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Machine learning‑based algorithms 
applied to drug prescriptions 
and other healthcare services 
in the Sicilian claims database 
to identify acromegaly as a model 
for the earlier diagnosis of rare 
diseases
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Acromegaly is a rare disease characterized by a diagnostic delay ranging from 5 to 10 years from 
the symptoms’ onset. The aim of this study was to develop and internally validate machine‑learning 
algorithms to identify a combination of variables for the early diagnosis of acromegaly. This 
retrospective population‑based study was conducted between 2011 and 2018 using data from the 
claims databases of Sicily Region, in Southern Italy. To identify combinations of potential predictors 
of acromegaly diagnosis, conditional and unconditional penalized multivariable logistic regression 
models and three machine learning algorithms (i.e., the Recursive Partitioning and Regression 
Tree, the Random Forest and the Support Vector Machine) were used, and their performance was 
evaluated. The random forest (RF) algorithm achieved the highest Area under the ROC Curve value 
of 0.83 (95% CI 0.79–0.87). The sensitivity in the test set, computed at the optimal threshold of 
predicted probabilities, ranged from 28% for the unconditional logistic regression model to 69% 
for the RF. Overall, the only diagnosis predictor selected by all five models and algorithms was the 
number of immunosuppressants‑related pharmacy claims. The other predictors selected by at least 
two models were eventually combined in an unconditional logistic regression to develop a meta‑score 
that achieved an acceptable discrimination accuracy (AUC = 0.71, 95% CI 0.66–0.75). Findings of this 
study showed that data‑driven machine learning algorithms may play a role in supporting the early 
diagnosis of rare diseases such as acromegaly.

Acromegaly is a chronic and progressive endocrine rare disease characterized by an overproduction of growth-
hormone (GH) and elevated insulin-like growth factor 1 (IGF-1) levels, typically resulting from a GH-secreting 
pituitary  adenoma1. Acromegaly globally affects around 6 per 100,000 persons, with an incidence of 3.8 cases per 
million per  year2. Prevalence of acromegaly in Italy ranges from 6.9 to 9.7 cases per 100,000  persons3–5. Clinical 
manifestations of acromegaly mainly include morphological changes, cardiovascular disorders, osteoarticular 
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and metabolic manifestations, sleep apnea and respiratory  diseases6,7. The recommended diagnostic test for 
acromegaly consists of serum IGF-1 levels measurement and, in case of elevated or equivocal IGF-1, the diagnosis 
must be confirmed with lack of suppression of GH to < 1 μg/L, following documented hyperglycemia during 
an oral glucose load. Biochemical diagnosis should be thereafter confirmed by radiological evaluation, with 
magnetic resonance imaging (MRI) being the gold standard, replaced by computed tomography (CT) scan if 
MRI is contraindicated or  unavailable8.

A survey conducted in 2013 reported that rare patients need, on average, more than 5 years to receive a 
correct diagnosis, usually after having received around three misdiagnoses and inappropriate  treatments9. Late 
diagnosis in rare diseases is often due to insufficient knowledge and lack of awareness of patients/clinicians or 
to the heterogeneity of rare disease  manifestations10, thus increasing the difficulty for the clinicians to make a 
correct diagnosis. Concerning acromegaly, despite the improvement in diagnostic techniques over the years, it is 
often diagnosed 5—10 years after onset  symptoms11,12, mainly due to its slow onset and its non-specific signs and 
symptoms which lead patients to refer to different medical professionals who may fail to diagnose  acromegaly13. 
The delay in diagnosis may have an extremely negative impact on different social and health aspects, including 
long-term disease prognosis, the treatment success rate, psychosocial  impairment14,15. (e.g., depression, daytime 
sleepiness, sleep disturbances, disturbances of body image, and quality of life) and  mortality6,11,12,16. Therefore, 
reducing the diagnostic delay and anticipating the surgical/pharmacological treatment of the disease is a crucial 
point in the management of acromegalic patients.

Especially in the field of rare diseases, artificial intelligence (AI) and machine learning techniques, which 
are increasingly applied in medicine and  healthcare17, might help physicians to earlier identify rare diseases 
and timely refer patients to specialist centers. Indeed, computers can play a key role by collecting and learn-
ing considerable quantities of digital information, especially concerning prescriptions of drugs and diagnostic 
tests. This large amount of information collected during daily routine care can be useful features for a machine 
learning model to find a statistical pattern that can help physicians identifying conditions that they usually do 
not encounter frequently in  practice17,18.

The aim of the study was to develop, internally validate, and compare different machine-learning algorithms to 
identify a combination of drug prescriptions and other healthcare services for the early diagnosis of acromegaly 
in a Southern Italian population using administrative claims databases.

Methods
Data source
This Italian, retrospective, population-based study was conducted between January 2011 and December 2018 
using data from the fully anonymized claims databases of Sicily Region, with an average of 5,031,655 inhabitants. 
This database contains demographic and medical data that is collected through services provided by the Italian 
National Health Service (NHS). It includes information on demographics of residents in Sicily Region, outpatient 
pharmacy claims, hospital discharges, exemptions from co-payment, referrals for outpatient diagnostic tests and 
specialist’s visits database. The dispensed drugs were coded using the Anatomical Therapeutic Clinical (ATC) 
classification system and the Italian Marketing Authorization Code (AIC), while comorbidities were coded 
through the ninth revision of the International Classification of Diseases—Clinical Modification (ICD-9-CM).

