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Kernel Bayesian nonlinear matrix 
factorization based on variational 
inference for human–virus 
protein–protein interaction 
prediction
Yingjun Ma 1, Yongbiao Zhao 2 & Yuanyuan Ma 3,4*

Identification of potential human–virus protein–protein interactions (PPIs) contributes to the 
understanding of the mechanisms of viral infection and to the development of antiviral drugs. Existing 
computational models often have more hyperparameters that need to be adjusted manually, which 
limits their computational efficiency and generalization ability. Based on this, this study proposes a 
kernel Bayesian logistic matrix decomposition model with automatic rank determination, VKBNMF, 
for the prediction of human–virus PPIs. VKBNMF introduces auxiliary information into the logistic 
matrix decomposition and sets the prior probabilities of the latent variables to build a Bayesian 
framework for automatic parameter search. In addition, we construct the variational inference 
framework of VKBNMF to ensure the solution efficiency. The experimental results show that for the 
scenarios of paired PPIs, VKBNMF achieves an average AUPR of 0.9101, 0.9316, 0.8727, and 0.9517 
on the four benchmark datasets, respectively, and for the scenarios of new human (viral) proteins, 
VKBNMF still achieves a higher hit rate. The case study also further demonstrated that VKBNMF can 
be used as an effective tool for the prediction of human–virus PPIs.

Keywords  Human proteins, Viral proteins, Bayesian matrix factorization, Automatic rank determination, 
Variational inference

Viruses are widely distributed in nature and can parasitize in various living organisms, which leads to highly 
contagious viral diseases, and their prevalence and outbreaks will pose a major threat to human life and health. 
In the past ten years, the number of cases of dengue fever in the world has continued to increase. The disease is 
mainly transmitted by Aedes mosquitoes, and about 390 million people are infected worldwide every year1. Since 
1976, there have been more than 40 outbreaks of Ebola virus disease, with a fatality rate of between 25 and 90%. 
The deadliest Ebola outbreak, in West Africa in 2014, produced 28,610 cases and killed 11,308 people, drawing 
widespread international attention2,3. The outbreak of coronavirus disease in 2019 spread rapidly around the 
world4. According to the statistics of the World Health Organization, as of May 10, 2023, more than 700 million 
people had been diagnosed with the infection, resulting in nearly 7 million deaths, and having an unimaginable 
impact on the life, health and economic security of all mankind. Studies have shown that virus-host PPIs are the 
main way for viruses to exercise their functions. This interaction is very durable, starting from the binding of 
viral coat proteins to host membrane receptors and continuing until viral proteins control the host transcription 
system5,6. Therefore, the exploration of human–viral PPIs contributes to the understanding of the pathogenesis 
of viruses and provides the necessary foundation for the development of effective treatment and prevention 
strategies to combat viral diseases.

At present, high-throughput experimental techniques such as yeast two-hybridization (Y2H) and mass spec-
trometry (MS) have been widely used in protein function inference and biological process research7. However, 
these methods are mainly used to identify intraspecific PPIs, and there are few studies on interspecific PPIs. 
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In addition, experimental methods are not only time-consuming and laborious, but also difficult to obtain a 
complete protein interactome8. As the number of virus-host PPIs continues to increase, computational models 
for the prediction of interspecies PPIs have also received increasing attention9. Yang et al.8 utilized doc2vec to 
represent protein sequences as rich low-dimensional feature vectors, and used random forests to perform pre-
dictions, and the results showed that the prediction performance of this method was better than that of SVM, 
Adaboost and Multiple Layer Perceptron. Yang et al.10 combined evolutionary sequence features with Siamese 
convolutional neural network architecture and multi-layer perceptron, introduced two transfer learning methods 
(namely "frozen" type and "fine-tuned" type), and successfully applied them to the prediction of virus–human 
PPIs by retraining CNN layer. To predict potential human–virus PPIs, Tsukiyama et al.11 used word2vec to 
obtain low-dimensional features from amino acid sequences and developed an LSTM-based prediction model. 
The above supervised learning methods effectively use the sequence information of proteins, and have achieved 
some success in the prediction of virus–human PPIs. However, most of these methods require negative sampling 
to generate training sets, which inevitably leads to false negative samples in the training set. In addition, these 
models often need to ensure a balanced ratio of positive and negative samples when performing training, and 
do not make full use of a large number of other unknown interactions, which also limits the predictive ability 
of the models to a certain extent.

