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Multi‑defect risk assessment 
in high‑speed rail subgrade 
infrastructure in China
Jinchen Wang 1,2, Yinsheng Zhang 3, Luqi Wang 2, Yifan Sun 2, Jingyu Zhang 4, Jianlin Li 1 & 
Sen Li 2*

This study addresses the escalating risk of high‑speed railway (HSR) infrastructure in China, amplified 
by climate warming, increased rainfall, frequent extreme weather, and geohazard events. Leveraging 
a georeferenced dataset of recent HSR defects obtained through an extensive literature review, 
we employ machine learning techniques for a quantitative multi‑defect risk assessment. Climatic, 
geomorphological, geohydrological, and anthropogenic variables influencing HSR subgrade safety 
are identified and ranked. Climatic factors significantly impact frost damage and mud pumping, while 
geomorphological variables exhibit greater influence on settlement and uplift deformation defects. 
Notably, frost damage is prevalent in the northeast and northwest, mud pumping along the southeast 
coast, and settlement and uplift deformation in the northwest and central areas. The generated 
comprehensive risk map underscores high‑risk zones, particularly the Menyuan Hui Autonomous and 
Minle County sections of the Lanzhou‑Urumqi HSR, emphasizing the need for focused attention and 
preventive actions to mitigate potential losses and ensure operational continuity.
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High-speed railways (HSR) provide efficient and convenient services for passenger transportation, playing 
an important role in stimulating the regional economic and social  development1,2. As of 2020, the length of 
HSR tracks in China has reached 38,000 km, spanning various terrains and climatic  zones3,4. Consequently, 
constructing railways becomes inevitable in environmentally challenging areas. The subgrade of HSR constitutes 
a soil structure directly exposed to the natural environment, and the impact of climate change on the long-term 
performance of HSR subgrades cannot be ignored. According to the “The Global Climate In 2015–2019” released 
by the World Meteorological Organization and the “2019 China Climate Bulletin” released by the China Climate 
Center, with global warming, extreme rainfall events are increasingly frequent in China. Under the action of high-
frequency train loads, the subgrade is more prone to various defects such as  settlement5, uplift  deformation6,7, 
frost  damage8, and mud  pumping9. The occurrence of these defects is uncertain and poses a significant threat 
to human life and property. Therefore, investigating their spatial pattern, defect mechanisms, and vulnerability 
indicators is of great significance for the early warning of defects and the planning of new HSR lines.

Traditional risk assessment methods for HSR subgrades primarily utilized qualitative methods included the 
Analytic Hierarchy Process (AHP) and expert scoring method, while quantitative models such as the Information 
Value Model and Frequency Ratio Model relied heavily on extensive data for support. Machine learning has 
gained increasing attention because of its advantages such as robust generalization ability, high processing 
efficiency, and the ability to handle large datasets. For example, Wang et al. (2022) utilized two deep learning 
(DL) algorithms, convolutional neural network (CNN) and deep neural network (DNN), to map landslide 
susceptibility on a branch line of the Sichuan-Tibet  Railway10. Liu et al. (2018) quantitatively analyzed the 
susceptibility of existing and planned railroad systems in China to rainfall-triggered multi-hazards using Random 
Forest (RF) and historical disaster events from 1980 to  199811. Huang et al. (2022) integrated four machine 
learning models, i.e., Bayesian Networks (BN), Decision Tables (DTable), Radial Basis Function Networks 
(RBFN), and Stochastic Gradient Descent (SGD), to delineate landslide-prone zones in order to reduce the risk 
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of the construction, maintenance, and transportation of the railroad in  Sichuan12. Huang et al. (2023) organized 
seismic damage data of bridges, then used RF to predict seismic damage levels, and used a two-parameter normal 
distribution function to draw empirical susceptibility curves for seismic damage risk  assessment13. Sresakoolchai 
et al. (2023) developed a novel intelligent automated system based on machine learning pattern recognition for 
detecting and predicting the deterioration of railroad turnouts exposed to flood  conditions14. Although machine 
learning gained frequent application in railroad safety risk assessment, it tends to focus on the disturbance of 
railroad operational status by external small-scale disasters, and overlooked the impact of structural changes in 
the subgrade itself on overall railroad risk in the climatic and geographical environment.

