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Development of risk models 
of incident hypertension using 
machine learning on the HUNT 
study data
Filip Emil Schjerven 1*, Emma Maria Lovisa Ingeström 2, Ingelin Steinsland 3 & 
Frank Lindseth 1

In this study, we aimed to create an 11-year hypertension risk prediction model using data from the 
Trøndelag Health (HUNT) Study in Norway, involving 17 852 individuals (20–85 years; 38% male; 24% 
incidence rate) with blood pressure (BP) below the hypertension threshold at baseline (1995–1997). 
We assessed 18 clinical, behavioral, and socioeconomic features, employing machine learning models 
such as eXtreme Gradient Boosting (XGBoost), Elastic regression, K-Nearest Neighbor, Support Vector 
Machines (SVM) and Random Forest. For comparison, we used logistic regression and a decision rule 
as reference models and validated six external models, with focus on the Framingham risk model. 
The top-performing models consistently included XGBoost, Elastic regression and SVM. These models 
efficiently identified hypertension risk, even among individuals with optimal baseline BP (< 120/80 
mmHg), although improvement over reference models was modest. The recalibrated Framingham risk 
model outperformed the reference models, approaching the best-performing ML models. Important 
features included age, systolic and diastolic BP, body mass index, height, and family history of 
hypertension. In conclusion, our study demonstrated that linear effects sufficed for a well-performing 
model. The best models efficiently predicted hypertension risk, even among those with optimal or 
normal baseline BP, using few features. The recalibrated Framingham risk model proved effective in 
our cohort.

Hypertension, a medical condition of persistent elevated blood pressure (BP), is estimated to indirectly contribute 
to around 10 million annual deaths worldwide and up to 10% of the world’s total health resource  expenditure1–3. 
Current practices for determining interventions in hypertension management rely on BP measurements, age, and 
risk profiles of other diseases where hypertension is a major risk-factor1. Lifestyle changes are a key intervention 
component for all stages of hypertension and are effective in preventing and delaying the onset of  hypertension1,2. 
A risk model allowing detection of individuals that are currently free from, but at the risk of developing, hyper-
tension could be used to initiate personalized prevention strategies earlier.

Several models that mathematically combine clinical, behavioral, genetic and socioeconomic risk factors 
to predict risk have been proposed for incident  hypertension4–7. Generally, performance has been reported by 
discrimination measures, i.e., measures quantifying a model’s ability to distinguish between individuals who 
develop the disease or  not8. The discrimination performance vary considerably between studies developing risk 
 models7. Yet, studies rarely included reference models to contextualize their results, which makes it difficult to 
objectively assess any improvement upon simpler alternatives. Further, few models have been externally vali-
dated. Of these, most have been validated once or twice, except for the Framingham risk  model9, which has been 
validated more than 15 times in external  studies7.

Multiple studies have applied machine learning (ML) to develop risk models for hypertension. Most of these 
used cross-sectional data, i.e., data collected from a single point in time, to develop models for identifying existing 
 hypertension7. Fewer have used prospective data, i.e., data collected from the same individuals at two separate 
points in time, to develop risk models using  ML7,10–18.
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On model performance, discrimination was often higher in studies applying ML compared to those applying 
more traditional regression-based  models7. Nevertheless, when ML models were directly compared to simpler 
models such as the logistic or Cox regression model, the net improvement in discrimination  varied10–15,19. Other 
relevant performance measures such as calibration, i.e., measures on the agreement of predictions with observed 
outcomes, are often neglected in studies applying  ML7,8,10–18.

In this study, our primary objective was to develop a risk model for incident hypertension and assess the 
potential of ML on model performance. Secondary objectives were to identify the features most important for 
obtaining well-performing models, and externally validate existing hypertension risk models.

Materials and methods
The Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRI-
POD)20 checklist for this study is supplied as Supplementary Item S1.