In recent years, more and more network models for predicting interaction relationships have been proposed. 
Based on multiple similarity kernels for viral (or human) proteins, Nourani et al.12 proposed an adaptive multi-
kernel preservation embedding (AMKPE) approach to perform predictions. The results show that AMKPE 
achieves better performance than some supervised learning methods. In the previous study, we proposed a 
sequence ensemble-based virus–human PPIs prediction method (Seq-BEL)13, which integrated sequence fea-
ture information and network structure into the ensemble learning model to improve the prediction ability and 
stability. Recently, for the prediction of human–virus PPIs under various disease types, we proposed a logical 
tensor decomposition model with sparse subspace learning14, which introduced logical functions and feature 
information into CP decomposition to improve the prediction ability of human–virus-disease triples. In addi-
tion, some other binary interaction prediction methods also provide reference for the prediction of virus–human 
PPIs. Peska et al.15 proposed a Bayesian ranking model for predicting drug–target interactions based on Bayesian 
personalized ranking matrix factorization, which showed good predictive performance on multiple benchmark 
datasets. Sharma et al.16 proposed a bagging based ensemble framework for drug–target interaction prediction, 
which employ reduction and active learning to deal with class imbalance data, showing excellent performance 
compared with other five competing methods. Ding et al.17 proposed a dual Laplacian regularized least squares 
(DLapRLS) model for drug–target interaction prediction, which utilized the Hilbert–Schmidt Independence 
Criterion-based Multiple Kernel Learning (HSIC-MKL) to linearly integrate the corresponding kernels in drug 
space and target space, respectively, and established a drug–target interactive prediction model by DLapRLS. Yu 
et al.18 proposed an end-to-end graph deep learning approach (LAGCN) that utilized GCN to capture structural 
information from heterogeneous networks of drugs and diseases, and introduced attentional mechanisms to 
combine embeddings from different convolutional layers for drug-disease association prediction. Zhao et al.19 
proposed an improved Graph representation learning method (iGRLDTI), which solves the oversmoothing 
problem of graph neural networks (GNN) by better capturing the more discriminant features of drugs and targets 
in the potential feature space. The above model makes full use of the network structure of biological entities and 
improves the predictive ability of the model. However, most of the above models contain more hyperparameters, 
and the parameter adjustment before the experiment affects the prediction efficiency and generalization ability 
of the model to a certain extent.

Therefore, this study proposes a kernel Bayesian nonlinear matrix factorization based on variational infer-
ence, VKBNMF, for human–virus PPIs prediction. To reduce the sparsity of the interaction network and improve 
the accuracy of the similarity network, we extract the kernel neighborhood similarity from the completed 
virus–human PPIs network, and fused it with the sequence similarity of the viral (or human) protein to obtain 
a more accurate network structure. Secondly, to improve the learning ability of the model, we introduce the 
weighted logistic function into kernel Bayesian Matrix Factorization, and adaptively determine the rank of low-
dimensional features by combining the sparsity-inducing priors of multiple latent variables. Finally, to solve 
the problem of integrating latent variables and ensuring the efficiency of the solution, we establish a variational 
inference framework to implement the model solution. Results on three experimental scenarios in four real data 
sets demonstrate the effectiveness of VKBNMF in predicting potential human–viral PPIs. Furthermore, the case 
study further demonstrates that VKBNMF can be used as an effective tool for human–viral PPIs prediction.

Methods
Method review
To explore virus–human potential PPIs, we propose a new method named VKBNMF, which mainly consists 
of three steps (as shown in Fig. 1). Firstly, a variety of similarity networks are constructed based on protein 
sequences and trained human–virus PPIs networks, and are fused to obtain more accurate similarity of viral (or 
human) proteins (as shown in step 1 of Fig. 1). Secondly, the Bayesian framework of logical matrix factorization 
is established, and the auxiliary information of human (or viral) protein and the prior probabilities of latent 
variables are introduced, and then the probability graph model of VKBNMF is constructed (as shown in step2 
in Fig. 1). Finally, variational inference is used to perform the solution of VKBNMF to realize the prediction of 
potential PPIs of human–virus (as shown in step 3 in Fig. 1).
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Network construction
Let Y ∈ R

M×N represent the interaction matrix of M human proteins and N  viral proteins. When there is an 
interaction between the ith human protein and the jth viral protein, then Yij = 1 , otherwise Yij = 0 . Shseq (or Svseq ) 
represents sequence similarity of human (or viral) proteins, respectively. The task at hand is to predict potential 
interactions in Y .

According to previous research, reasonably extracting information from known interaction networks can 
enhance the accuracy of the network, thereby improving the predictive ability of the model13,20–22. However, the 
existing interactive networks are very sparse, and the information contained is more focused on well-studied 
samples, and extracting information directly from them will contain more noise. Therefore, drawing on the 
method of Xiao et al.23, based on Shseq and Svseq , we utilize weighted k nearest neighbor profiles (WKNNP) to 
initially complete the trained Y  to obtain Y  . In previous studies, we proposed a network construction method 
based on kernel neighborhood similarity (KSNS)24,25, which can hierarchically integrate neighborhood and 
non-neighborhood information and mine nonlinear relationships of samples, and has been well applied in some 
biological relationship prediction problems20,21,26,27. KSNS calculates the similarity as follows:

where �(·) represents kernal transformation, and Gaussian function is selected in this paper. � · �F denotes 
F-norm, and ⨀ is an element-by-element multiplication. µ1 and µ2 represent regularization parameters, accord-
ing to previous studies21,27,28, µ1 = 4 and µ2 = 1 . According to (1), when X = Y  , the interaction profile similarity 
Shint of human protein can be obtained; when X = Y

T , the interaction profile similarity Svint of viral proteins can 
be obtained.