Selecting driving factors of defects is a crucial step in predicting the risk of railway subgrade failure in 
China under long-term environmental changes. Previous studies indicate that subgrade defects are influenced by 
rainfall, temperature, geological conditions, and land use patterns. For example, rainfall induces the absorption 
of water by soft, weak mudstone, resulting in arching on the subgrade. Water infiltration from the surface into 
the subgrade soil reduces its shear strength, leading to various defects in the subgrade. Thus, the occurrence 
of defects is the outcome of multiple factors in specific conditions. Zhang et al. (2016) conducted freeze–thaw 
tests on soil–cement mixtures from a construction site to explore the freeze–thaw susceptibility of closed and 
open  systems15. The findings revealed that the frost heave rate was influenced by the initial water content before 
freezing and the replenishment of moisture during the freezing process. Wan et al. (2022) established a vehicle-
track-subgrade vertical dynamic coupled analysis model was established using  ABAQUS16. The study found 
that debonding easily occurred between the end of the base plate and the surface of the subgrade. As rainwater 
continuously infiltrated and saturated the surface of the subgrade, fine particles gradually migrated upward under 
the action of train loads and accumulated on the surface of the subgrade, leading to mud pumping. Although 
previous studies have explained the processes underpinning defect occurrence through field experiments and 
numerical simulations, the extent to which driving factors affect defects remains unknown. Further investigation 
is needed to clarify the correlation between different environments and different defects.

This study utilized a novel dataset of historical subgrade defect occurrences to reveal their relationship with 
environmental factors for large-scale infrastructure risk assessment for HSR in China, employing machine 
learning methods. The main objectives of this study are to (i) investigate the diverse impacts of environmental 
factors on multiple common subgrade defects, and (ii) spatially predict the co-occurrence risk of subgrade 
defects. Spatial risk maps of common road defects were constructed, offering a decision-making basis for the 
safe management and spatial planning of HSR in China.

Methods and data
Historical HSR subgrade defect occurrences in China
We recently compiled an extensive georeferenced dataset of historical HSR  subgrade17. The dataset was 
sourced from 24,735 peer-reviewed literature published from 1999 to 2022 in both Chinese and English, and 
a quality control procedure was applied to remove duplicates and ensure  accuracy18,19. Subsequently, a total 
of 661 georeferenced event records of eight defect types were selected, crossing provincial, municipal, county, 
township, and smaller scales. Notably, subgrade settlement (settlement values ranging from 5 to 2300 mm), frost 
damage (frost heave values ranging from 4 to 50 mm), uplift deformation (ranging from 5 to 122 mm), and mud 
pumping exhibit the longest reporting history among the identified disease types. These definitions are detailed 
in Table 1. The distribution of HSR subgrade defect records across Chinese prefectural-level administrative 
regions is illustrated in Fig. 1.

The results indicate that the occurrence of these defects can be closely related to local climate and geological 
environment. For example, frost damage events are concentrated in the temperate zone of China, which is 
characterized by long and cold winters and high humidity throughout the year. The presence of pore water in 
the soil particles in the subgrade freezes and forms ice layers, resulting in soil displacement and subgrade frost 
heave. Mud pumping events are concentrated in the southeastern part of China, where frequent heavy rainfall 
occurs, causing a large amount of rainwater to infiltrate into the subbase and reduce its bearing stiffness. Under 
the high-frequency dynamic loads of trains, mud pumping and, in severe cases, subgrade settlement can occur. 
Subgrade swelling and upheaval are closely related to the slight expansion of the fill material used. Within the 
same climatic zone, multiple diseases often coexist, making the subgrade condition more complex.

Table 1.  Definition of major types of HSR subgrade defect.

Type of defect Definition

Subgrade settlement
Settlement refers to the vertical deformation that occurs over a small or extensive area due to inadequate 
compaction of subgrade soil, insufficient depth of foundation treatment, damage between piles, creep of underlying 
soil layers, or regional settling

Frost damage In cold regions, subgrade and its protective structures experience uneven frost heave under low temperature 
conditions, leading to issues like tilting and cracking of protective structures

Mud pumping This defect occurs in areas with poor drainage. Repeated vibrations from train traffic cause softening or thixotropic 
liquefaction of the sub-ballast, leading to the formation of mud slurry

Uplift deformation This happens when expansive soils or rocks within the subgrade or its base react with external moisture, causing the 
subgrade to arch upwards
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Environmental driving factors
Climate variables
Average annual rainfall: Rainfall may alter the engineering properties of subgrade materials, thereby influencing 
the stability of the  subgrade20.