Data
A dataset was derived from the Trøndelag Health (HUNT) Study, originating from the now former county of 
Nord-Trøndelag in Norway. The HUNT Study constitutes a large population database for medical and health-
related research including four health surveys over four  decades21. In this study, baseline data was collected 
from HUNT2 (1995–1997, 69.5% participation rate) with endpoint derived from the follow-up in HUNT3 
(2006–2008). Although data from HUNT1 (1984–1986) exists, we selected data from the HUNT2-HUNT3 
cohort as it represents a more concurrent population (e.g., prevalence and treatment of hypertension). Data from 
the more recent HUNT4 (2017–2019) was not yet available at the initiation of this work. The study population 
derived from HUNT2-HUNT3 is ethnically homogenous of European descent (> 97% Caucasian), and socio-
economically comparable with other Northern European  countries22,23. We included records from individuals 
participating in the HUNT2 and HUNT3 surveys:

• With complete information on BP measurements and use of BP medication, at both baseline and follow-up,
• without missing information on diabetes or cardiovascular disease (CVD) at baseline,
• with a BP below the hypertension threshold, not using BP medication, and free from both CVD and diabetes 

at baseline.

All individuals were ≥ 20 years of age. BP was measured using an automatic oscillometric device (Critikon 
Dinamap 845XT or 8100, GE Healthcare, Chicago, US; Dinamap XL 9301, Johnson & Johnson Medical Inc., New 
Brunswick US). Measurements were taken in the sitting position after 2 min of rest by trained personnel using 
standardized protocols. A total of three consecutive measurements were taken 1 min apart. The first measurement 
was used to calibrate the device, and the mean of the subsequent two recorded as  BP22,23. Hypertension status was 
determined according to the European Society of Cardiology (ESC) and the European Society of Hypertension 
(ESH) guidelines, i.e., a systolic pressure of 140 mmHg or more, diastolic pressure of 90 mmHg or more, and/
or current use of BP  medication1. The process of applying exclusion criteria and a general data-flow diagram is 
shown in Supplementary Fig. S1. From the records of 65 003 participants at HUNT2, 35 626 met the inclusion 
criteria at baseline. Of these, 12 687 were lost to follow-up, leaving 22 939 records. We excluded a further 5 087 
records due to missing feature data, leaving 17 852 records in a complete dataset used for analysis.

The features used in our study are well-established risk factors of both hypertension and CVD and are com-
monly used in risk modelling of incident  hypertension1,6. We estimated physical activity using a novel metric, 
Personal Activity Intelligence (PAI). The PAI algorithm converts self-reported leisure time physical activity to 
an average weekly PAI score representative for the last  year24–27. The HUNT Study protocol have been described 
in detail by Åsvold et al.21 and more information about how the features and outcome were collected can be 
found in Supplementary Table S1 and at https:// hunt- db. medis in. ntnu. no/ hunt- db/#/. All participants provided 
written informed consent and this study was pre-approved by the Regional Committee on Medical and Health 
Research Ethics of Norway (REK; 22,902; 2018/1824), and all methods were performed in accordance with the 
relevant guidelines and regulations.

Data statistics
The complete dataset was stratified on outcome status, i.e., above or below hypertension threshold at follow-up, 
and described by summary statistics. We applied Welch t-tests or chi-square tests as appropriate to detail signifi-
cant differences between those whose BP remained below the threshold and those who developed hypertension. 
The same tests were applied on applicable groups whenever summarized feature data was compared in subse-
quent analyses. Whenever multiple comparisons were performed, we applied Holm’s step-down  correction28 to 
determine significance, using α = 0.05 on the m = 19 data dimensions, i.e., 18 features and one outcome.

Preprocessing
As part of the model development and evaluation, the data was preprocessed by standardizing the numerical 
features. Further, categorical features were left as they were for the tree-based methods, and binary encoded for 
the remaining models. The parameters needed for standardization were estimated using only the training set to 
avoid the possibility of data leakage, i.e., inadvertently using information from the test set to develop the models.

https://hunt-db.medisin.ntnu.no/hunt-db/


3

Vol.:(0123456789)