Then, we obtain two similarities of human proteins ( Shseq, Shint ) and two similarities of viral proteins ( Svseq , 
Svint ), which both measure the relationship of human (or viral) proteins from different aspects. To obtain a more 
accurate network structure, clusDCA29 is used to fuse Shseq and Shint to obtain the final human protein similarity 
Sh , and Svseq and Svint to obtain the final viral protein similarity Sv.

VKBNMF
Liu et al.30 introduced neighborhood similarity into logical matrix factorization, and obtained a neighborhood 
regularized logical matrix factorization model (NRLMF), which and its variants are well applied to the interac-
tion relationship prediction of various biological entities28,30,31. However, NRLMF needs to undergo tedious 
hyperparameter tuning before performing prediction tasks, which not only affects computational efficiency, but 
may also lead to overfitting. This paper establishes a Bayesian framework based on LMF, takes hyperparameters 
as latent variables, and introduces prior probability, so that the model can adaptively search for the optimal solu-
tion, avoid tedious hyperparameter debugging, and improve prediction performance and generalization ability.

(1)
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W≥0

{
1

2
�φ(X)W − φ(X)�2F +

µ1

2
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µ2

2
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}
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i
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Figure 1.   The overall workflow of VKBNMF for predicting of potential human–virus PPIs.
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Let G ∈ R
M×R and H ∈ R

N×R represent the factor matrices of human proteins and viral proteins respectively, 
then the interaction relationship between the m th human protein and the nth viral protein satisfies the Bernoulli 
distribution, and the density function can be expressed as:

where, σ(·) represents the sigmoid function, Gm. and Hn. represent the m th row of G and the n th row of H , 
respectively. NRLMF considers that known interactions are more important and need to be assigned higher 
weights. Meanwhile, assuming that all training samples are independent, the weighted conditional probability 
density of Y  can be expressed as:

where, c ≥ 1 represents the importance level. Figure 2 demonstrates the probabilistic graphical model of 
VKBNMF with latent variables and corresponding priors.

From Fig. 2, the probability of occurrence of Y  is calculated from the factor matrix G and H by (3). The prob-
ability distributions of factor matrices G and H are obtained from U ∈ R

M×R and V ∈ R
N×R by integrating two 

types of auxiliary information Ku (e.g. Sh ) and Kv (e.g. Sv ). σg , σh and � are precision parameters, while α and β 
are hyperparameters. In this section, we specify priors on all latent variables and parameters.

In general, the effective dimension R of the latent space (e.g. the effective column dimensions of U and V  ) is a 
tuning parameter whose selection is quite challenging and computationally expensive. In order to both infer the 
value of R and avoid overfitting, we introduce automatic rank determination into the prior distributions of U and 
V32. Specifically, it is assumed that each column of U and V is independent, and its rth column satisfies the vector 
with a mean value of 0, and the precision matrix is the Gaussian prior of �r IM and �r IN , respectively, as follows:

where IM ∈ R
M×M and IN ∈ R

N×N represent the identity matrix, U·r and V·r represent the r th column of U 
and V  , respectively. [�1, �2, . . . , �R] constitutes the precision vector �∈ R

1×M . �r controls the r column of and 
V  . When �r is large, Ur and Vr both approach 0, indicating that they make little contribution to Y and can be 
removed from U and V. This process can realize the automatic determination of R . For the precision vector � , 
the conjugate Gamma hyperprior is defined as follows:

where, Gamma(x|α,β) = βα

Ŵ(α)
xα−1e−βx is the Gamma distribution, and {α,β} are the two parameters of the 

Gamma distribution. In this study, no information prior is selected33, that is, α = 1 , β = 1 . In order to effectively 
integrate the auxiliary information, let the elements in the factor matrix G be independent, and the (m, r)th ele-
ment Gm,r satisfies the Gaussian distribution with the expectation of Ku

m·U·r and precision σg , as follows:

Similarly, according to Kv and V  , the prior probability of H is as follows:

(2)P(Ym,n|Gm.,Hn.) = σ

(
Gm.Hn.

T
)ym,n

(
1− σ

(
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(
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Figure 2.   Directed graph representation of VKBNMF model.
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where, σh is the precision parameter. Here, σg and σh satisfy the Jeffreys prior

According to the probability graph model described in Fig. 1, combined with the likelihood function in (3), 
the priors of U  and V  in (4) and (5), the priors of precision vector � in (6), the priors of factor matrix G and H in 
(7) and (8), and the priors of precision σg and σh in (9) and (10), the joint distribution of VKBNMF is given by:

Let � =
{
G,H ,U ,V , �, σg , σh

}
 represent the set of all potential variables, and our goal is to compute the 

complete posterior distribution of all potential variables given Y

Model Inference of VKBNMF
The accurate solution of (12) requires the integration of all potential variables, which is computationally intrac-
table. Therefore, this study employs variational inference to obtain the approximate posterior distribution q(�) 
for P(�|Y) . The principle of variational inference is to define a set of parameter distributions on latent variables 
and update the parameters to minimize the Kullback–Leibler (KL) distance between P(�|Y) and q(�)34

where lnP(Y) represents model evidence and its lower bound is defined as L
(
q
)
=

∫
q(�)ln

{
P(�,Y)
q(�)

}
d� . 

