submodels80, exploring a wider array of model architectures encompassing various versions of compressed
GPTs with diverse attention layers might be advantageous81. Nonetheless, it is crucial to note that such explora-
tion may involve trade-offs, particularly in computational time.

Recent experiments have revealed that scheduled unfreezing methods can narrow the performance gap with
full fine-tuning, achieving state-of-the-art transfer performance. This finding suggested that such methods extend
beyond merely mitigating catastrophic forgetting82. Although our primary focus is not on robust transferability,
our approach can readily accommodate it by simply unfreezing the base layers, denoted as f

(
x, θ∗L−1

)
.

Our compression technique is constrained by an initial fixed number of iterations, potentially leading to
premature termination before the optimal positions are reached (global best positions) or training is extended
until the maximum number of iterations, which may incur unnecessary computational costs. If we propose

Table 12.   Complementary role of SME or MVC-NNT under TextFloor (TF), TextBugger (TB), DeepWordBug
(DW), and Probability Weighted Word Saliency (PS) attacks. Significant values are in bold and underline.

Dataset MR HS CB

Attack TF TB DW PS TF TB DW PS TF TB DW PS

Basic model 0.02 0.10 0.08 0.13 0.13 0.30 0.27 0.19 0.36 0.62 0.31 0.50

Only SME 0.32 0.30 0.17 0.28 0.57 0.50 0.36 0.42 0.35 0.43 0.52 0.64

Only MVC-NNT 0.65 0.39 0.64 0.35 0.27 0.24 0.25 0.42 0.67 0.59 0.32 0.55

Final Model 0.79 0.64 0.92 0.58 0.68 0.65 0.82 0.60 0.85 0.74 0.85 0.80

22

Vol:.(1234567890)

Scientific Reports | (2024) 14:6420 | https://doi.org/10.1038/s41598-024-56259-z

www.nature.com/scientificreports/

an early stopping method that considers the accuracy history values in the compression process, the adaptive
approach ensures that our compression technique halts training when meaningful convergence or performance
improvement is observed, leading to overcoming the limitation of a predefined max iteration.

Conclusion
In our research paper, we presented a comprehensive evaluation of innovative methods designed to optimize
defense models’ performance, efficiency, and robustness. We conducted this assessment using three publicly
available datasets. Our evaluation framework encompasses various metrics, including weighted F1 scores, per-
formance in the face of adversarial attacks, computational efficiency, and language model perplexity. The results
of our approaches were promising across different scenarios and underscored their potential for real-world
applications that prioritize data integrity, efficiency, and security. This approach has successfully achieved stability
and robustness by mitigating the risk of overfitting to specific batch characteristics through weight compres-
sion. This approach reduces memory requirements and streamlines predictions, making it suitable for real-time
applications while contributing to energy savings. The statistical results (Wilcoxon signed rank and Friedman
rank) show that the exponential search strategy significantly contributes to the search process and proves the
superiority of the compression optimization method in terms of convergence velocity and optimization accuracy.
Moreover, compression makes it more challenging for adversaries to reverse-engineer the model architecture or
extract sensitive information. Furthermore, our strategy, involving the creation of an ensemble of experts with
stochastic weights, a random selection of compressed-based models, and training across different segments of
datasets, enhances the model’s resistance to adversarial attacks. This is primarily because attackers find it increas-
ingly difficult to predict how the model combines its predictions, bolstering its security. In our future research
endeavors, we intend to expand the applicability of our compression approach. This expansion will involve
conducting experiments with diverse pre-trained models spanning various domains.

Data availability
The datasets used during the current study are available in the GitHub repositories: Clickbait dataset (CB) in
https://​github.​com/​ankes​hanand/​deep-​click​bait-​detec​tion, Hate Speech dataset (HS) in https://​github.​com/t-​
david​son/​hate-​speech-​and-​offen​sive-​langu​age, and Movie Reviews dataset (MR) in https://​github.​com/​shekh​
argul​ati/​senti​ment-​analy​sis-​python/​tree/​master/​polar​ity-​data/​rt-​polar​ityda​ta.