Acromegaly cohort definition
Using a validated coding  algorithm19, acromegaly cases were identified as those subjects who had claims sugges-
tive of acromegaly in at least two of the following data sources: (i) hospital discharge records (ICD-9-CM code: 
253.0); (ii) exemption from co-payment (exemption codes: 001, 253.0); (iii) pharmacy claims for somatostatin 
analogues (i.e., octreotide, ATC: H01CB02; lanreotide, ATC: H01CB03; pasireotide, ATC: H01CB05) and/or 
pegvisomant (ATC: H01AX01); (iv) prescriptions for facial bone nuclear magnetic resonance (88.91.3–88.91.4) 
and/or cranial CT (87.03–87.03.1) and/or somatotropic hormone measurement (88.97, 90.35.1) and/or IGF-1 
levels measurement (90.40.6), during the specialist examinations.

For each identified acromegaly case, the date of the first claim for at least one of the above-mentioned condi-
tions was considered as the index date (ID).

Definition and selection of controls (matching criteria)
Cases were matched with up to 10 controls (not affected by acromegaly) extracted from the same data source 
by date of birth (± 2 years), gender, and database history using the exact method (i.e., matching each case to all 
possible controls with the same values on the two above mentioned matching features). Database history indicates 
the timeframe elapsing between the first claim of the patient in the database and his/her index date. Controls 
were selected from a random sample of almost 180,000 subjects registered in Sicilian claims databases. For each 
paired control, the same ID of the corresponding matched case was assigned. All controls who deceased prior 
to the ID of the corresponding matched case and all controls with no claims in any of the data sources before 
the ID of the corresponding matched case were excluded from the matching set. The matching procedure was 
performed by using a user-defined macro written in standard SAS language (SAS Software, Release 9.4, SAS 
Institute, Cary, NC, USA). The SAS code is available upon request.

Features list
To predict acromegaly diagnosis, the following features (i.e., predictors) were considered: (1) the presence of 
some pre-existing comorbidities associated to the acromegaly (identified through specific coding algorithms 
reported in Supplementary Table 1); (2) the presence and the frequency of drug dispensing (both at II and V ATC 
level, separately) in the outpatient pharmacy claims database; (3) the presence and the frequency of specialist 
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visits or laboratory/diagnostic tests from the diagnostic tests and specialist’s visits database; (4) the presence of 
any exemption from co-payment for each identified code separately; (5) the presence of any hospitalization for 
each identified diagnostic code separately. The presence of comorbidities, exemptions from co-payment and 
hospitalizations was assessed any time prior to ID, while drug dispensing and specialist visits or laboratory/
diagnostic tests were computed at different time windows before the ID.

Time window selection
The database history among cases and controls in the Sicilian Regional claims database, considering the different 
data sources separately (Supplementary Fig. 1). As more than 50% of the cases and controls had at least 2 years 
(i.e., the median value of the time distribution rounded to the nearest integer) of database history, especially 
concerning pharmacy claims and specialist visits or laboratory/diagnostic tests data sources, the time window 
for the main analysis was set up at 2 years. As for the hospital discharges and exemption from co-payment 
claims data, the database history was longest in the controls (i.e., more than 75% of them had at least one year 
of database history); on the other hand, about 75% (upper quartile range) of both cases and controls had about 
3 and 5 years of database history in the two data sources, respectively. For this reason, timeframes of 1, 3, 4 and 
5 years were also evaluated in the sensitivity analyses.

Descriptive statistics and univariable analysis
Continuous variables were reported as mean ± standard deviation (SD), median along with interquartile range 
(IQR) whereas categorical variables as absolute and relative frequencies (percentages).

The association between each candidate predictor and the presence of acromegaly was assessed using over-
dispersed Poisson regression or conditional logistic regression models for count and binary predictors, respec-
tively. Conditional logistic regression is an extension of the classical (i.e., unconditional) logistic regression that 
allows for stratification due to matching sets. Mean ratios and odds ratios were estimated from the two models 
respectively, along with their 95% confidence intervals (CIs) and p-values have been corrected for multiple test-
ing, following the Bonferroni method. Statistical significance was claimed for p < 0.05.

Development and validation of machine learning predictive algorithms
To identify possible linear and non-linear combinations of candidate predictors, associated with the diagnosis of 
acromegaly, two different logistic regression models and three machine learning algorithms were performed: (1) 
Cross-validated multivariable conditional logistic model with Least Absolute Shrinkage and Selection Operator 
(LASSO) penalty (CLOGIT); (2) Cross-validated multivariable unconditional logistic model with LASSO pen-
alty; (3) Recursive PArtitioning and Regression Tree (RPART); (4) Random Forest (RF), using the probabilistic 
 version20; (5) Support Vector Machine (SVM), using the probabilistic version. In the probabilistic version, the 
algorithms assign to each subject an individual predicted probability of having the disease diagnosis.

Basically, each proposed predictive model or algorithm identifies the most strongly associated predictors 
(among all candidate ones) and return either a vector of estimated individual probability of having the disease 
(i.e., unconditional logistic regression model, RPART, probabilistic RF and probabilistic SVM) or a binary clas-
sification (i.e., CLOGIT). From now on, for the sake of simplicity, both models and algorithms were referred to 
as ’algorithms’.