Consecutive 5-day rainfall: This data serves as an index reflecting extreme  rainfall21.
Number of days with maximum temperature exceeding 35 degrees celsius: This data can serve as an indicator 

reflecting extreme high  temperatures16.
Annual freezing days: Annual freezing days quantify the number of days in a region where water freezes, and 

it is a key factor influencing the occurrence of frost damage on  roadbeds15.
Wind speed: Strong winds may erode road shoulders, leading to a reduction in subgrade width, with sleepers/

track panels exposed, thereby affecting the stability of the railway  track22.

Geomorphological variables
Elevation: Elevation defines the highest and lowest points within a region and is reported to relate to the 
occurrence of various defects, such as, a number of defects have been reported on the Menyuan-Minle section 
of the Lanzhou-Urumqi HSR at high  altitude15.

Slope and aspect: HSR subgrades may have varying slopes, resulting in different temperatures inside and 
outside the subgrade, potentially leading to uneven  settlement23,24. The slope gradient may have an impact on 
the flow of moisture, thereby disrupting the drainage of the  subgrade25.

Geohydrological variables
Rock hardness: Harder rocks can provide better support for HSR  subgrade3.

Distance to fault: Geological faults provide pathways for groundwater and surface precipitation, which can 
affect  subgrade26.

Soil texture: Subgrade defects can be associated with the types and properties of surrounding  soil27.
Average distance to river: The presence of rivers increases the amount of groundwater in the surrounding 

geological environment, thus affecting the performance of  subgrade28.
Average distance to lake: Lakes increase the amount of groundwater in the surrounding geological 

environment, which can impact the performance of  subgrade8.

Figure 1.  Distribution of HSR subgrade defect records in China.
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Anthropogenic variables
Land use: Land use indirectly influences the occurrence of subgrade defects. Extracting groundwater in urban 
areas can lead to subgrade defects, while areas with multiple rock types can enhance the strength of subgrade 
and reduce  settlement29.

Average distance to road: Road construction, as a human activity, can have an impact on railway  lines30,31.

Variable sources and preparation
The average annual rainfall, consecutive 5-day rainfall, number of days with maximum temperature exceeding 
35 degrees Celsius, annual freezing days, and wind speed data were sourced from the National Earth System 
Science Data Center (http:// www. geoda ta. cn/), with a spatial resolution of 0.25° and a time range from 2007 
to 2016. We obtained annual average rainfall data through kriging spatial interpolation. The remaining factors 
were summarized within specified regions using ArcGIS’s zoning statistical function, displaying the data values 
in tabular form; Elevation data were obtained from the Geospatial Data Cloud (http:// www. gsclo ud. cn) with 
a resolution of 30 m. Slope and aspect data at a 30 m resolution were derived using ArcGIS software’s slope 
function and aspect analysis tool; Land use data were sourced from the Institute of Geographic Sciences and 
Natural Resources Research, Chinese Academy of Sciences (http:// www. igsnrr. ac. cn), with an accuracy of 30 m. 
We calculated land use area within specified regions using ArcGIS’s zoning statistical function; The road, river, 
and lake data were extracted from OpenStreetMap. We calculated the average shortest distance from railway 
lines to these features using ArcGIS; Rock hardness and fault data were provided by the Geological Survey Cloud 
of the China Geological Survey Bureau (https:// geocl oud. cgs. gov. cn/). We categorized geological formations 
into different intervals to determine the average rock hardness within the region. The average shortest distance 
from railway lines to geological faults was calculated using ArcGIS. Soil texture data were sourced from the 
Harmonized World Soil Database (version1.2) (https:// www. fao. org/ home/ en/), and we selected four soil 
attributes, including soil drainage capacity, soil composition, soil effective water storage capacity, and soil depth 
through filtering processes.

Methods
Data processing
The variables were standardized using the StandardScaler module, and the hyperparameters of the RF were 
optimized using grid search to build a screening  model32. To streamline and enhance model performance, 
the recursive feature elimination method was used to remove the environmental variables with minimal 
 contribution33,34. Specifically, a RF model was iteratively established 18 times, eliminating the least important 
environmental factors in each screening process based on their contribution. A criterion was set to prevent 
the incorrect elimination of important factors, ensuring that the contribution of the eliminated factors did not 
exceed 0.005. The adjusted remaining predictor factors were reintroduced into the model. Finally, 55 factors, 
out of the initial 73, for each type of defect were retained to construct the risk prediction model. All the factors 
are shown in Table 2.