Scientific Reports |         (2024) 14:5609  | https://doi.org/10.1038/s41598-024-56170-7

www.nature.com/scientificreports/

Modelling
To construct the risk model, we considered several ML modelling methods. Using all features, we included the 
following methods: eXtreme Gradient Boosting algorithm (XGBoost)29,30, logistic regression with elastic regu-
larization (Elastic regression)31, Support Vector Machine (SVM)32, K-Nearest Neighbor (KNN) and regularized 
Random  Forest33,34. To offer a comprehensive assessment of model performance we included a simple logistic 
regression model and a decision rule model aligning with current practices of assessing hypertension risk as 
references. Specifically, we included a logistic regression model using only age and BP as features, and a simple 
decision rule named “High normal BP rule”. The high normal BP rule predicts individuals with high normal BP 
(130/85 mmHg ≤ BP < 140/90 mmHg) at the baseline assessment as having 100% risk of incident hypertension 
at follow-up, and 0% otherwise. No neural networks algorithms were considered as they have been suggested to 
perform less favorable on tabular  data35. For simplicity, features were included in the models without defining 
any interactions.

Hyperparameters were needed for several of the modelling methods. For XGBoost, we sampled 256 hyper-
parameter-combinations as candidates for cross-validation. We sampled 128 combinations each for both the 
Random Forest and the SVM modelling method. A grid search was used for Elastic regression and KNN models 
as these required less computational power. The hyperparameters, their ranges, search strategies and selected 
values are described in Supplementary Table S2.

Several steps were taken to minimize the risk of overfitting the data. First, we divided the available dataset 
randomly into a training and test set by a 7:3 ratio. Second, a fourfold cross-validation scheme was applied on 
the training set to select hyperparameters for our modelling methods. The combination of hyperparameters that 
produced the best mean out-of-fold performance during cross-validation was selected for each method separately. 
Using the selected hyperparameters, a final model for each method was fitted on the training set.

Internal model validation
The final models were applied on the test set to evaluate performance. To account for variations in the test set, 
we applied bootstrapping with 1000 repetitions measuring the performance of all models on each bootstrapped 
test set. We summarized the performance measures by their means and 95% confidence intervals.

Validation of external models
An important consideration to make seeing the already high number of developed hypertension risk models in 
the field is the need for another  model7. Externally developed models may be used directly or easily adapted in 
some cases, making effective use of existing knowledge and reducing the probability of creating “research waste”. 
We address this concern by externally validating all applicable models we could find in the literature on our data. 
Perhaps equally important for hypertension risk models is that this contributes to assessing the generalizability 
of models, something which has been lacking for most hypertension risk  models4–7.

We searched the literature for existing risk models that could be validated in our cohort by the following 
criteria: Using similar features to those available in the HUNT Study data; reporting model performance; and 
suitable for the 11-year follow-up period between baseline and outcome. From this, we found seven applicable 
risk models: Two clinical risk models for Chinese populations developed by Chien et al.36, The Framingham risk 
model developed using an American cohort by Parikh et al.9 and four more that were refitted versions of the 
Framingham risk model using either Korean or Iranian  populations37–39. We validated these models upon the 
HUNT Study data, applying bootstrapping with 1000 repetitions to account for variations in the dataset. The 
external models and adaptations made on features are shown in Supplementary Note and Table S3.

An alternative to creating new risk models is to use a pre-existing model from literature. The use of the 
Framingham risk model was considered as an alternative. We choose the Framingham risk model as most appli-
cable external models were adaptations of it, and it also had high resemblance with the risk models developed by 
Chien et al.36. We evaluated both the original version of the Framingham risk model and a recalibrated version 
tailored to the HUNT Study data. To perform recalibration, we followed Method 1 as described by Moons et al.40. 
As we did not have data meaningful for fitting time-to-event models, we used logistic regression to perform the 
recalibration. The performance of the original and recalibrated Framingham risk model was reported for com-
parison with the other developed models in this  study40,41. Details on the original and recalibrated Framingham 
risk models are also presented in Supplementary Note and Table S3. We compare cohort summary data from 
the Framingham risk model development study and the HUNT Study in Supplementary Discussion and Sup-
plementary Table S4.