Each algorithm was developed (i.e., built) exclusively on a random sample of the original dataset (i.e., the 
training set, defined by including a random selection of about 70% of the original observations and preserving 
the integrity of the case–control matching set) while its performance was always assessed in the remaining 30% 
of data not included in the training set (i.e., test set). All the algorithms were built on the same training set and 
their performance was evaluated on the same test set. During the training step, the problem of overfitting the 
algorithm to the observed data may arise. This problem was only and exclusively addressed during the algorithm 
training and not during its validation (testing). To minimize the overfitting of the algorithm, different actions 
were taken depending on the type of algorithm considered: a tenfold Cross-Validation (CV) of the training 
dataset was performed both for LASSO and RPART to robustly select all the features and prune trees, respec-
tively. Also in the SVM, a tenfold CV was performed to detect the optimal cost and gamma parameters which 
maximize the accuracy whereas, in the RF, a sort of internal CV known as “out-of-bag” (OOB) estimation was 
used to assess the prediction accuracy of each tree of the forest in unseen data. In this process, each tree of the 
forest was built using a different bootstrap sample from the training dataset. About one-third of the observa-
tions are left out of the bootstrap sample and not used in the building of each tree. This OOB data is then used 
to get a running unbiased estimate of the prediction error as trees are added to the forest and to get estimates of 
variable importance. Furthermore, as the number of cases was extremely lower than the number of controls, in 
order to account for this sample size imbalance and increase the accuracy in correctly predicting the probability 
of detecting cases, different weights were allocated to cases and controls, only in the training dataset, when run-
ning both the tree-based (i.e., RPART and RF) and the SVM algorithms, following the inverse probability weight 
(IPW) method. For each algorithm, the optimal hyperparameters values were set after a “tuning phase”, choosing 
those that would minimize the CV error or maximize their performance following a grid search. Further details 
and peculiarities of the machine learning algorithms used for the early diagnosis of acromegaly are provided in 
Supplementary Document 1.

The performance of these algorithms was assessed in terms of discrimination (i.e., the ability of the algorithm 
to assign a higher probability of having the diagnosis of acromegaly in cases than in controls or, in presence 
of an algorithm that provides a binary classification, the ability of correctly classifying them) and in terms of 
calibration (i.e., the ability of the algorithm to assign predicted probabilities that are aligned with the observed 
frequencies). For those algorithms that return a vector of estimated individual probabilities, the discriminatory 
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ability was assessed by the area under the Receiver Operator Characteristic (ROC) curve (AUC) on these prob-
abilities (also referred to as the C-statistic), along with 95% CI computed using the DeLong method. A generally 
accepted approach suggests that an area under the ROC curve or C statistic of less than 0.70 is considered poor 
discrimination; between 0.70 to 0.79 is considered acceptable discrimination; between 0.80 to 0.89 is consid-
ered excellent discrimination and more than or equal to 0.90 is considered outstanding  discrimination21. The 
optimal threshold on predicted probabilities was detected in the ROC curve space as the one which maximizes 
the Youden index. The optimal threshold was also used to provide a binary classification for clinical purposes 
only (e.g., above the cut-off the subject would be classified as a case and below the cut-off as a control) and the 
following diagnostic measures were reported: sensitivity, specificity, positive predictive value (PPV), negative 
predictive value (NPV) and F-score. Moreover, the goodness of fit of the predicted probabilities (i.e., calibra-
tion) was assessed by the integrated calibration index (ICI)22 and is often considered a non-negligible feature 
of the algorithm (i.e., poorly calibrated algorithms will underestimate or overestimate the outcome of interest).

A comparative analysis of the performance of all algorithms was carried out and the best algorithm was 
defined as the one with the highest AUC (or Youden index where appropriate) in the test set and simultaneously 
using the fewest predictors (the most parsimonious). Finally, all predictors identified by at least two different 
algorithms were included in an unconditional multivariable logistic regression model to build a “meta-score” 
for the prediction of acromegaly diagnosis. This study was conducted and reported according to the Transparent 
Reporting of a multivariate prediction model for Individual Prediction or Diagnosis (TRIPOD)  guidelines23. All 
statistical analyses were carried out using the R Foundation for Statistical Computing software (ver. 4.0, packages: 
“clogitL1”, "glmnet","party", "ranger", “rpart”, “pROC”, “caret”, “rminer”).

Assessing the diagnostic accuracy of machine‑learning algorithms in absence of a gold stand‑
ard test
As stated above, as acromegaly cases were identified through the use of a validated coding  algorithm19, rather than 
a well-established gold standard test, they are subject to misclassification. As a result, measures of the diagnostic 
ability of machine-learning algorithms may be biased or inaccurate. The aim of this analysis was to quantify the 
bias in these estimates by comparing them with those that would have been obtained if the machine-learning 
algorithm had been evaluated against the gold standard test. Knowing the diagnostic ability (e.g., sensitivity and 
specificity) of the coding algorithm (i.e., that now acts as a “reference standard” test) and the diagnostic ability 
of a machine-learning algorithm against the reference standard test, it is possible to retrieve the sensitivity and 
specificity of the machine-learning algorithm by following the method proposed by  Habibzadeh24. The bias was 
defined as the absolute difference between the sensitivity (or specificity) observed and that which would have 
been found if the gold standard had been used and was also estimated with respect to specific combinations of 
sensitivity and specificity (i.e., from 0 to 100% by 25%) detectable in a ROC curve. Further details are provided 
in Supplementary Document 2.