According to the mean field approximation, q(�) can be decomposed into

When the other variables are fixed, the optimal posterior estimate of q(�k) is defined as follows:

where, E[·] represents expectation, and const represents a constant that does not depend on the current variable. 
�\�k represents the � set after deleting �k . All variables are updated sequentially while keeping other variables 
constant.

1) Estimate the latent variable � : Combining the respective priors of U , V and � in (4), (5) and (6), the posterior 
approximation Lnq(�r) is derived from (15) as

From (16), it is found that the posterior density of the �r obey the Gamma distribution

where α̃r and β̃r represent the posterior parameters as follows:

The required expectations here are found as 

(8)P
(
H|V ,Kv , σh

)
=

N∏

n=1

R∏

r=1

N
(
Hn,r |K

v
n·V·r , σh

−1
)

(9)P
(
σg
)
∝ σg

−1

(10)P(σh) ∝ σh
−1
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)
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(
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)
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where Ũ·r and Ṽ·r represent the posterior expectation of U·r and V·r , respectively. �(U·r) and �(V·r) represent the 
posterior covariance matrix of U·r and V·r , respectively. tr(·) represents the trace of a matrix.

2) Estimate latent variables U  and V  : Substituting the priors of the latent variables U  and G into (15), the 
posterior approximation of Lnq(U·r) is obtained as follows (see section 1 of Appendix for details):

where IM ∈ R
M×M is the identity matrix and G·r represents the r column of G . From (20), it is found that U·r 

follows a multivariate Gaussian distribution

The posterior expectation U·r and the covariance matrix �(U·r) are as follows:

Similarly, the posterior of V·r follows a multivariate Gaussian distribution

Its expectation and covariance matrix are

3) Estimate latent variables G and H : The likelihood function in (3) contains the exponential form of Gm. , 
resulting in no conjugate prior. Therefore, referring to35, we utilize the following approximation.

Then, the log likelihood of Ym,n satisfies

where ξm,n represents the local variational parameter. It can be seen that h(ξm,n,Gm.,Hn.) is a quadratic func-
tion of Gm. and is the lower bound of the log likelihood. By replacing P

(
Ym,n|Gm.,Hn.

)
 with h(ξm,n,Gm., hn) and 

combining (7) and (15), it can be found that the posterior of Gm. satisfies the multivariate Gaussian distribu-
tion q(Gm.) = N (Gm.|G̃m.,�(Gm.)) , and its expectation and covariance matrix are given by (see section 2 of 
Appendix for details).

where, H̃ represents the expectation of H,am,n =

(
cymn−1+ymn

2

)
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(
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)
�
(
ξm,n

)
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and covariance matrix are given by 
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·r Ṽ·r + tr(�(V·r))

(20)

Lnq(U·r) = Eq(�\U·r )

�
Ln

�
P
�
G|U ,Ku, σg

�
P(U |�)

��
+ const

= E


−

(U·r)
T
�
σg (K

u)TKu + �r IM

�
U·r − 2σg (U·r)

T (Ku)TG·r

2


+ const

(21)q(U·r) = N

(
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(24)Ṽ·r = σ̃h�(V·r)
(
Kv

)T
H̃·r

(25)σ(z) ≥ σ(ξ)exp

{
z − ξ

2
− �(ξ)

(
z2 − ξ 2

)}
, �(ξ) =

1

2ξ

[
σ(ξ)−

1

2

]

(26)

Ln
[
P
(
Ym,n|Gm.,Hn.

)]
= Ln

[
Pm,n

cym,n
(
1− Pm,n

)(1−ym,n)
]

≥ Ln
(
h(ξm,n,Gm.,Hn.)

)
= cym,nGm.Hn.

T + (cym,n + 1− ym,n)
{
Ln

[
σ
(
ξm,n

)]
−

Gm.Hn.
T + ξm,n

2
− �

(
ξm,n

)(
Gm.Hn.

THn.Gm.
T − ξm,n

2
)}

(27)

G̃m. =

{
�

(
G̃m.

)[
H̃Tam

T + σ̃g Ũ
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where, G̃ represents the expectation of G.
4) Estimate latent variables σg and σh : Substituting (7) and (9) into (15), the approximate posterior of lnq

(
σg
)
 

is as follows:

Therefore, the posterior distribution of σg is a Gamma distribution with expectation

where, ãg and b̃g are the posterior parameters of σg , refer to Theorem 1 in the appendix, E
[
�G − KuU�2

]
 is 

given by

Similarity, the posterior distribution of σh is a Gamma distribution with expectation

where, ãh and b̃h are the posterior parameters of σh , E
[
�H − KvV�2

]
 is obtained similarly to formula (31).