Random forest modelling
The RF model is one of the most commonly used integrated algorithms in applied Machine Learning  studies35,36. 
It utilizes repeated independent sampling to extract multiple samples from the original dataset and constructs 
decision trees for each sample. These decision trees are then aggregated and combined by voting, taking each 
decision tree as a member to achieve classification and prediction. In this study, the Random Forest algorithm 
emerges as a crucial tool in predicting the risk of subgrade defects in HSR infrastructure. Its capacity to process 
extensive datasets with various input variables and is robust against overfitting make it exceptionally suited for 
this task. Furthermore, as a non-parametric model, RF does not require assumptions about any specific form 
of relationship between variables, offering a significant advantage in examining the complex and not yet fully 
understood interplay between environmental factors and subgrade defects. Applying RF allows us to capture non-
linear relationships and variable interactions that traditional statistical methods might overlook. Finally, RF is 
widely recognized and effective in identifying and determining variable importance. As a result, this approach has 
been successfully applied in the past for mapping landslides, debris flows, and many other types of  disasters28,29,37.

RF calculates the decrease in Gini index DGk by evaluating the evaluation factor k during node splitting. The 
importance of the evaluation factor k is determined by summing up DGk of all nodes in the forest and taking 
the average over all trees. This measure represents the percentage of the average decrease in Gini index for the 
evaluation factor in relation to the total average decrease in Gini index for all factors. It is calculated according 
to Eq. (1):

where m, n, and l represent the total number of evaluation factors, the number of classification trees, and the 
number of nodes in a single tree, respectively. DGkhj refers to the decrease in the Gini index of the jth node in 
the hth tree for the kth evaluation factor. PK denotes the importance level of the kth evaluation factor among 
all evaluation factors.

When constructing the RF models, the dataset was divided into a 7:3 ratio for training and validation. To 
enhance the robustness of model predictions and quantify the uncertainty, we employed an ensemble of 50 
models trained on separate bootstraps of the dataset. The hyperparameters of each of the 50 individual models 

(1)PK =

∑n
h=1

∑l
j=1

DGkhj
∑m

k=1

∑n
h=1

∑l
j=1

DGkhj

http://www.geodata.cn/
http://www.gscloud.cn
http://www.igsnrr.ac.cn
https://geocloud.cgs.gov.cn/
https://www.fao.org/home/en/
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were determined using grid search, with random combinations of parameters, while all other tuning parameters 
were set to their default values. The combination with the highest average accuracy across the models was selected 
as the optimal parameter choice for the model. Furthermore, a five-fold cross-validation strategy was employed, 
whereby the training dataset was divided into 5 equal subsets, with 4 subsets used for model training and the 
remaining subset utilized for testing. This five-fold process was repeated iteratively, rotating the testing subset, 
in order to fully leverage all the training data for model training and testing while mitigating the impact of 
overfitting. To minimize the influence of randomness, each type of pathology was subjected to 50 models. Each 
one of these 50 models predicted the environmental risk on a continuous scale ranging from 0 to 1, and the final 
prediction graph was generated by calculating the average prediction across all models.

The model’s classification accuracy is analyzed using the Receiver Operating Characteristic (ROC)  curve38–40, 
depicting the true positive rate on the vertical axis and the false positive rate on the horizontal axis. Greater 
accuracy in model classification is indicated by a higher true positive rate and a lower false positive rate. The ROC 
curve is generated by plotting the true positive rate (proportion of correctly identified defect samples) against 
the false positive rate (proportion of falsely identified non-defect samples).

Integrated risk map generation
The integrated HSR infrastructure risk assessment involves a holistic analysis that encompasses multiple subgrade 
defects that are most commonly reported in China, such as settlement, frost damage, uplift deformation, and 
mud pumping. This approach takes into account the cumulative impact of various factors—including climatic 
conditions, geomorphological features, geohydrological characteristics, and human activities—on the subgrade’s 
safety. In regions where the integrated risk scores are relatively high, an enhanced need for coordination and 
management emerges to effectively mitigate potential risk.