Received: 9 December 2023; Accepted: 4 March 2024

References
	 1.	 Wallace, E., Feng, S., Kandpal, N., Gardner, M. & Singh, S. Universal adversarial triggers for attacking and analyzing NLP. in Pro-

ceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP) 2153–2162 (Association for Computational Linguistics, 2019). https://​doi.​org/​10.​
18653/​v1/​D19-​1221.

	 2.	 Zhai, Z., Li, P. & Feng, S. State of the art on adversarial attacks and defenses in graphs. Neural Comput. Appl. 35, 18851–18872
(2023).

	 3.	 Kuzlu, M., Catak, F. O., Cali, U., Catak, E. & Guler, O. The adversarial security mitigations of mmWave beamforming prediction
models using defensive distillation and adversarial retraining. http://​arxiv.​org/​abs/​2202.​08185 (2022).

	 4.	 Kariyappa, S. & Qureshi, M. K. Improving adversarial robustness of ensembles with diversity training. http://​arxiv.​org/​abs/​1901.​
09981 (2019).

	 5.	 Yang, J., Li, Z., Liu, S., Hong, B. & Wang, W. Joint contrastive learning and frequency domain defense against adversarial examples.
Neural Comput. Appl. 35, 18623–18639 (2023).

	 6.	 Pang, T., Xu, K., Du, C., Chen, N. & Zhu, J. Improving adversarial robustness via promoting ensemble diversity. http://​arxiv.​org/​
abs/​1901.​08846 (2019).

	 7.	 Zhuo, M., Liu, L., Zhou, S. & Tian, Z. Survey on security issues of routing and anomaly detection for space information networks.
Sci. Rep. 11, 22261 (2021).

	 8.	 Zhao, W., Alwidian, S. & Mahmoud, Q. H. Adversarial training methods for deep learning: A systematic review. Algorithms 15,
283 (2022).

	 9.	 Talaei Khoei, T., Ould Slimane, H. & Kaabouch, N. Deep learning: Systematic review, models, challenges, and research directions.
Neural Comput. Appl. https://​doi.​org/​10.​1007/​s00521-​023-​08957-4 (2023).

	10.	 Guo, F. et al. Detecting adversarial examples via prediction difference for deep neural networks. Inf. Sci. 501, 182–192 (2019).
	11.	 Zhan, D. et al. Towards robust CNN-based malware classifiers using adversarial examples generated based on two saliency simi-

larities. Neural Comput. Appl. 35, 17129–17146 (2023).
	12.	 Le, T., Park, N. & Lee, D. SHIELD: Defending textual neural networks against multiple black-box adversarial attacks with stochastic

multi-expert patcher. in Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers) 6661–6674 (Association for Computational Linguistics, Dublin, Ireland, 2022). https://​doi.​org/​10.​18653/​v1/​2022.​acl-​long.​
459.

	13.	 Lee, L. et al. Efficient exploration via state marginal matching. http://​arxiv.​org/​abs/​1906.​05274 (2020).
	14.	 Jiao, X. et al. TinyBERT: Distilling BERT for natural language understanding. in findings of the association for computational lin-

guistics: EMNLP 2020 4163–4174 (Association for Computational Linguistics, Online, 2020). https://​doi.​org/​10.​18653/​v1/​2020.​
findi​ngs-​emnlp.​372.

	15.	 Guo, J., Chen, D. & Wang, C. Online cross-layer knowledge distillation on graph neural networks with deep supervision. Neural
Comput. Appl. 35, 22359–22374 (2023).

	16.	 Hussain, M. et al. Transfer learning-based quantized deep learning models for nail melanoma classification. Neural Comput. Appl.
35, 22163–22178 (2023).