5) Update local variational parameter ξm,n : According to (26), Ln(h(ξm,n,Gm.,Hn.)) takes the derivative of 
ξm,n and sets its derivative equal to 0 to obtain the optimal value of ξm,n as follows (see section 4 of Appendix 
for details)

where, vec(·) represents converting a matrix into a row vector.
In summary, the optimization algorithm for solving VKBNMF is shown in Algorithm 1.
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Input: Known human protein-virus PPIs matrix , human protein similarity , viral protein 

similarity .

Output: Predicted interaction probability matrix  for human proteins and viral proteins

Initialize:

Initialize expectations , , , and  with random numbers from the standard Gaussian 

distribution, and initialize covariance matrices Σ( ), Σ( ), Σ( ), andΣ( ) with unit tensors. 

Let = 1, = , =

repeat

  Update the posterior ( ) and ( ℎ) using (30) and (32).  

for each  (1 ≤ ≤ )

  Update the posterior ( ) using (17) and (18).

  end for 

  Update the posterior ( ) using (21) and (22).

  Update the posterior ( ) using (23) and (24).

  Update the posterior ( ) using (27).

  Update the posterior ( ) using (28).

  Update the local variational parameter  using (33).

Until convergence.

=
1

1 + ―

Return .

Algorithm 1.   VKBNMF algorithm flow.

Results
Data extraction
The MorCVD database covers 19 microbial-induced cardiovascular diseases including endocarditis, myocardi-
tis, and pericarditis, as well as 23,377 interactions between 3957 viral proteins of 432 viruses and 3202 human 
proteins36. We took vascular disease as the key word, and downloaded the human–virus PPIs of various diseases 
one by one from the database. To ensure that as many human (or virus) proteins as possible are covered in the 
dataset, we remove disease types that contain less than 100 human (or viral) proteins. Finally, the human–virus 
PPIs under the four disease types (corresponding to the four benchmark data sets) are obtained, as shown in 
Table 1.

From Table 1, the known interactions contained in the four benchmark datasets are very sparse (accounting 
for less than 1%). To obtain additional auxiliary information, we extracted amino acid sequences of these pro-
teins from the UniProt database37 by R package “protr”38, and calculated the pseudo-amino acid composition39 
(abbreviated as PseAAC) feature of human (or viral) proteins according to the regularization frequency of amino 
acids. Further, according to the PseAAC feature, KSNS is used to construct the sequence similarity of human (or 
viral) proteins. In summary, the four benchmark datasets in this study contain human–virus PPIs under four 
disease types, as well as the sequence similarity Shseq (or Svseq ) of the corresponding human (or viral) proteins.

Experimental settings
To examine the prediction ability of the model for human–virus PPIs, new human proteins and new viral pro-
teins, we performed fivefold crossover validation in 3 different scenarios according to previous studies26–28,40.

Table 1.   The statistics of the four datasets. “H_num” indicates the number of human proteins, “V_num” 
indicates the number of virus proteins, “I_num” indicates the number of interactions, “Prop” indicates the 
proportion of known interactions. “CI” indicates the disease “Cardiovascular Infections”, “DC” refers to 
“Dilated Cardiomyopathy”, “ED” refers to “Endocarditis” and “VM” refers to “Viral Myocarditis”.

Disease name H_num V_num I_num Prop Disease name H_num V_num I_num Prop

CI 217 410 861 0.97% ED 557 1004 1961 0.35%

DC 424 1149 3366 0.69% VM 898 490 4177 0.95%
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(1) “Pairwise interaction” scenario: Evaluate the predictive power with respect to human–viral PPIs. The 
known interactions of Y  are randomly divided into 5 equal parts, four of which are used for training and the 
remaining part is used for testing.

(2) “Human Protein” Scenario: Evaluate the predictive power with respect to human proteins. The rows of 
Y  are randomly divided into five equal parts, four of which are used for training and the remaining one is used 
for testing.

(3) “Viral Protein” Scenario: Evaluate the predictive power with respect to viral proteins. The columns of Y 
are randomly divided into five equal parts, four of which are used for training and the remaining one is used 
for testing.

For the “Pairwise interaction” scenario, refer to previous studies40–43, and select the average AUPR value, 
AUC value and F1 value of fivefold cross validation as evaluation indicators. For the “Human protein” and 
“Viral Protein” scenarios, more attention is often paid to the top-ranked candidate interactions, namely the hit 
rate12,13,40, which is calculated as follows:

(34)Hit(ρ) =
|Scand([ρ · N]) ∩ STest |

|STest |

Figure 3.   Effect of significance level c on model prediction performance.

Table 2.   Comparison of the prediction performance under “Pairwise interaction” scenario. The numbers in 
bold represent the optimal values of the current indicator.