To quantify this integrated risk, we utilized the Random Forest (RF) model to evaluate the probability of each 
defect type occurring, averaging the outcomes across 50 iterations. Natural breakpoints were then utilized to 
divide each defect into four risk levels: low, low-medium, medium–high, and  high28,41,42. Portions with average 

Table 2.  Detailed description of factors.

Variable categories Variable subclasses Number of variables Definitions and units

Climate variables

Rainfall 2 Average annual rainfall (mm)

Consecutive 5-day rainfall (mm)

Temperature 2 Number of days with maximum temperature exceeding 35 
degrees Celsius(day)

Annual freezing days(day)

Wind speed 1 (m/s)

Geomorphological variables

Elevation 1 (m)

Slope 1 (°)

Aspect 1 (°)

Geohydrological variables

Rock hardness 1 (Pa)

Distance to fault 1 (Km)

Soil texture

Soil composition 13
Clay(heavy), silty clay, clay, silty clay loam, clay loam, silt, 
powdery sandy loam, sandy clay, loam, sandy clay loam, 
sandy loam , loamy sand, sand

Effective water storage capacity 7

The United Nations Food and Agriculture Organization 
(FAO) evaluates the capacity of soil units to store water 
at a specific depth, dividing it into 7 levels: 150 mm/m, 
125 mm/m, 100 mm/m, 75 mm/m, 50 mm/m, 15 mm/m, and 
0 mm/m

Soil depth 4

For all soil units, the reference depth is typically set at 
100 cm. However, for Rendzinas and Rankers in the FAO-74 
classification, and for Leptosols in the FAO-90 classification, 
the reference soil depth is set at 30 cm; for Lithosols in FAO-
74 and Lithic Leptosols in FAO-90, the reference depth is set 
at 10 cm, and also at 0 cm

Drainage class 7
Excessively drained, Well drained, Moderately well drained, 
Moderately drained, Somewhat poorly drained, Poorly 
drained, Very poorly drained

Average distance to river 1 (Km)

Average distance to lake 1 (Km)

Anthropogenic variables
Land use 29

Paddy fields, drylands, forested lands, shrublands, vegetable 
woodlands, other forested lands, high cover grassland, 
medium cover grassland, low cover grassland, rivers, canals, 
lakes, reservoirs, permanent glacial snowfields, mudflats, 
beachland, urban land, rural residential, industrial and 
commercial construction land, sandy land, Gobi, saline and 
alkaline land, marshland, bare land, bare rock, other unused 
land, alpine desert, tundra, marine

Average distance to road 1 (Km)
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probability values greater than 0.6 for each defect were selected and assigned a value of 1; otherwise, they were 
assigned 0. Spatial coupling of the four defects was performed to produce a comprehensive risk map of railway 
subgrade defects in China The low, medium, high, and very high risk areas in the graph have values of 0, 1, 2, and 
3, respectively, representing the risk level of the area.). It is noteworthy that this map displays regions with high 
risks for all four defects (probability values greater than 0.6), thus necessitating extra attention in HSR operations 
and new HSR planning. All distribution maps in the figure were drawn by ArcGIS (v10.7, www. esri. com).

Results
Evaluation of model predictive power
This study employed RF to evaluate the susceptibility of road defects in China, verified the training accuracy 
(success rate) using its ROC curve. The average AUCs for subgrade settlement, frost damage, uplift deformation, 
and mud pumping were obtained through 50 rounds of sampling, with values of 0.76, 0.96, 0.80, and 0.81, 
respectively, as shown in the Fig. 2. The green line represents the average ROC curve, while the black lines 
represent the 50 individual ROC curves. These results demonstrated that the RF model exhibited good prediction 
capabilities for generating risk maps of subgrade defects.

Predicted high risk areas for different subgrade defect types
Predicted high risk areas for settlement defects mainly concentrate on the Lanzhou-Urumqi HSR and the 
Shanghai-Nanjing Intercity Railway, with higher susceptibility in northwest and central China (Fig. 3a). Frost 
damage risks (Fig. 3b) were predicted to primarily concentrate on the Harbin-Dalian HSR, the Lanzhou-Urumqi 
HSR, with higher susceptibility in northeastern and western China. Areas prone to uplift deformation (Fig. 3c) 
were predicted to mainly concentrate on the Lanzhou-Urumqi HSR, and to mud pumping defects (Fig. 3d) 
primarily concentrate on the Shanghai-Nanjing Intercity Railway and the Wuhan-Guangzhou HSR, with higher 
susceptibility in southeast China.