Performance indicators
To provide a complete view of model performance, we calculated multiple performance measures capturing 
discrimination, calibration, and clinical usefulness, as well as several measures commonly reported for ML 
methods. A particular emphasis was made on performance measures that did not transform predictions into 
binary outcomes, i.e., not requiring a probability threshold. We note that there is no such natural threshold value 
for hypertension risk modelling.

We evaluated discrimination performance by the Area Under the receiver operator Curve (AUC), which is 
frequently used in risk modelling for hypertension and other binary  outcomes6,7,8. We also estimated the models 
general performance by the scaled Brier score, which is a proper scoring  function8,42,43. The scaled Brier score 
was applied as the common criteria for choosing the optimal hyperparameters during cross-validation.

Calibration was assessed graphically using smoothed calibration curves, and numerically summarized using 
the Integrated Calibration Index (ICI)44,45. The ICI measures the deviation of the smoothed calibration curve of a 
model versus a perfect, straight, diagonal calibration line, weighted by the distribution of the model’s predictions. 
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A low ICI score suggests that the model is well-calibrated for the risk percentiles it frequently predicts in the 
 dataset44,45.

Decision curve analysis was performed graphically by presenting the Net Benefit plot derived from the test 
set. The net benefit plot complements the calibration curve in assessing clinical usefulness of a risk  model8,46. The 
benchmarks compared against in the Net Benefit plot was 1) predicting all as above the threshold of hyperten-
sion at follow-up, 2) predicting all as below the threshold of hypertension at follow-up and 3) the high normal 
BP decision rule previously described, where individuals with high normal BP were predicted as having 100% 
risk of being above threshold of hypertension at follow-up.

Lastly, we include auxiliary performance measures of discrimination that are frequently reported for ML 
models: The F1 measure, sensitivity, specificity, positive predictive value, negative predictive value, and the Mat-
thews correlation  coefficient47. For these, individual predictions need to be either below or above the hypertension 
threshold and not probabilities between zero and one. Thus, we assigned all predictions below the incidence rate 
of the training set (24.2%) as below the threshold, and all others as above.

Feature importance
Assessing the feature importance of each feature for model performance can inform which features were neces-
sary or unnecessary to include for obtaining a well-performing model. The motivation can be the derivation of 
an effective risk model using a subset of the original features. The subset of features may also have specific traits, 
such as being more cost-effective to obtain, accessible, or accurate in collection.

To estimate feature importance, we fitted Least Absolute Shrinkage and Selection Operator (LASSO) logistic 
regression models on the training set with increasing regularization penalty. As the penalty increased, the features 
coefficient sizes were tracked and we evaluated the LASSO model performance on the test  set48. Features were 
included as linear effects without interactions.

To compare the feature importance found using the LASSO model, we calculated permutation importance 
for each feature with the XGBoost, K-Nearest Neighbor, SVM and Random Forest models on the test set using 
an adapted version of the procedure described by Fisher et al.49. In short, permutation importance for a feature 
was calculated as the change in performance for a model after randomly permuting that feature while keeping 
the remaining features fixed. The feature importance was reported as the mean permutation importance after 
repeating the procedure 1000 times. This provided some insight into how much each model relied on each feature 
for its performance on the test set.

An issue with permutation importance is bias introduced by correlated  features49. To accommodate this, we 
calculated permutation importance on clusters of correlated features. We used hierarchical clustering of features 
with 1 – abs(X) as a distance metric, where X was the correlation between features. Using the max-distance 
criteria, clusters were merged until the distance between all pairs of clusters was 0.8 or higher.

Subgroup analyses
To investigate the impact of using a threshold on continuous data such as systolic/diastolic BP to determine 
hypertension status, we performed two subgroup analyses with respect to baseline BP. Specifically, one subgroup 
was defined as individuals in the test set with BP below high-normal BP levels (< 130/85 mmHg) at baseline, and 
one subgroup as individuals with optimal BP (< 120/80 mmHg) at baseline. We compared summary statistics 
and report model performance calculated on these subgroups. In doing so, we also investigated the models’ 
ability to identify individuals with optimal BP levels at baseline that experienced a substantial increase in their 
BP to follow-up, 11 years later.