Dataset Evaluation index

Methods

VKBNMF KBMF HGLMF WHGMF DLapRLS LAGCN MKGAT​

CI

AUPR 0.9101 0.8951 0.8681 0.8685 0.8801 0.7849 0.8834

AUC​ 0.8975 0.8785 0.8476 0.8447 0.8260 0.7201 0.8525

F1 0.8605 0.8414 0.7916 0.7970 0.8299 0.7183 0.7979

DC

AUPR 0.9316 0.8551 0.9008 0.8639 0.9070 0.8533 0.8888

AUC​ 0.9178 0.8344 0.8817 0.8266 0.8690 0.8365 0.8530

F1 0.8582 0.7734 0.8041 0.7492 0.8321 0.7748 0.7936

ED

AUPR 0.8727 0.8160 0.8070 0.7703 0.8280 0.7383 0.7959

AUC​ 0.8538 0.7930 0.7738 0.7355 0.7661 0.7032 0.7534

F1 0.8111 0.7680 0.7138 0.7129 0.777 0.6822 0.7198

VM

AUPR 0.9517 0.9348 0.9257 0.9225 0.9337 0.8549 0.9205

AUC​ 0.9402 0.9218 0.9078 0.8971 0.9045 0.8459 0.8938

F1 0.8824 0.8566 0.8355 0.8349 0.8666 0.7858 0.8359
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where, N represents the number of elements contained in the test set, ρ represents the scale factor, which is {2%, 
6%, 10%} in this study, and [·] represents rounding. Scand([ρ · N]) represents the top [ρ · N] PPIs with the highest 
predicted scores, and STest represents the actual PPIs in the test set.

Figure 4.   Comparison of model prediction performance for the top 2% hit rate.

Figure 5.   The values of AUC, AUPR, and F1 by VKBNMF under 20 random seeds of fivefold cross validation.

Table 3.   The P-value of the paired Wilcoxon rank sum test of VKBNMF with other predictive models.

KBMF HGLMF WHGMF DualLapRLS LAGCN MKGAT​

CI 2.2524 × 10–5 1.4499 × 10–14 1.3356 × 10–14 3.0316 × 10–13 3.5566 × 10–21 4.6759 × 10–12

DC 6.1892 × 10–19 1.5543 × 10–7 1.3916 × 10–14 1.1023 × 10–7 5.1181 × 10–20 1.9812 × 10–12

ED 4.6422 × 10–15 1.4084 × 10–18 3.5560 × 10–21 2.0502 × 10–13 3.5560 × 10–21 4.3444 × 10–21

VM 2.7322 × 10–7 1.5543 × 10–7 1.5540 × 10–7 1.7414 × 10–7 3.5566 × 10–21 1.5543 × 10–7
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Hyperparameter analysis
The importance level parameter c is the only important hyperparameter of VKBNMF. To analyse the effect of c 
on the prediction performance, we employ the grid method. Let c be taken from 

{
20, 21, . . . , 26

}
 , and perform a 

fivefold cross validation on the four benchmark datasets for the "pair interaction" scenario, the predicted AUPR 
values of the model are shown in Fig. 3.

From Fig. 3, the importance level parameter c has a significant effect of prediction performance on all four 
benchmark datasets. When c = 1 , i.e., known and unknown interactions are considered equally important, the 
models have the lowest AUPR on all four benchmark datasets. As c increases, the prediction performance gradu-
ally improves, and when c reaches 24 , the AUPR of all models gradually stabilises. Therefore, this study makes 
the hyperparameter c take the value of 16 and performs subsequent experiments. The above analyses also show 
that the introduction of importance level can improve the prediction performance to some extent.

Comparison experiments
To comprehensively evaluate the prediction performance of VKBNMF, we select 6 state-of-the-art interac-
tive prediction models. Four advanced network models are Kernel Bayesian Matrix Factorization (KBMF)44, 
Hypergraph Logical Matrix Factorization (HGLMF)28, Generalized Matrix Factorization Based on Weighted 
Hypergraph Learning (WHGMF)40, Dual Laplace Regularized Least Squares (DLapRLS)17. Two state-of-the-art 
deep learning methods are Layer Attention Graph Convolutional Networks (LAGCN)18 and Graph Attention 
Networks and Dual Laplacian Regularized Least Squares (MKGAT)45. It should be noted that, in order to ensure 
the fairness of the comparison, we employ the method described in “Network construction” section to build the 
network for all models, and utilize the optimal parameters provided in the original code to perform prediction. 
Under the “Pairwise interaction” scenario, the prediction results of all models on the four benchmark datasets 
are shown in Table 2.

From Table 2, VKBNMF shows optimal performance for all the metrics on the four benchmark datasets. On 
CI, VKBNMF achieves an AUPR of 0.9101, which improves 1.68%, 4.84%, 4.79%, 3.41%, 15.95%, and 3.02%, rela-
tive to KBMF’s 0.8951, HGLMF’s 0.8681, WHGMF’s 0.8685, DLapRLS’s 0.8801, LAGCN’s 0.7849, and MKGAT’s 
0.8834, respectively. The AUPR values of VKBNMF reached 0.9316, 0.8727 and 0.9517 on CD, ED and VM, 
respectively, which are higher than those of other methods. Regarding the “Human protein” and “Viral Protein” 
scenarios, the top 2% hit rates are shown in Fig. 4.