In the integrated risk map for subgrade defects in China’s HSR (Fig. 4), the predominant occurrences 
of subgrade defects in China’s HSR are concentrated in the northeast, northwest, and central regions. The 
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Figure 2.  Model prediction evaluation using AUC values and ROC curve analysis: (a) subgrade settlement, (b) 
frost damage, (c) uplift deformation, and (d) mud pumping.
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Lanzhou-Urumqi HSR has the highest likelihood of subgrade defects, which is closely correlated with the local 
climate and environmental conditions.

Key environmental drivers of subgrade defect risk
The occurrence of each defect is influenced by multiple influencing factors, each with varying degree of impact. 
Utilizing the “Gini coefficient” based on the RF  model43, the average factor importance of 50 sets was calculated 
to generate the final factor importance ranking for each defect, as shown in the Fig. 5. We selected the top 10 
most important factors for presentation. Regarding settlement defect, the importance factors included elevation, 
slope, and land use-bare rock, with importance values of 0.063, 0.044, and 0.041, respectively. For frost damage, 
the importance factors were number of freezing days per year, annual average rainfall, and continuous 5-day 
cumulative rainfall with importance values of 0.20, 0.082, and 0.076, respectively. For uplift deformation, the 
elevation, continuous 5-day cumulative rainfall, and land use-bare rock had importance values of 0.081, 0.048, 
and 0.047, respectively. For mud pumping, the driving factors were number of days with maximum temperature 
exceeding 35 degrees Celsius, annual average rainfall, and number of freezing days per year, with importance 
values of 0.077, 0.070, and 0.067, respectively.

Figure 3.  Predicted risk distribution of main HSR subgrade defects in China: (a) subgrade settlement, (b) frost 
damage, (c) uplift deformation, and (d) mud pumping. Mean are shown for each ensemble of 50 RF models.
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Discussion
Climatic impacts
Our results indicates that meteorologically variables have a significant impact on subgrade defects, particularly in 
frost damage and mud pumping. The analysis prioritizes the identification of the most influential meteorologically 
variables associated with each defect.

Rainfall factors ranked among the top three in terms of importance, with the exception of settlement defects. 
The driving force behind the influence of rainfall on common subgrade defects lies in its capacity to increase the 
moisture content of the pavement soil. We have found that defects such as subgrade settlement, frost damage, 
mud pumping, and uplift deformation are intricately linked to the presence of water, which is consistent with the 
research results of many  researchers20,27,44–46. In the case of frost damage, soil moisture undergoes crystallization 
into ice, filling soil voids during temperature drops, resulting in relative displacement of the subgrade particles. 
Mud pumping could be influenced by the softening of pore water pressure in the subgrade under train loads, 
making it highly susceptible to pumping and subgrade softening. Uplift deformation is associated with the 
expansion of expansive rock and soil in the subgrade expands upon water absorption. Related research has 
shown a significant correlation between the vertical uplift deformation rate of the pavement and the amount of 
atmospheric rainfall. Furthermore, extreme precipitation, indicated by the rainfall amount over 5 consecutive 
days, could exceed subgrade drainage capacity, elevating soil moisture and heightening susceptibility to defects.

We found that the annual freezing days have the greatest impact on the frost damage of the subgrade, which is 
consistent with the indoor experiments of subgrade permafrost and numerical  simulations25, because the annual 
freezing days are closely related to the freeze–thaw cycle of the subgrade, which can lead to the occurrence of 
frost damage. The variable classified frozen soil in subgrade into three categories: instantaneous frozen soil, 
seasonal frozen soil, and permafrost. Permafrost, due to its long-term exposure to cold areas, is often in a state of 
freezing expansion. Seasonal frozen soil experiences thawing and settlement in summer and freezing expansion 
in winter. The recurring cycle of freezing expansion and settlement poses a significant risk of HSR subgrade 
defects. The damage to the subgrade in regions with repeated occurrences of such frozen soil is notably higher 
than in areas with permafrost. Instantaneous frozen soil generally experiences less freezing expansion. The effect 
on mud pumping mainly stems from the fact that after the freezing and thawing of the subgrade soil. The water 
content in the soil takes various forms, including ice crystals and residual moisture, which leads to a decrease 
in the drainage capacity of the subgrade and makes it difficult to drain moisture effectively. Consequently, poor 
drainage can result in mud pumping in the subgrade.