	17.	 Tao, C. et al. Compression of generative pre-trained language models via quantization. in Proceedings of the 60th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers) 4821–4836 (Association for Computational Linguistics,
Dublin, Ireland, 2022). https://​doi.​org/​10.​18653/​v1/​2022.​acl-​long.​331.

https://github.com/ankeshanand/deep-clickbait-detection
https://github.com/t-davidson/hate-speech-and-offensive-language
https://github.com/t-davidson/hate-speech-and-offensive-language
https://github.com/shekhargulati/sentiment-analysis-python/tree/master/polarity-data/rt-polaritydata
https://github.com/shekhargulati/sentiment-analysis-python/tree/master/polarity-data/rt-polaritydata
https://doi.org/10.18653/v1/D19-1221
https://doi.org/10.18653/v1/D19-1221
http://arxiv.org/abs/2202.08185
http://arxiv.org/abs/1901.09981
http://arxiv.org/abs/1901.09981
http://arxiv.org/abs/1901.08846
http://arxiv.org/abs/1901.08846
https://doi.org/10.1007/s00521-023-08957-4
https://doi.org/10.18653/v1/2022.acl-long.459
https://doi.org/10.18653/v1/2022.acl-long.459
http://arxiv.org/abs/1906.05274
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://doi.org/10.18653/v1/2022.acl-long.331

23

Vol.:(0123456789)

Scientific Reports | (2024) 14:6420 | https://doi.org/10.1038/s41598-024-56259-z

www.nature.com/scientificreports/

	18.	 Edalati, A. et al. Kronecker Decomposition for GPT Compression. in Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers) 219–226 (Association for Computational Linguistics, Dublin, Ireland, 2022).
https://​doi.​org/​10.​18653/​v1/​2022.​acl-​short.​24.

	19.	 Song, K. et al. LightPAFF: A Two-stage distillation framework for pre-training and fine-tuning. http://​arxiv.​org/​abs/​2004.​12817
(2020).

	20.	 Chen, Y., Su, J. & Wei, W. Multi-granularity textual adversarial attack with behavior cloning. in Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Processing 4511–4526 (Association for Computational Linguistics, Online and Punta
Cana, Dominican Republic, 2021). https://​doi.​org/​10.​18653/​v1/​2021.​emnlp-​main.​371.

	21.	 Xie, Z. et al. Identifying adversarial attacks on text classifiers. http://​arxiv.​org/​abs/​2201.​08555 (2022).
	22.	 Zeng, G. et al. OpenAttack: An open-source textual adversarial attack toolkit. in Proceedings of the 59th Annual Meeting of the

Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing: System
Demonstrations 363–371 (2021). https://​doi.​org/​10.​18653/​v1/​2021.​acl-​demo.​43.

	23.	 Li, J., Ji, S., Du, T., Li, B. & Wang, T. TextBugger: Generating adversarial text against real-world applications. in Proceedings 2019
Network and Distributed System Security Symposium (2019). https://​doi.​org/​10.​14722/​ndss.​2019.​23138.

	24.	 Eger, S. et al. Text processing like humans do: Visually attacking and shielding NLP systems. http://​arxiv.​org/​abs/​1903.​11508 (2020).
	25.	 Gao, J., Lanchantin, J., Soffa, M. L. & Qi, Y. Black-box generation of adversarial text sequences to evade deep learning classifiers.

in 2018 IEEE Security and Privacy Workshops (SPW) 50–56 (IEEE, San Francisco, CA, 2018). https://​doi.​org/​10.​1109/​SPW.​2018.​
00016.

	26.	 Jin, D., Jin, Z., Zhou, J. T. & Szolovits, P. Is BERT really robust? A strong baseline for natural language attack on text classification
and entailment. http://​arxiv.​org/​abs/​1907.​11932 (2020).

	27.	 Ebrahimi, J., Rao, A., Lowd, D. & Dou, D. HotFlip: White-box adversarial examples for text classification. http://​arxiv.​org/​abs/​
1712.​06751 (2018).

	28.	 Ren, S., Deng, Y., He, K. & Che, W. Generating natural language adversarial examples through probability weighted word saliency. in
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics 1085–1097 (Association for Computational
Linguistics, Florence, Italy, 2019). https://​doi.​org/​10.​18653/​v1/​P19-​1103.

	29.	 Alzantot, M. et al. Generating natural language adversarial examples. in Proceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing 2890–2896 (Association for Computational Linguistics, Brussels, Belgium, 2018). https://​doi.​org/​
10.​18653/​v1/​D18-​1316.