As shown in Fig. 4, for the "new human protein" and "new virus protein" scenarios, VKBNMF shows excellent 
performance on most datasets. Specifically, for the "new human protein" scenario, the hit rate of VKBNMF on CI 

Table 4.   The top 10 PPIs of Epstein–Barr virus identified by VKBNMF.

Virus protein Human protein Score Dataset

Q3KSU8 P28799 0.9302 IntAct

P0C732 P12004 0.9267 Unconfirmed

P03186 P28799 0.9002 VirHostNet

P0C732 P50402 0.8871 Unconfirmed

P0C732 O95817 0.8468 BioGRID

P0C732 O95071 0.8371 BioGRID

P0C732 P04792 0.7912 BioGRID

G3CKS7 O95071 0.7849 VirHostNet

P0C736 P02751 0.7272 IntAct

P0C762 P04275 0.7261 IntAct

Table 5.   The top 10 PPIs of Influenza A virus identified by VKBNMF.

Virus protein Human protein Score Dataset

Q5EP28 Q8WV44 0.9663 IntAct

Q5EP28 O95232 0.9521 IntAct

Q5EP28 Q8TAE8 0.9520 Unconfirmed

Q5EP28 Q4G0J3 0.9502 IntAct

Q5EP28 Q96EY7 0.9014 IntAct

Q5EP28 Q9BYD6 0.8913 IntAct

Q5EP28 Q9NYK5 0.8872 IntAct

Q5EP28 O76021 0.8818 IntAct

Q5EP28 Q9P015 0.8756 IntAct

Q5EP28 Q9Y3B7 0.8729 IntAct
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is 0.3437, which is 6.18% higher than the 0.3237 of KBMF (ranked second); the hit rate on DC is 0.3254, slightly 
lower than the 0.3421 of HGLM; the hit rate on ED is 0.2698, which is an increase of 26.13% compared to 0.2139 
of WHGMF (ranked second); the hit rate on VM is 0.5038, which is 9% higher than 0.4622 of HGLMF (ranked 
second). For the “new virus protein” scenario, VKBNMF shows the best performance on all four benchmark 
datasets. Especially for the DC data set, the top 2% hit rate of VKBNMF exceeds 0.6. Supplemental tables S1 and 
S2 show the top 2%, 6%, and 10% hit rates of all methods in the "new human protein" and "new viral protein" 
scenarios, respectively.

In summary, whether it is “Pairwise interaction” scenario, “Human protein” scenario, or “Viral Protein” sce-
nario, VKBNMF has shown excellent predictive performance on most data sets. The main reasons are as follows: 
Firstly, compared with other discriminant models, generative models (VKBNMF and KBMF) regard parameters 
as latent variables and realize adaptive parameter solving through variational inference, which not only avoids 
tedious parameter debugging, but also has considerable generalization ability and robustness. Secondly, com-
pared with KBMF, VKBNMF improves the prediction performance by introducing nonlinear functions and 
importance levels into Bernoulli distributions. Finally, VKBNMF introduces automatic rank determination to 
realize adaptive learning of the effective dimension R of the latent space, and sets an uninformative prior for the 
accuracy parameter to avoid manual search and improve computational efficiency.

Robustness analysis
To assess the robustness of the models, we calculate the average AUPR, AUC and F1 values for all models under 
20 different random seeds with respect to the fivefold cross-validation, and the results are shown in Table 2. We 
also draw a boxplot in Fig. 5, showing statistics for the AUPR, AUC, and F1 values of VKBNMF across 20 random 
seeds. Since the mean values on the variance of AUPR, AUC and F1 values on the four datasets are 1.644 × 10–5, 
1.727 × 10–5 and 1.938 × 10–5, which indicates that the VKBNMF exhibits good robustness.

Furthermore, we perform paired Wilcoxon rank-sum tests of VKBNMF with other predictive models in 
terms of AUC, AUPR, and F1 scores, and the results are shown in Table 3. Obviously, VKBNMF significantly 
outperforms other prediction models at 95% confidence level (p-value < 0.05) on all datasets. It demonstrates 
again the significant superiority of VKBNMF in the prediction of human–viral PPIs.

Case study
This section selects three common viruses, Epstein–Barr virus, Influenza A virus, and Human papillomavirus, 
as case studies to explore these viral diseases and the interaction between their viral proteins and human pro-
teins. For each virus, we deleted all PPIs with human proteins under the corresponding disease and performed 
VKBNMF to obtain predicted interaction probabilities. Based on the experimental prediction scores, we obtained 
the top 10 PPIs with the highest probability of interacting with the virus. Then, the predicted PPIs were tested 
against evidence obtained from various databases of human–virus PPIs (e.g. MINT, VirHostNet, IntAct, and 
BioGRID, etc.). As a result, 8, 9, and 8 of the top 10 PPIs for Epstein–Barr virus, Influenza A virus, and Human 
papillomavirus were verified, respectively.