Ethical approval
Analyses were conducted in accordance with the ethical standards of the institutional and national research 
committee and with the 1964 Helsinki Declaration and its later amendments. This study was approved by the 
Ethics Committee of the Azienda Ospedaliera Universitaria Integrata of Verona, Italy (Protocol number 55986, 
27th September 2021). Informed consent was not necessary as there was not direct interaction with subjects, as 
stated by the Italian Medicines Agency in “Determinazione AIFA 20 marzo 2008—Linee guida per la classificazione 
e conduzione degli studi osservazionali sui farmaci”.

Results
The target population identified in Sicilian Regional claims databases during the study period consisted of 
533 patients. These cases were matched to 5,255 controls. The median age at ID was 55.0 (IQR 45.0—67.0) 
years and about 54% were females (matching factors) in both groups. Diabetes mellitus was the most prevalent 
comorbidity among both cases and controls (22.1% vs 15.5%, respectively), followed by osteoporosis (6.2% vs 
5.2%, respectively) and cardiomyopathy (3.2 vs 0.2%, respectively). Demographics and baseline characteristics 
are shown in Table 1. Overall, the mean number (± SD) of pharmacy claims and specialist visits or laboratory/
diagnostic tests within 2 years prior to ID was higher for cases (39.4 ± 46.1 and 51.8 ± 76.1, respectively) than for 
controls (25.0 ± 37.9 and 27.2 ± 34.9, respectively), as well as the number of previous hospitalizations (Table 1).

As for the univariable analysis, the potential predictors most strongly associated with acromegaly are shown 
in Supplementary Table 2.

As for the machine-learning analysis, the training set included 373 cases and 3,676 controls, while the test set 
included 160 cases and 1,579 controls. Overall, the probabilistic RF achieved the highest discriminatory power 
in the test set, with an AUC of 0.83 (95% CI 0.79–0.87), followed by the RPART (AUC = 0.66, 95% CI 0.61–0.71), 
the unconditional logistic regression model (AUC = 0.64, 95% CI 0.60–0.67), the probabilistic SVM (AUC = 0.59, 
95% CI 0.53–0.64) and the CLOGIT (AUC = 0.62, 95% CI 0.57–0.67). When subjects were classified according 
to the optimal threshold of their predicted probabilities in the test set, models’ sensitivity ranged from 28% for 
the unconditional logistic regression model to 69% for the RF, while the specificity ranged from 60% for the 
probabilistic SVM to 99% for the unconditional logistic regression model (Fig. 1). Furthermore, the probabilistic 
RF achieved the highest classification accuracy (Youden index = 0.35). The number of predictors selected by the 
algorithms was: 5 for the unconditional logistic regression model, 12 for the CLOGIT, 10 for the RPART, 38 for 
the probabilistic RF and 14 for the probabilistic SVM. Among the 38 predictors identified by the probabilistic 
RF model, which yielded the highest diagnostic accuracy, the most important 10 ones according to the rela-
tive variable importance (RVIMP) were: the presence of co-payment exemptions codes related to hypertensive 
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disease [i.e., hypertension with organ damage (RVIMP: 100%) and hypertension without organ damage (RVIMP: 
84.3%)], permanent disability (RVIMP: 83.0%), glaucoma (RVIMP: 64.5%), inflammatory bowel diseases [i.e., 
ulcerative colitis and Crohn disease (RVIMP: 61.4%)] and chronic hepatitis (RVIMP: 55.2%); the number of 
pharmacy claims related to immunosuppressants (RVIMP: 84.8%); the presence of diabetes (RVIMP: 60.1%) 
as comorbidity; the request for chest CT scan (RVIMP: 59.8%) and routine chest radiography (RVIMP: 58.3%). 
Algorithms resulted well calibrated (ICI values in test set ranged from 0.03 for unconditional logistic regression 
model and SVM to 0.40 for the RF).

Table 1.  Demographic and clinical characteristics of identified patients with acromegaly (cases) and matched 
controls. Abbreviations: ID: Index Date; SD: Standard Deviation; IQR: Interquartile Range. Legend: *Chronic 
comorbidities (evaluated any time prior to ID); #Up to 10 controls were matched for each acromegaly case by 
date of birth (± 2 years) and gender. For each matched control, the same ID of the corresponding matched case 
was assigned.

Cases
N = 533

Controls#

N = 5,255

Matching factors

Age at ID (years)

Mean ± SD 55.0 ± 15.6 55.3 ± 15.3

Median [IQR] 55.0 [45.0–67.0] 55.0 [45.0–67.0]

Range 4–90 2–92

Age at ID classes (years)—N (%)

 < 18 10 (1.9) 102 (1.9)

18–44 116 (21.8) 1,120 (21.3)

45–64 253 (47.5) 2,475 (47.1)

65–80 137 (25.7) 1,374 (26.1)

 > 80 17 (3.2) 184 (3.5)

Gender—N (%)
Male 245 (46.0) 2,398 (45.6)

Female 288 (54.0) 2,857 (54.4)

Clinical characteristics

Comorbidities*—N (%)

Inflammatory bowel diseases 11 (2.1) 4 (0.1)

Colon polyp 3 (0.6) 6 (0.1)

Colon cancer 0 (0.0) 5 (0.1)

Rheumatoid arthritis 5 (0.9) 3 (0.1)

Osteoarthritis 5 (0.9) 25 (0.5)

Osteoporosis 33 (6.2) 272 (5.2)

Arthropathy/arthralgia/synovitis 1 (0.2) 3 (0.1)

Psoriatic arthritis 1 (0.2) 2 (0.0)

Carpal tunnel syndrome 1 (0.2) 0 (0.0)