	30.	 Zang, Y. et al. Word-level textual adversarial attacking as combinatorial optimization. Proc. 58th Annu. Meet. Assoc. Comput.
Linguist. 6066–6080 (2020). https://​doi.​org/​10.​18653/​v1/​2020.​acl-​main.​540.

	31.	 Li, L., Ma, R., Guo, Q., Xue, X. & Qiu, X. BERT-ATTACK: Adversarial attack against BERT using BERT.
	32.	 Garg, S. & Ramakrishnan, G. BAE: BERT-based adversarial examples for text classification. in Proceedings of the 2020 Conference

on Empirical Methods in Natural Language Processing (EMNLP) 6174–6181 (Association for Computational Linguistics, Online,
2020). https://​doi.​org/​10.​18653/​v1/​2020.​emnlp-​main.​498.

	33.	 Ribeiro, M. T., Singh, S. & Guestrin, C. Semantically equivalent adversarial rules for debugging NLP models. in Proceedings of the
56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) 856–865 (Association for Compu-
tational Linguistics, Melbourne, Australia, 2018). https://​doi.​org/​10.​18653/​v1/​P18-​1079.

	34.	 Iyyer, M., Wieting, J., Gimpel, K. & Zettlemoyer, L. Adversarial example generation with syntactically controlled paraphrase
networks. in Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Papers) 1875–1885 (Association for Computational Linguistics, New Orleans,
Louisiana, 2018). https://​doi.​org/​10.​18653/​v1/​N18-​1170.

	35.	 Zhao, Z., Dua, D. & Singh, S. Generating natural adversarial examples. http://​arxiv.​org/​abs/​1710.​11342 (2018).
	36.	 Zhang, H., Cisse, M., Dauphin, Y. N. & Lopez-Paz, D. mixup: Beyond empirical risk minimization. http://​arxiv.​org/​abs/​1710.​09412

(2018).
	37.	 Miyato, T., Dai, A. M. & Goodfellow, I. Adversarial training methods for semi-supervised text classification. http://​arxiv.​org/​abs/​

1605.​07725 (2021).
	38.	 Pruthi, D., Dhingra, B. & Lipton, Z. C. Combating adversarial misspellings with robust word recognition. http://​arxiv.​org/​abs/​

1905.​11268 (2019).
	39.	 Al Musawi, A. F., Roy, S. & Ghosh, P. Examining indicators of complex network vulnerability across diverse attack scenarios. Sci.

Rep. 13, 18208 (2023).
	40.	 Yang, G., Ye, Q. & Xia, J. Unbox the black-box for the medical explainable AI via multi-modal and multi-centre data fusion: A

mini-review, two showcases and beyond. Inf. Fusion 77, 29–52 (2022).
	41.	 Zhang, J., Zhang, Y., Ji, D. & Liu, M. Multi-task and multi-view training for end-to-end relation extraction. Neurocomputing 364,

245–253 (2019).
	42.	 Zuech, R., Hancock, J. & Khoshgoftaar, T. M. Detecting web attacks using random undersampling and ensemble learners. J. Big

Data 8, 75 (2021).
	43.	 Huijben, I. A. M., Kool, W., Paulus, M. B. & van Sloun, R. J. G. A review of the gumbel-max trick and its extensions for discrete

stochasticity in machine learning. http://​arxiv.​org/​abs/​2110.​01515 (2022).
	44.	 Kraidia, I., Ghenai, A. & Zeghib, N. HST-Detector: A multimodal deep learning system for twitter spam detection. in Computa-

tional Intelligence, Data Analytics and Applications (eds. García Márquez, F. P., Jamil, A., Eken, S. & Hameed, A. A.) vol. 643 91–103
(Springer International Publishing, Cham, 2023).

	45.	 Kraidia, I., Ghenai, A. & Zeghib, N. A multimodal spam filtering system for multimedia messaging service. in International Confer-
ence on Artificial Intelligence Science and Applications (CAISA) (eds. Abd Elaziz, M., Medhat Gaber, M., El-Sappagh, S., Al-qaness,
M. A. A. & Ewees, A. A.) vol. 1441 121–131 (Springer Nature Switzerland, Cham, 2023).