Epstein–Barr virus (EBV), also known as Human gammaherpesvirus 4, is a member of the herpesvirus 
family, which is a double-stranded DNA virus and one of the most common human viruses46. EBV is found all 
over the world, which is generally transmitted through body fluids, mainly saliva. This virus is closely related to 
non-gonorrheal malignancy such as gastric cancer and nasopharyngeal cancer47, as well as children’s Alice in 
Wonderland syndrome48 and acute cerebellar ataxia49. Calderwood et al.50 found that human proteins targeted 
by EBV proteins are rich in highly connected or hub proteins, and the targeting center may be an effective 
mechanism for EBV recombination in cellular processes. In this study, all interactions between Epstein–Barr 
virus (Taxonomy ID is 10376) and human proteins under Cardiovascular Infections were deleted, and 8 of the 
top 10 PPIs predicted by VKBNMF were verified, as shown in Table 4.

Influenza A subtype H5N1 is a subtype of influenza A virus that causes disease in humans and many other 
species51. Handling infected poultry is a risk factor for H5N1 infection, and about 60 percent of humans known 
to be infected with the Asian strain of H5N1 have died from the virus. Furthermore, H5N1 may mutate or 

Table 6.   The top 10 PPIs of Influenza A virus identified by VKBNMF.

Virus protein Human protein Score Dataset

P03120 P11021 0.9663 MINT

P03129 Q9P0J7 0.9545 MINT

P03129 P47869 0.9403 VirHostNet

P03120 P20226 0.9350 MINT

P03129 O00203 0.9348 Unconfirmed

P03129 Q14671 0.9133 VirHostNet

P03129 Q15678 0.8783 VirHostNet

P03129 Q96C00 0.8648 VirHostNet

P03120 P04637 0.8485 MINT

P03129 Q9NP81 0.8471 Unconfirmed
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recombine into a strain capable of efficient human-to-human transmission52. Due to its high lethality, endemic 
existence, and continuous major mutations, H5N1 was once considered the world’s greatest pandemic threat, 
and countries around the world spent a lot of manpower and material resources on H5N1 research. In this 
study, all interactions between H5N1 (Taxonomy ID is 284218) and human proteins were deleted under Viral 
Myocarditis disease, and 9 of the top 10 PPIs with interaction probability predicted by VKBNMF were verified, 
as shown in Table 5.

Human papillomavirus (HPV) infection is one of the most common sexually transmitted diseases and has 
been associated with cancers such as cervical, head and neck squamous cell carcinoma (HNSCC), and anal 
cancer53. HPV infection is mainly transmitted through skin-to-skin or skin-to-mucosal contact54. HPV 16 is 
the most common high-risk type of HPV, which causes a trusted source of 50% of cervical cancers worldwide, 
and usually does not cause any noticeable symptoms, although it can bring about cervical changes55. In this 
study, all interactions between HPV 16 (Taxonomy ID is 333760) and human proteins were deleted under Viral 
Myocarditis disease, and 8 of the top 10 PPIs with interaction probability predicted by VKBNMF were verified, 
as shown in Table 6.

Discussion
This study proposes a novel human–virus PPIs prediction method named kernel Bayesian nonlinear matrix 
factorization based on variational inference (VKBNMF). The novelty of this method is to establish a Bayesian 
framework of nonlinear matrix factorization and introduce auxiliary information to improve the predictive ability 
of new proteins. Meanwhile, VKBNMF takes model parameters as latent variables, and realizes the adaptive solu-
tion of parameters by inferring its posterior probability, avoiding tedious parameter debugging and enhancing 
the generalization ability of the model. In addition, this study builds a variational framework for model solving, 
which ensures the efficiency of solving large-scale data.

To evaluate the performance of VKBNMF, we conducted extensive experiments on multiple benchmark 
datasets and various experimental scenarios. The experimental results found that for the “Pairwise interaction” 
scenario, except for the CI dataset, VKBNMF achieved better AUPR, AUC and F1 values on the other three 
datasets. Under the “Human protein” scenario, the hit rates of VKBNMF are slightly lower than those of KBMF 
and HGLMF on CI and DC datasets, respectively, and VKBNMF achieves significantly higher hit rates on the 
remaining two datasets. Under the “Viral Protein” scenario, VKBNMF showed a higher hit rate on all four bench-
marks. Finally, we take three common viruses as case studies to further verify the effectiveness of our method.

However, VKBNMF still has some aspects worthy of further study. Firstly, to facilitate the solution of the 
model, we select common conjugate priors, such as multivariate Gaussian distribution and Gamma distribution. 
The following research plans to try some other effective prior distributions. Secondly, for the purpose of model 
evaluation, we separately studied human–virus PPIs in different diseases, ignoring the relationship between 
different diseases. In the future, we plan to establish an integrated prediction model combining disease types 
and human–virus PPIs.

Data availability
VKBNMF is freely available in a GitHub repository (https://​github.​com/​Mayin​gjun2​0179/​VKBNMF).
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