Multiple sclerosis 11 (2.1) 1 (0.0)

Prophylaxis of organ rejection 13 (2.4) 1 (0.0)

Cardiomyopathy 17 (3.2) 8 (0.2)

Cardiac hypertrophy 2 (0.4) 2 (0.0)

Heart failure 6 (1.1) 49 (0.9)

Cardiac dysrhythmia/arrhythmia 12 (2.3) 87 (1.7)

Cerebrovascular disease 4 (0.8) 23 (0.4)

Diabetes mellitus 118 (22.1) 817 (15.5)

Sleep apnea 8 (1.5) 6 (0.1)

Chronic kidney disease 10 (1.9) 60 (1.1)

Menstrual abnormality 3 (0.6) 12 (0.2)

Hypopituitarism 4 (0.8) 0 (0.0)

Number of pharmacy claims and specialist visits or laboratory/diagnostic tests, within two years prior the ID

Individual pharmacy claims

Mean ± SD 39.4 ± 46.1 25.0 ± 37.9

Median [IQR] 23 [7–57] 8 [2-31]

Range 1–348 1- 329

Individual specialist visits or requested diagnostic/laboratory 
tests

Mean ± SD 51.8 ± 76.1 27.2 ± 34.9

Median [IQR] 25 [9–58.5] 15 [4-36]

Range 1–779 1–359

Presence of previous hospitalizations and exemption codes, any time prior the ID

 Previous hospitalizations—N (%) 139 (26.1) 785 (14.9)

 Prior assignment of exemption codes—N (%) 186 (34.9) 2,082 (39.6)
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The full list of predictors selected by each algorithm, along with the classification rule that can be used to 
predict the presence of acromegaly, is shown in Table 2.

The optimal values set for tuning parameters and thresholds for each predictive model and algorithm are 
shown in Supplementary Table 3.The structure of the R code used to perform machine learning algorithms is 
shown in Supplementary Document 3.

Overall, the only diagnosis predictor selected by all five algorithms was the number of immunosuppressants-
related pharmacy claims (II level ATC: L04). The other diagnosis predictors selected by at least two models were: 
the number of pharmacy claims related to agents acting on the renin-angiotensin system (II level ATC: C09), 
diuretics (II level ATC: C03), antibacterials for systemic use (II level ATC: J01) and thyroid therapy (II level ATC: 
H03); the presence of cardiomyopathy and diabetes as comorbidities; the presence of co-payment exemption 
codes related to permanent disability and hypertensive disease without organ damage; the request for chest CT 
scan, electrocardiogram, cortisol level dosing, and free thyroxine level dosing (Fig. 2).

The total frequency, number of claims and the mean number of claims per subject of each predictor identified 
by more than one predictive algorithm are shown in Table 3.

The predictors selected by ≥ 2 algorithms (13 features) were used to develop the meta-score, which yielded 
an AUC equal to 0.71 (95% CI 0.66–0.75) in the test set (Fig. 3).

The continuous predictors included in the meta-score were dichotomized because it was found that the 
model achieved a higher AUC than the one that included the original predictors. The optimal threshold value 
of this score, above which physicians should consider performing further investigations to assess the presence 
of acromegaly, was found to be equal to 0.08, achieving low sensitivity (40%) but high specificity (80%). In par-
ticular, the variables mostly associated with the diagnosis of acromegaly according to the meta-score were the 
number of immunosuppressants-related pharmacy claims, the presence of cardiomyopathy as comorbidity and 
the requests for chest CT scan and cortisol level measurement.

The performance of any machine-learning algorithm at different sensibility and specificity thresholds was 
reassessed after correction for “misclassification” and results were virtually consistent with the original ones (see 
Supplementary Document 2).

Concerning the sensitivity analysis, the algorithm yielding the highest AUC values in the test set for each 
timeframe was the probabilistic RF, that were almost the same for each considered timeframe (from 0.82 within 
the 1 year prior to ID timeframe to 0.83 in the all the other timeframes) (Fig. 4).

Figure 1.  Performance of machine-learning algorithms for acromegaly diagnosis prediction, both in training 
and test sets, within 2 years prior to the index date. Abbreviations: AUC = area under the receiver operating 
characteristic curve; PPV = positive predictive value; ICI = integrated calibration index; NPV = negative 
predictive value; RPART = Recursive PArtitioning and Regression Tree; Note: Only the performances of the 
probabilistic version of predictive algorithms areshown. Sensitivity, Specificity, PPV, NPV, F-score and Youden 
Index were computed at the optimal threshold of predicted probabilities detected in the ROC curve space.
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Discussion
To our knowledge, this is the first population-based study that applied traditional statistical models and machine 
learning algorithms to identify a combination of predictive variables for the early diagnosis of acromegaly using 
administrative claims databases.