Imputation of missing feature data
We performed a complete-case analysis, removing 5 087 records with missing feature entries from the dataset 
available from the HUNT Study. Ideally, multiple imputations (MI) should be used to handle feature data miss-
ing not completely at  random50. The choice of doing a complete-case analysis instead of MI was the increased 
computational time in the main analysis. To assess the possible impact of performing MI, we applied the multiple 
imputation by chained equations (MICE)51 on the features in the original dataset containing all 22 939 individu-
als. Risk models were developed like in the main analysis but using only a subset of modelling methods with 
reduced hyperparameter searches. In total, we obtained four evaluations per modelling method: Models fitted 
on the training set with and without imputation, which were then evaluated on the test set with and without 
imputed records. See the Supplementary Method for more details.

Selection bias due to loss to follow-up
In this study, 12 687 eligible participants in HUNT2 were lost to follow-up at HUNT3. Of these, 7 879 declined 
to participate, 2054 died, 2636 moved out of North Trøndelag County, and 118 had emigrated. A subset of 8 050 
had complete feature data, meaning the effective loss to follow-up rate for our main analyses was 31%. To assess 
the degree of selection bias induced by loss to follow-up, we compared feature distributions between the lost and 
the included records and performed a post hoc sensitivity analysis. This analysis was performed by refitting elastic 
regression risk models similarly to the main analysis, but with each record weighted by their inverse probability 
of being among those lost to follow-up, as described by Howe et al.52. The probabilities were calculated using a 
pooled logistic regression model with all baseline features as linear features. Records from all 25 902 individuals 
who had complete data at baseline were used, with loss to follow-up as the outcome.
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Software
All data processing and analyses were performed in R (v. 4.1.2) using the RStudio  IDE53,54. The Tidyverse (v. 
1.3.1) package was used to process data and create figures, in combination with ggExtra (v. 0.10.1), cowplot (v. 
1.1.1) and ggpattern (v. 1.0.1)55–58. Summary statistics were calculated using Skimr (v. 2.1.5)59. Modelling was 
implemented using the caret (v. 6.0–94), glmnet (v. 4.1–8), mice (v. 3.16.0) and doSNOW (v. 1.0.20)  packages60–62. 
Performance measures were calculated using caret (v. 6.0–94) and dcurves (v. 0.4.0)  packages60,63. The smoothed 
calibration curve was computed using the loess function with default parameters, and hierarchical clustering by 
the hclust function, both from the stats (v 4.1.2) base package in  R53.

Results
Summary statistics for the cohort are provided in Supplementary Table S5. There were significant differences in 
all features when stratified by outcome status. The 11-year hypertension incidence rate was 24.41%.

Applying the fitted models on the test set, we obtained the results given in Table 1. Discrimination was good 
for all models, except the High normal BP rule. XGBoost, Elastic regression and SVM performed slightly better 
than the others. Most developed models were well-calibrated, as shown by low ICI and their calibration curves 
in Figs. 1 and 2. The KNN model underestimated risk at predictions higher than 35%, whereas the remaining 
models slightly overestimated risk at predictions higher than 60%. The developed models had similarly shaped 
decision curves, shown in Figs. 3 and 4, in which models scoring higher on discrimination displayed a slightly 
higher net benefit across all thresholds. All ML models improved upon the decision curve references. Auxiliary 
performance measures are presented in Supplementary Table S6.

Validation of external models
The Framingham risk model performed comparably with newly developed models on discrimination, but over-
estimated risk as shown by the higher ICI and calibration curve, see Table 1, and Figs. 1 and 2. The effect of poor 
calibration can be seen in its decision curve in Figs. 3 and 4 where net benefit was consistently lower, and even 
negative for higher predictions. After a simple recalibration of the Framingham risk model that preserved dis-
crimination performance, the ICI score and calibration curve show a well-calibrated model that had a decision 
curve close to the best of the new models based on results from the test set, see Table 1.