Extreme heat, represented by the total number of days with a maximum daily temperature exceeding 35 
degrees Celsius, could impact the HSR infrastructure. High temperature can cause the rubber material at the 
interjoint of the ballastless track slab to harden and fatigue, resulting in the detachment of the interjoint interface 
and unevenness in the track. With repeated cycles of high-temperature and low-temperature alternation, the 
rubber material may even fracture, contributing to mud pumping defects.

Figure 4.  Integrated co-occurrence risk map of HSR subgrade defects in China.
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Geomorphological and geohydrological characteristics
Our results show that geomorphology had a significant impact on roadbed settlement and uplift deformation 
defects (Fig. 5), while the geohydrological factors showed comparatively less impact. This is inconsistent with 
the research findings of some  researchers11,47, possibly because HSR has already avoided the risks caused by 
geohydrological variables during the design phase. On steeper slopes, especially during heavy rainfall, soil erosion 
is prone to occur on the subgrade surface. Soil erosion may accelerate the settlement process of the roadbed, 
affecting its stability. In areas with significant slopes, the speed of water flow may be higher, which could impact 
water infiltration and drainage. This may result in uneven distribution of moisture in the soil, thereby affecting 
the settlement behavior of the subgrade.

Moreover, with increasing altitude, temperature, precipitation, and atmospheric pressure may undergo 
significant changes, thereby affecting the stability of the subgrade. From a topographic perspective, high-altitude 
areas, characterized by steep slopes and complex terrains, yield significant variations in local climates between 
foothills and hinterlands. Therefore, a more detailed analysis of the region and a precise subgrade risk assessment 
based on the local climate are necessary.

The microscopic properties of clay minerals contribute to their capability to absorb water molecules on 
their surfaces. Frost damage to the subgrade only occurs when the water in the soil reaches or exceeds a certain 
threshold, making clay more likely to cause frost damage than other soils. As for the uplift deformation of the 
subgrade, when clay absorbs water, its volume will increase and expand, which may lead to up-arching of the 
roadbed.
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Anthropogenic influence
Our results show that anthropogenic variables have a significant impact on various subgrade defects, with the 
analyses emphasizing the most influential anthropogenic variables associated with most defects. Urban land use 
signifies the extent of anthropogenic interference, which includes the extraction of groundwater, the construction 
of underground facilities, mining and so on. When groundwater is extracted, the water pressure in the soil 
changes and the pumped water carries away fine particles from the soil, resulting in settlement of the subgrade. 
For example, in the Jakarta and Bandung areas along the Jakarta-Bandung High-Speed Rail, industrial activities 
and rapid population growth have resulted in the extensive extraction of groundwater, causing significant land 
subsidence that severely affects the operation of the high-speed  train48. For the uplift deformation defect, in 
the high-density urban area, a large number of buildings. The area of bare rock reflects the surface area of land 
consisting of rocks. The bare rock areas may have good characteristics for water infiltration and drainage, which 
can slow down soil settlement through drainage. In addition, the scarcity of soil moisture may prevent the 
swelling of weak mudstone, thus reducing the occurrence of roadbed expansion defects and positively affecting 
the stability of the subgrade.

Limitations and future improvements
Our study has several limitations that can be addressed in future research. Firstly, the defect data in this study are 
sourced from peer-reviewed literature, which ensures accuracy but may overlook some unreported defect data. 
Secondly, selecting the model’s hyperparameters poses significant challenges. The crucial parameters of the model 
are determined through trial and error using a network search method. If the search space is set inappropriately 
or potential solutions are overlooked, the optimal solution may not be found. Furthermore, while the Random 
Forest method is recognized for its strong predictive capability, it falls short in interpretability. Future research 
should consider employing specified analytical methods to further explore the casual relationships among various 
influencing factors and improve understanding of the mechanisms by which these factors impact high-speed 
rail infrastructure. Lastly, due to limited resources and capabilities, the selected influencing factors in this study 
may not be comprehensive. In future research, we can incorporate more reliable data, including media reports, 
government documents, and bidding information, to avoid overfitting caused by insufficient data. Additionally, 
we can explore methods for optimizing the model’s parameters and include HSR attribute factors to further 
enhance the model’s accuracy.