All the five predictive algorithms achieved poor diagnostic accuracy, except for RF that yielded an excellent 
discriminatory power, as shown by the AUC values in the test set. Nevertheless, the meta-score developed by 
using an unconditional multivariable logistic regression model including the predictors selected by at least two 
algorithms achieved acceptable discriminatory power. In general, the proposed algorithms achieved consistent 
results in both training and test sets, except for the probabilistic SVM, for which considerable discrepancies were 
observed, mainly concerning PPV, F-score, Youden index, AUC, and specificity. To explain such performance 
discrepancies, it is important to mention that the large number of variables included may lead to an SVM clas-
sifier’s overfitting (i.e., the phenomenon by which a learning machine loses its learning generalization capability 
in classification), providing deceptive diagnostic  results25. Therefore, although the probabilistic SVM yielded 
good diagnostic performances in training data, it was not able to generalize the diagnostic ability in the test 

Cross-Validated multivariable conditional logistic regression with LASSO penalty

Selected predictors Formula

Number of pharmacy claims [II level ATC code]
Diuretics [C03],
Agents acting on the renin-angiotensin system [C09],
Lipid-modifying agents [C10],
Thyroid therapy [H03],
Antineoplastic agents [L01],
Immunosuppressants [L04],
Psychoanaleptics [N06],
Drugs for obstructive airway diseases [R03]
Number of specialist visits or laboratory/diagnostic tests [code]
General medical examination [89.7],
Creatinine [90.16.3],
Urea [90.44.1],
Venous blood sampling [91.49.2]

Linear Predictor (LP) = 0.02965 × [C09] -0.01040 × [C10]—
0.00362 × [C03] + 0.29712 × [L04] + 0.00432 × [N06] + 0.01216 × R03] + 0.09161 × [89.7] +  
0.03592 × [90.16.3] + 0.05474 × [90.44.1] + 0.05284 × [91.49.2] + 0.00538 × [H03] + 0.00390 
× [L01]
Classification rule:
(1) for a new subject, collect all required variables and compute the formula. If there are 
no claims for a specific variable (or if this information is not available), the value of this 
variable must be set to 0;
(2) if LP > 0.51 then the subject is classified as having the acromegaly disease; not other-
wise (Sensitivity: 42%, Specificity: 78%)

Cross-Validated multivariable unconditional logistic regression with LASSO penalty

Selected predictors Formula

Number of pharmacy claims [II level ATC code]
Immunosuppressants [L04]
Number of specialist visits or laboratory/diagnostic tests [code]
Corticotropin [90.15.2],
Cortisol [90.15.3],
Diagnoses [ICD-9 CM codes]
Cardiomyopathy [425.xx],
Benign neoplasm of pituitary gland and craniopharyngeal duct 
[227.3]

Estimated probability (P) = 1/{1 + exp-(-2.35080 + 0.77800 × [425.xx] + 0.02573 × [227.3] + 0.
16050 × [L04] + 0.64099 × [90.15.2] + 0.55470 × [90.15.3])}
Classification rule:
(1) for a new subject, collect all required variables and compute the formula. If there are 
no claims for a specific variable (or if this information is not available), the value of this 
variable must be set to 0
(2) if P > 0.09 then the subject is classified as having the acromegaly disease; not otherwise 
(Sensitivity: 28%, Specificity: 99%)

Case-weighted (IPW) Recursive PArtitioning and Regression Tree 
(RPART)

Selected predictors Classification Tree

Number of pharmacy claims [II level ATC code]
Immunosuppressants [L04],
Antibacterials for systemic use [J01],
Agents acting on the renin-angiotensin system [C09],
Antiinflammatory and antirheumatic products [M01]
Diagnoses [ICD-9 CM codes]
Diabetes [250.xx]
Number of specialist visits or laboratory/diagnostic tests [code]
Free thyroxine [90.42.3],
Chest CT scan [87.41.1],
Electrocardiogram [89.52],
Total cholesterol [90.14.3],
Cortisol [90.15.3]

Case-weighted (IPW) Probabilistic Random Forest

Selected predictors Relative variable importance (%)§

Continued



8

Vol:.(1234567890)

Scientific Reports |         (2024) 14:6186  | https://doi.org/10.1038/s41598-024-56240-w

www.nature.com/scientificreports/

set. In contrast, the unconditional logistic regression model performed slightly better in the test set than in the 
training set, but this difference was not statistically significant. This can be explained by the ability of regression 
models to predict the response to an input that lies outside the range of values of the predictor variable used to 
fit the model (i.e., extrapolation)26,27.

Number of pharmacy claims [II level ATC code]
Immunosuppressants [L04],
Thyroid therapy [H03],
Immunostimulants [L03],
Endocrine therapy [L02],
Digestives, including enzymes [A09],
Bile and liver therapy [A05],
Antihemorrhagics [B02],
Diuretics [C03],
Antigout preparations [M04]
Diagnoses [ICD-9 CM codes]
Diabetes [250.xx],
Cardiomyopathy [425.xx],
Other chronic non-alcoholic liver disease [571.8],
Calculus of gallbladder without mention of cholecystitis [574.20]
Co-payment exemptions [code]
Hypertensive heart disease with organ damage [031]
Hypertensive heart disease without organ damage [0A31],
Co-payment exemption for disability [C03],
Glaucoma [019],
Ulcerative colitis and Crohn disease [009],
Chronic hepatitis [016],
Familiar hypercholesterolemia [025],
Work disability [L02],
Psoriasis [045],
Malignant neoplasms [048]
Systemic lupus erythematosus [028],
Celiac disease [I0060]
Number of specialist visits or laboratory/diagnostic tests [code]
Routine chest radiography [87.44.1],
Chest CT scan [87.41.1],
Abdominal ultrasonography [88.76.1],
Thyroid and parathyroid ultrasound [88.71.4],
CT of abdomen with or without contrast agents [88.01.6],
Free thyroxine [90.42.3],
Free triiodothyronine [90.43.3],
Disabilities secondary to degenerative osteomioarticular diseases 
[93.60.01],
Thoraco-dorsal spine X-ray [87.23],
Lumbosacral x-ray [87.24.1],
Thyrotropin [90.42.1],
Pace-maker control visit [89.48.1],
Visual field examination [95.05]