	46.	 Ding, N. et al. Delta tuning: A comprehensive study of parameter efficient methods for pre-trained language models. http://​arxiv.​
org/​abs/​2203.​06904 (2022).

	47.	 Ding, N. et al. Parameter-efficient fine-tuning of large-scale pre-trained language models. Nat. Mach. Intell. 5, 220–235 (2023).
	48.	 Duchi, J., Hazan, E. & Singer, Y. Adaptive subgradient methods for online learning and stochastic optimization.
	49.	 Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. http://​arxiv.​org/​abs/​1412.​6980 (2017).
	50.	 Zeiler, M. D. ADADELTA: An adaptive learning rate method. http://​arxiv.​org/​abs/​1212.​5701 (2012).
	51.	 Guan, L. AdaPlus: Integrating Nesterov momentum and precise stepsize adjustment on AdamW basis. http://​arxiv.​org/​abs/​2309.​

01966 (2023).
	52.	 Xie, X., Zhou, P., Li, H., Lin, Z. & Yan, S. Adan: Adaptive Nesterov momentum algorithm for faster optimizing deep models. http://​

arxiv.​org/​abs/​2208.​06677 (2023).
	53.	 Ghasemi, M. et al. Phasor particle swarm optimization: A simple and efficient variant of PSO. Soft Comput. 23, 9701–9718 (2019).
	54.	 Xia, X. et al. A fitness-based multi-role particle swarm optimization. Swarm Evol. Comput. 44, 349–364 (2019).
	55.	 Xia, X., Gui, L. & Zhan, Z.-H. A multi-swarm particle swarm optimization algorithm based on dynamical topology and purposeful

detecting. Appl. Soft Comput. 67, 126–140 (2018).
	56.	 Xia, X. et al. An expanded particle swarm optimization based on multi-exemplar and forgetting ability. Inf. Sci. 508, 105–120

(2020).

https://doi.org/10.18653/v1/2022.acl-short.24
http://arxiv.org/abs/2004.12817
https://doi.org/10.18653/v1/2021.emnlp-main.371
http://arxiv.org/abs/2201.08555
https://doi.org/10.18653/v1/2021.acl-demo.43
https://doi.org/10.14722/ndss.2019.23138
http://arxiv.org/abs/1903.11508
https://doi.org/10.1109/SPW.2018.00016
https://doi.org/10.1109/SPW.2018.00016
http://arxiv.org/abs/1907.11932
http://arxiv.org/abs/1712.06751
http://arxiv.org/abs/1712.06751
https://doi.org/10.18653/v1/P19-1103
https://doi.org/10.18653/v1/D18-1316
https://doi.org/10.18653/v1/D18-1316
https://doi.org/10.18653/v1/2020.acl-main.540
https://doi.org/10.18653/v1/2020.emnlp-main.498
https://doi.org/10.18653/v1/P18-1079
https://doi.org/10.18653/v1/N18-1170
http://arxiv.org/abs/1710.11342
http://arxiv.org/abs/1710.09412
http://arxiv.org/abs/1605.07725
http://arxiv.org/abs/1605.07725
http://arxiv.org/abs/1905.11268
http://arxiv.org/abs/1905.11268
http://arxiv.org/abs/2110.01515
http://arxiv.org/abs/2203.06904
http://arxiv.org/abs/2203.06904
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1212.5701
http://arxiv.org/abs/2309.01966
http://arxiv.org/abs/2309.01966
http://arxiv.org/abs/2208.06677
http://arxiv.org/abs/2208.06677

24

Vol:.(1234567890)

Scientific Reports | (2024) 14:6420 | https://doi.org/10.1038/s41598-024-56259-z

www.nature.com/scientificreports/

	57.	 Frantar, E. & Alistarh, D. SparseGPT: Massive language models can be accurately pruned in one-shot. http://​arxiv.​org/​abs/​2301.​
00774 (2023).

	58.	 Xu, C. & McAuley, J. A survey on model compression and acceleration for pretrained language models. Proc. AAAI Conf. Artif.
Intell. 37, 10566–10575 (2023).