Results for all six external models validated on the whole dataset are provided in Table 2. In summary, all 
models displayed good discrimination, yielding bootstrapped AUC means of 0.787–0.789 for the Framingham 
risk model and its refitted versions, and 0.768 for the Chinese risk model. Of all external models, the Framing-
ham risk model was the only model displaying a positive scaled Brier score. All external models had high ICI 
scores, i.e., poor calibration on the HUNT Study cohort. The calibration curves of the external models shown in 
Supplementary Fig. S2 indicate that all external models exaggerated the predicted risk.

Feature importance
In LASSO regression, the coefficients for ‘age’, ‘systolic BP’ and ‘diastolic BP’ required far higher penalties to be 
zeroed out compared to other features. In addition, while noting that all numerical features were standardized, 
their coefficients were larger compared to all others, meaning that they also had the highest effect on predictions. 
Other notable features were ‘body mass index (BMI)’, ‘height’, ‘family history of hypertension’, and blood serum 
markers such as ‘triglycerides’, ‘cholesterol’ and ‘high-density lipoprotein cholesterol’. Notably, as the LASSO 
penalty was increased, discrimination performance was stable while the calibration of the model deteriorated 

Table 1.  Model results achieved on test set, n = 5 356. Best observed mean performances are in [bold]. 
Performance obtained applying the fitted models on the test set. Reported as mean and 95% confidence 
interval after bootstrapping. The symbols (↑) and (↓) indicates increasing or decreasing values as improved 
performance, respectively. *Scaled Brier score and ICI is omitted for ‘High normal BP rule’ as calibration is 
not meaningful when predictions are either 0% or 100% risk. AUC  area under the receiver–operator curve, ICI 
integrated calibration index, KNN K-nearest neighbors, ML machine learning, SVM support vector machines, 
XGBoost eXtreme gradient boosting.

Models AUC (↑) Scaled brier (↑) ICI (↓)

ML

 XGBoost 0.795 [0.782, 0.808] 0.204 [0.181, 0.225] 0.016 [0.009, 0.025]

 Elastic regression 0.795 [0.781, 0.807] 0.204 [0.182, 0.223] 0.016 [0.009, 0.025]

 SVM 0.792 [0.779, 0.804] 0.198 [0.177, 0.217] 0.021 [0.012, 0.030]

 KNN 0.786 [0.772, 0.799] 0.186 [0.169, 0.202] 0.024 [0.015, 0.034]

 Random forest 0.778 [0.763, 0.791] 0.181 [0.157, 0.202] 0.017 [0.009, 0.027]

References

 Logistic regression 0.780 [0.766, 0.792] 0.181 [0.160, 0.201] 0.014 [0.007, 0.022]

 High normal BP rule* 0.656 [0.641, 0.670] – –

External

 Framingham risk model, original 0.786 [0.773, 0.799] 0.078 [0.037, 0.114] 0.115 [0.104, 0.125]

 Framingham risk model, recalibrated 0.786 [0.773, 0.799] 0.192 [0.170, 0.211] 0.010 [0.005, 0.017]
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more quickly. Coefficients and performance of the LASSO model on the test set under increasing regularization 
penalty are shown in Fig. 5.

The permutation importance largely agreed with the LASSO importances. A minority of features, namely 
‘age’, ‘systolic BP’ and ‘diastolic BP’, were highly emphasized in all models. In addition, ‘BMI’, ‘family history of 
hypertension’ and ‘height’ were notable, but far lower compared to the former three. In hierarchical clustering 
of features by correlation, we identified five clusters of features: (1) ‘Systolic BP’ and ‘diastolic BP’, (2) ‘age’ and 
‘marital status’, (3) ‘triglycerides’, ‘HDL cholesterol’, and ‘BMI’, (4) ‘height’ and ‘sex’, and (5) ‘creatinine’ and ‘esti-
mated glomerular filtration rate’. The importance was higher for each cluster than the summed importances of 
their individual member features. Clusters 1–2 had far greater importance than clusters 3–5, again emphasizing 
the importance of ‘age’, ‘systolic BP’ and ‘diastolic BP’. Permutation importance calculated for the ML models 
using scaled Brier score is shown in Fig. 6, and using AUC shown in Supplementary Fig. S3.