§Only the first 15 predictors are shown
Legend:
* Co-payment exemptions
^ Specialist examinations or laboratory tests
# Diagnoses
° Pharmacy claims

Case-weighted (IPW) Probabilistic Support Vector Machine

Selected predictors Relative variable importance (%)

Number of pharmacy claims [II level ATC code]
Antibacterials for systemic use [J01],
Drugs for acid-related disorders [A02],
Immunosuppressants [L04]
Number of specialist visits or laboratory/diagnostic tests [code]
Faecal occult blood [90.21.4],
X-ray of bones and joints [87.29],
Free thyroxine [90.42.3],
Alkaline phosphatase [90.23.5],
Esophagogastroduodenoscopy [45.13],
Electrocardiogram [89.52],
Colonoscopy [45.23],
Total calcium [90.11.4],
Urate [90.43.5]
Co-payment exemptions [code]
Co-payment exemption for disability [C03],
Hypertensive heart disease without organ damage [0A31]

Legend:
* Co-payment exemptions
^ Specialist examinations or laboratory tests
# Diagnoses
° Pharmacy claims

Table 2.  List of features (i.e., predictors) selected by each algorithm, along with the classification rule to 
predict the presence of acromegaly. Abbreviations: RA = renin-angiotensin; CT = computed tomography; § Only 
the first 15 predictors are shown.
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Figure 2.  Stacked bar chart showing the frequency distribution of the acromegaly predictors identified by 
more than one predictive algorithm. Abbreviations: CT = computed tomography; LR = logistic regression; 
RA = renin-angiotensin; RF = probabilistic random forest; RPART = recursive partitioning and regression tree; 
SVM = probabilistic support vector machine. Legend: * Co-payment exemptions, ^ Specialist examinations or 
lab tests, # Diagnoses, ° Pharmacy claims.

Table 3.  Total number of subjects (frequency) and claims of each predictor identified by more than one 
predictive algorithm, among cases and matched controls. Abbreviations: ATC = anatomical therapeutic 
chemical classification; CT = computed tomography; 95% CI = 95% confidence interval. *This measure is 
calculated as the ratio of the total number of (code) claims to the number of subjects with at least one claim; 
°This measure is calculated as the ratio of the mean number of claims per subject between cases and controls 
and indicates how many times the mean number of claims per subject in cases is higher than in matched 
controls and was estimated by over dispersed Poisson model; #Odds ratio from conditional logistic regression 
models.

Predictors selected by at least 2 algorithms

Cases (N = 533) Controls (N = 5,255)

Mean ratio°
(95% CI)

Odds 
 ratio#

(95% CI)
N. patients 
(%)

N
claims

Mean number of 
claims per subject*

N. patients 
(%)

N
claims

Mean number of 
claims per subject*

Number of pharmacy claims related to immu-
nosuppressant drugs (II level ATC: L04) 75 (14.1) 588 7.84 24 (0.5) 135 5.63 1.39 (0.92–2.12) –

Free thyroxine level measurement 132 (24.8) 238 1.80 507 (9.6) 948 1.87 0.96 (0.82–1.13) –

Number of pharmacy claims related to diuretics 
(II level ATC: C03) 80 (15.0) 318 3.98 388 (7.4) 2,241 5.78 0.69 (0.49–0.98) –

Number of pharmacy claims related to agents 
acting on the renin-angiotensin system (II level 
ATC: C09)

175 (32.8) 1,678 9.59 1,338 (25.5) 11,862 8.87 1.08 (0.95–1.23) –

Number of pharmacy claims related to antibac-
terials for systemic use (II level ATC: J01) 252 (47.3) 972 3.86 2,370 (45.1) 7,175 3.03 1.27 (1.12–1.45) –

Number of pharmacy claims related to thyroid 
therapy (II level ATC: H03) 71 (13.3) 387 5.45 255 (4.9) 1,464 5.74 0.95 (0.75–1.20) –

Diagnosis of cardiomyopathy 17 (3.2) 17 1.00 8 (0.2) 8 – – 23.52 
(9.74–56.82)

Diagnosis of diabetes 118 (22.1) 118 1.00 817 (15.5) 817 – – 1.60 
(1.28–2.02)

Chest CT scan 34 (6.4) 56 1.65 50 (1.0) 83 1.66 0.99 (0.70–1.41) –

Cortisol level measurement 36 (6.8) 67 1.86 15 (0.3) 18 1.20 1.55 (0.50–4.82) –

Electrocardiogram 93 (17.4) 126 1.35 547 (10.4) 801 1.46 0.93 (0.81–1.06) –

Co-payment exemption for hypertension with-
out organ damage 55 (10.3) 55 1.00 638 (12.1) 638 – – 0.80 

(0.60–1.10)

Co-payment exemption for disability 14 (2.6) 14 1.00 127 (2.4) 127 – – 0.98 
(0.56–1.74)
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Overall, except for probabilistic SVM, machine learning algorithms yielded better performances in terms 
of AUC and sensitivity as compared to logistic regression models, while the latter performed better in terms of 
specificity and PPV.

In the field of rare diseases, two studies developed and tested different claims-based machine learning algo-
rithms for the early diagnosis of pulmonary hypertension. Confirming our findings, both studies showed that, 
as compared to other machine learning algorithms, the RF yielded the best diagnostic performances.