	59.	 Dokuz, Y. & Tufekci, Z. Mini-batch sample selection strategies for deep learning based speech recognition. Appl. Acoust. 171,
107573 (2021).

	60.	 Kennedy, J. & Eberhart, R. Particle swarm optimization. in Proceedings of ICNN’95—International Conference on Neural Networks
vol. 4 1942–1948 (IEEE, Perth, WA, Australia, 1995).

	61.	 Zulu, E., Hara, R. & Kita, H. An efficient hybrid particle swarm and gradient descent method for the estimation of the hosting
capacity of photovoltaics by distribution networks. Energies 16, 5207 (2023).

	62.	 Kassoul, K., Zufferey, N., Cheikhrouhou, N. & Brahim Belhaouari, S. Exponential particle swarm optimization for global optimiza-
tion. IEEE Access 10, 78320–78344 (2022).

	63.	 Epitropakis, M. G., Plagianakos, V. P. & Vrahatis, M. N. Evolving cognitive and social experience in Particle Swarm Optimization
through Differential Evolution. in IEEE Congress on Evolutionary Computation 1–8 (IEEE, Barcelona, Spain, 2010). https://​doi.​
org/​10.​1109/​CEC.​2010.​55859​67.

	64.	 Huang, K. & Pu, S. CEDAS: A compressed decentralized stochastic gradient method with improved convergence. http://​arxiv.​org/​
abs/​2301.​05872 (2023).

	65.	 Kucharavy, A., Guerraoui, R. & Dolamic, L. Evolutionary algorithms in the light of SGD: Limit equivalence, minima flatness, and
transfer learning. http://​arxiv.​org/​abs/​2306.​09991 (2023).

	66.	 Anand, A., Chakraborty, T. & Park, N. We used neural networks to detect Clickbaits: You won’t believe what happened Next! http://​
arxiv.​org/​abs/​1612.​01340 (2019).

	67.	 Zhang, Z. & Luo, L. Hate speech detection: A solved problem? The challenging case of long tail on Twitter. ArXiv180303662 Cs
(2018).

	68.	 Pang, B. & Lee, L. Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales. in Proceed-
ings of the 43rd Annual Meeting on Association for Computational Linguistics - ACL ’05 115–124 (Association for Computational
Linguistics, Ann Arbor, Michigan, 2005). https://​doi.​org/​10.​3115/​12198​40.​12198​55.

	69.	 Morris, J. et al. TextAttack: A framework for adversarial attacks, data augmentation, and adversarial training in NLP. in Proceed-
ings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations 119–126 (Association
for Computational Linguistics, Online, 2020). https://​doi.​org/​10.​18653/​v1/​2020.​emnlp-​demos.​16.

	70.	 Zhang, C., Ding, S. & Du, W. Broad stochastic configuration network for regression. Knowl.-Based Syst. 243, 108403 (2022).
	71.	 Sturm, D. & Moazeni, S. Scalable coherent optical crossbar architecture using PCM for AI acceleration. in 2023 Design, Automation

& Test in Europe Conference & Exhibition (DATE) 1–6 (IEEE, Antwerp, Belgium, 2023). https://​doi.​org/​10.​23919/​DATE5​6975.​
2023.​10137​248.

	72.	 HuggingFace Perplexity Calculation. https://​huggi​ngface.​co/​docs/​trans​forme​rs/​perpl​exity (2022).
	73.	 Radford, A. et al. Language models are unsupervised multitask learners.
	74.	 Bonyadi, M. R. A theoretical guideline for designing an effective adaptive particle swarm. IEEE Trans. Evol. Comput. 24, 57–68

(2020).
	75.	 Le, T., Park, N. & Lee, D. A sweet rabbit hole by DARCY: Using honeypots to detect universal trigger’s adversarial attacks. http://​

arxiv.​org/​abs/​2011.​10492 (2021).
	76.	 Keller, Y., Mackensen, J. & Eger, S. BERT-Defense: A probabilistic model based on BERT to combat cognitively inspired ortho-

graphic adversarial attacks. http://​arxiv.​org/​abs/​2106.​01452 (2021).
	77.	 Zhou, Y., Zheng, X., Hsieh, C.-J., Chang, K.-W. & Huang, X. Defense against synonym substitution-based adversarial attacks via

Dirichlet Neighborhood ensemble. in Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers) 5482–5492 (Association for
Computational Linguistics, Online, 2021). https://​doi.​org/​10.​18653/​v1/​2021.​acl-​long.​426.