Potential for application
This study applies a robust and effective machine-learning method for assessing the diverse defect risks inherent 
in China’s high-speed railway infrastructure. The practicality of the Random Forest method is not limited to 
specific geographic regions or infrastructure types; its powerful data processing capability and the ability to 
identify complex relationships between environmental factors grant it broad application potential. For instance, 
it can accommodate adjustments in environmental variables, such as rainfall and temperature variation, to suit 
various climatic zones (e.g., tropical, temperate, polar). Furthermore, this method can be applied to datasets 
for different infrastructures including roads, bridges, and tunnels, taking into account their unique risk factors 
and challenges. By fine-tuning the inputs to the algorithm, it is possible to precisely predict the specific risks 
faced by these different infrastructures, thereby providing a scientific basis for the design, construction, and 
maintenance of infrastructure.

Policy recommendations
Global climate change, marked by temperature increases, intensified precipitation, and extreme events, threatens 
HSR safety and reliability, affecting infrastructure and surrounding  environments49–51. Particularly vulnerable 
regions like Minle County and Menyuan Hui Autonomous County (Fig. 4), with seasonal frozen soils, face 
heightened subgrade defects due to disrupted thermal equilibrium. To address these concerns, several policy 
recommendations are proposed.

First, research and development efforts for HSR infrastructure should be intensified, focusing on enhancing 
resilience to climate change through developing materials and technologies that can withstand extreme weather 
conditions. Real-time monitoring and early warning of the seasonal frozen soil environment in the regions 
housing specific HSR projects, such as Lanzhou-Urumqi and Harbin-Dalian HSRs, should be strengthened. This 
aims to timely grasp the changes in the frozen soil environment and provide scientific basis for safe and stable 
operation of HSR projects. In the Far Eastern Railway in Russia, long-term monitoring of subgrade deformation, 
weather, and rock layers on railway sections located in permafrost areas has been implemented to mitigate the 
effects of extreme atmospheric  precipitation52.

Moreover, the design standards of HSR projects should be revised to accommodate frozen soil climate 
conditions. Construction processes and methods should be optimized to ensure the safety and reliability of HSR 
projects in frozen soil areas during construction and operation. Emergency response plans and risk assessment 
systems for HSR must be established and enhanced in response to climate change. This includes augmenting 
early warning and response capabilities for extreme weather events, and effectively respond to the sudden risks 
brought about by climate change. Similarly, in Norway, a preparedness framework has been developed to assess 
and manage natural climate risks, aiming to reduce railway vulnerability and enhance resilience against the 
negative impacts of climate change. This includes emergency plans for trains include speed restrictions in high-
risk areas and providing alternative transportation methods when tracks are  obstructed53.

Lastly, strengthening safety promotion in areas along the HSR line should be emphasized. The government 
should fully utilize online methods such as government websites, television broadcasting, and new media, as well 
as offline methods such as home visits and setting up prominent warning signs, to proactively promote policies 
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and regulations related to protecting the safety environment along the HSR line and reducing anthropogenic 
interference with HSR safety. In Sweden, particularly regarding the Varberg Railway, a study highlighted that 
human-induced groundwater extraction increases the risk of railway subsidence, suggesting the need for 
enhanced safety management measures along the railway  lines54.

Conclusions
This study quantitatively assesses the multi-subgrade defect risk in China’s HSR infrastructure, utilizing machine 
learning and historical defect occurrence data. Key environmental factors influencing subgrade defects, such 
as rainfall, freezing days, extreme temperature, land use, slope, and altitude, are identified, providing valuable 
insights for HSR planning. Furthermore, spatial analysis further reveals the distribution characteristics of 
different defects across various regions in China, particularly pointing out high-risk areas like the Menyuan 
Hui Autonomous and Minle County sections of the Lanzhou-Urumqi HSR, which require increased attention 
and preventative measures to minimize potential losses and ensure operational continuity.

For high-risk areas and types of defects, we recommend intensifying R&D efforts for HSR projects to develop 
materials and technologies capable of withstanding extreme weather conditions; optimizing design standards 
and construction methods for HSR projects, especially under permafrost climate conditions; establishing and 
improving emergency response plans and risk assessment systems for HSR to address sudden risks posed by 
climate change; and enhancing safety promotion along HSR lines to reduce human interference and ensure 
the safe and stable operation of HSR. While focused on China’s HSR, the methods are adaptable to railway 
infrastructure risk assessment globally, with challenges remaining in incorporating engineering design 
characteristics and evolving climate change impacts. Further research is needed to address these challenges.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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