Machine learning methods encompass a wide range of different algorithms that can either (i) model nonlinear 
relationships, resulting in complex “black box” that are hard to understand because it is very difficult to explore 
how variables are combined to make predictions, or (ii) simultaneously perform variable selection and produce 
clinically interpretable solutions (e.g., logistic regression models with LASSO penalty), which return a classifica-
tion rule based on the individual linear weighted combination of included predictors.

Overall, most of the predictors identified by each algorithm for the early diagnosis of acromegaly were selected 
from the diagnostic tests and specialist’s visits database (N = 33) and pharmacy claims database (N = 25). The 
only predictor selected by all five algorithms was the number of pharmacy claims for immunosuppressants, thus 
potentially suggesting that the presence of systemic inflammation may be one of the key predictors for the early 
diagnosis of  acromegaly28. Indeed, several case reports published in the literature describe patients concomitantly 
affected by acromegaly and immune-mediated diseases, including rheumatoid  arthritis29–32, ulcerative  colitis33,34, 
 psoriasis35–39, myasthenia  gravis40–42, as well as anti-neutrophil cytoplasmic antibodies (ANCA)-associated vas-
culitis and Sjögren’s  Syndrome43.

One of the main strengths of this study is the large sample size, with a total of more than 5,000,000 patients, 
which is particularly important for research in the field of rare diseases, where the number of affected patients 
is very small. Furthermore, the use of a validated coding algorithm for the identification of acromegalic patients 
in claims databases, yielding high diagnostic performances, minimized the risk of misclassification.

However, some limitations are worth mentioning. First, the predictor-diagnosis relationships discovered 
from data driven approaches, such as machine learning algorithms, do not always imply a causal relationship; 

Figure 3.  Receiver Operator Characteristic curve of the predicted individual probabilities computed by the 
multivariable logistic regression model used to develop the meta-score for the prediction of the diagnosis of 
acromegaly. Note: all predictors included in this formula were dichotomised (i.e., presence/absence of the 
specific condition). Legend: L04 = number of pharmacy claims related to immunosuppressants; 90.42.3 = request 
for free thyroxine level measurement; C03° = number of pharmacy claims related to diuretics; C09 = number 
of pharmacy claims related to agents acting on the renin-angiotensin system; J01 = number of pharmacy 
claims related to antibacterials for systemic use; H03 = number of pharmacy claims related to thyroid therapy; 
87.41.1 = request for computed tomography of chest; 90.15.3 = request for cortisol level measurement; 
89.52 = request for electrocardiogram; 0A31 = co-payment exemption code related to hypertensive disease 
without organ damage; C03* = co-payment exemption codes related to permanent disability.
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however, the development of a meta-score allowed us to obtain a clinically interpretable classification rule which 
could be helpful for the early diagnosis of acromegaly, although it has a lower diagnostic accuracy as compared to 
the RF. Second, since claims databases do not allow tracking health services purchased privately by citizens and 
socio-health activities (e.g., admissions to residences) and the absence of this information may have prevented 
the identification of some potential predictors of acromegaly diagnosis. However, considering that acromegaly is 
mainly managed in the specialist setting, this has unlikely affected the findings of this study. Third, considering 
that the diagnostic predictive algorithms have been applied on claims databases, this study presents some limita-
tions related to this type of data sources, such as the presence of missing values and the potentially inaccurate 
coding practice. As a result, the ID used to define the timeframes for the diagnostic prediction may have been 
misclassified and, as such, it could not exactly coincide with the actual date of the first diagnosis of acromegaly. 
Consequently, it is possible that some of the potential predictors identified by the different algorithms should 
be considered as treatment-related variables rather than predictors of the early diagnosis of acromegaly. As an 
example, features selected by the RF include the number of pharmacy claims related to bile and liver therapy and 
the diagnosis of calculus of gallbladder, which are likely due to somatostatin analogues  therapy44,45. Nevertheless, 
it should be noted that these features were selected only by one of the five proposed algorithms and that they 
were not among the first 15 selected features in terms of RVIMP.

Conclusions
In this study we developed and internally validated machine-learning algorithms for the early diagnosis of acro-
megaly using administrative claims databases. Findings showed that data-driven machine learning algorithms 
can play a role in predicting the diagnosis of rare diseases such as acromegaly. Of the five predictive algorithms 
developed, only the RF yielded an excellent discriminatory power, while the others achieved poor diagnostic 
accuracy and the meta-score developed on the predictors selected by at least two algorithms achieved an accept-
able accuracy. The predictor mostly associated with the presence of acromegaly was the number of pharmacy 
claims related to immunosuppressants, potentially suggesting that systemic inflammation and/or autoimmune 
diseases may be key predictors of acromegaly diagnosis.

Data availability
The data that support the findings of this study are available from Sicily Region, but restrictions apply to the 
availability of these data, which were used under license for the current study, and so are not publicly available. 
Data are however available from the authors upon reasonable request and with permission of Sicily Region.

Figure 4.  Performance of machine-learning algorithms for acromegaly diagnosis prediction, both in 
training and in test sets, within 1 to 5 years prior to the index date. Abbreviations: AUC  = area under 
the receiver operating characteristic curve; LASSO = Least Absolute Shrinkage and Selection Operator; 
RPART = Recursive Partitioning and Regression Tree. Note: Only the performances of the probabilistic version 
of predictivealgorithms are shown. Sensitivity, Specificity, PPV, NPV, F-score and Youden Index were computed 
at the optimal threshold of predicted probabilities detected in the ROC curve space.
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