	78.	 Sahu, S. & Goyal, P. Enhancing transformer for video understanding using gated multi-level attention and temporal adversarial
training. ArXiv210310043 Cs (2021).

	79.	 Herbold, S., Hautli-Janisz, A., Heuer, U., Kikteva, Z. & Trautsch, A. A large-scale comparison of human-written versus ChatGPT-
generated essays. Sci. Rep. 13, 18617 (2023).

	80.	 Shipard, J., Wiliem, A., Thanh, K. N., Xiang, W. & Fookes, C. Diversity is definitely needed: Improving model-agnostic zero-shot
classification via stable diffusion. in 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)
769–778 (IEEE, Vancouver, BC, Canada, 2023). https://​doi.​org/​10.​1109/​CVPRW​59228.​2023.​00084.

	81.	 Ding, S., Zhang, C., Zhang, J., Guo, L. & Ding, L. Incremental multilayer broad learning system with stochastic configuration
algorithm for regression. IEEE Trans. Cogn. Dev. Syst. 15, 877–886 (2023).

	82.	 Liu, C. C., Pfeiffer, J., Vulić, I. & Gurevych, I. Improving generalization of adapter-based cross-lingual transfer with scheduled
unfreezing. http://​arxiv.​org/​abs/​2301.​05487 (2023).

Acknowledgements
We extend our heartfelt appreciation to Qatar National Library for their invaluable support in covering the
publication charge.

Author contributions
Insaf Kraidia: conceptualization, methodology, resources, investigation, software, writing—original draft,
writing—review & editing. Afifa Ghenai: supervision, writing—review & editing. Samir Brahim Belhaouari:
conceptualization, investigation, methodology, data curation, supervision, validation, writing—original draft,
writing—review & editing.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to I.K. or S.B.B.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

http://arxiv.org/abs/2301.00774
http://arxiv.org/abs/2301.00774
https://doi.org/10.1109/CEC.2010.5585967
https://doi.org/10.1109/CEC.2010.5585967
http://arxiv.org/abs/2301.05872
http://arxiv.org/abs/2301.05872
http://arxiv.org/abs/2306.09991
http://arxiv.org/abs/1612.01340
http://arxiv.org/abs/1612.01340
https://doi.org/10.3115/1219840.1219855
https://doi.org/10.18653/v1/2020.emnlp-demos.16
https://doi.org/10.23919/DATE56975.2023.10137248
https://doi.org/10.23919/DATE56975.2023.10137248
https://huggingface.co/docs/transformers/perplexity
http://arxiv.org/abs/2011.10492
http://arxiv.org/abs/2011.10492
http://arxiv.org/abs/2106.01452
https://doi.org/10.18653/v1/2021.acl-long.426
https://doi.org/10.1109/CVPRW59228.2023.00084
http://arxiv.org/abs/2301.05487
www.nature.com/reprints

25

Vol.:(0123456789)

Scientific Reports | (2024) 14:6420 | https://doi.org/10.1038/s41598-024-56259-z

www.nature.com/scientificreports/

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2024

http://creativecommons.org/licenses/by/4.0/

	Defense against adversarial attacks: robust and efficient compressed optimized neural networks
	Related work
	The proposed methodology
	Batch-cumulative exponential Particle Swarm Optimization (BC-ExPSO)
	Weights compression of the deep neural network
	Stochastic Multi-expert approach (SME)
	Multi-version compressed neural network training (MVC-NNT)

	Experimental evaluation
	Datasets
	Metrics
	Experimental setting
	Results
	Discussion
	Limitations and future work

	Conclusion
	References
	Acknowledgements