Subgroup analyses
Summary statistics for the individuals in the test set with BP below high-normal BP (< 130/85 mmHg) are pro-
vided and compared versus individuals in the test set with high-normal BP (130/85 mmHg ≤ BP < 140/90 mmHg), 
at baseline, in Supplementary Table S7. Notably, there were significant differences between the two groups in all 
included features except ‘physical activity’ and ‘marital status’. The incidence rate was only 16% among those with 
BP below high-normal BP at baseline versus 42% among those with high-normal BP at baseline.

Most models displayed good discrimination and calibration on the subgroup , see Table 3. The ML mod-
els outperformed the reference models, with XGBoost being the best. However, the improvement was minor 
compared to the linear model produced with Elastic regression. Of note, the Framingham risk model had good 
discrimination, although recalibration was still needed for its predictions to be considered well-calibrated. In 
general, discrimination performance was lower in the subgroup analyses compared to the main analyses using 
the complete cohort, but calibration was similar.

Summary statistics for individuals in the test set with optimal BP (< 120/80 mmHg), are shown and compared 
versus individuals in the test set with normal BP or higher (120/80 mmHg ≤ BP < 140/90 mmHg), at baseline 
in Supplementary Table S8. There were significant differences between the two groups in all included features 
except estimated glomerular filtration rate, family history of hypertension, physical activity, and marital status. 
The incidence rate was only 10% among those with optimal BP at baseline versus 32% among those with normal 
BP or higher at baseline.

Most models displayed good discrimination and calibration on the subgroup, see Table 4. Based on perfor-
mance, we obtained the same ranking of models as for the main analysis. However, the net improvement for the 
XGBoost models compared to remaining models was more pronounced. In short, the best performing models 

Figure 1.  Smoothed calibration curves for the test set. Calibration curves close to the dashed reference line 
exhibit an elevated level of agreement between its predictions and the observed incidence in the test set. Curves 
are shown as pointwise mean curves calculated by bootstrapping. KNN K-nearest neighbors, SVM support 
vector machines, XGBoost eXtreme gradient boosting.
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Figure 2.  Calibration curves with histogram of predictions above. The histogram is colored by proportion of 
incidence. Curves are shown as pointwise mean curves with red shaded 95% confidence interval calculated by 
bootstrapping. KNN K-nearest neighbors, SVM support vector machines, XGBoost eXtreme gradient boosting.
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were effective in identifying individuals with optimal BP at baseline that developed hypertension in the 11 years 
until follow-up.

Imputation of missing feature data
Feature distributions remained similar when individuals with missing feature data were included in the dataset, 
see Supplementary Table S9. Although there were significant changes for the distribution age, sex and education, 
the differences between data sets were small. Using the MICE procedure for MI, model performance increased 
on the imputed test set (n = 6 883) compared to the complete test set (n = 5 356), as shown in Supplementary 
Table S10. However, this seems to be an artifact more related to the data than the models. Model performance 
was similar when compared on the same data, regardless of whether the model was fitted using complete train-
ing set (n = 12 496) or training set after imputation with MICE (n = 16 056). In short, the removal of individuals 
with missing feature data in the main analysis seems unlikely to have affected the relative ranking of the models.

Selection bias due to loss to follow-up
When comparing feature distributions between records lost to follow-up and those included in the main analy-
ses, all 18 features had statistically significant differences, except for ‘BMI’ and ‘non-fasting serum glucose’, as 
shown in Supplementary Table S11. This suggests that the group lost to follow-up are different from the group 
who remained in the study.

In a sensitivity analysis, we repeated the development of the elastic regression model as in the main analysis, 
using data weighted by the inverse probability of loss to follow-up. We used elastic regression for this post hoc 
analysis as it has a low computational burden and produced one of the top performing models in the main 
analysis. In the weighted sensitivity analysis, overall mean performance on the test set improved by < 0.05% for 
AUC and < 0.20% for scaled Brier score, while worsening by < 1.00% for ICI compared to the results from the 
main analysis. In conclusion, although there are significant differences between those who were lost to follow-up 
and those included in our study, the sensitivity analysis suggests negligible effects on model performance due 
to selection bias due to loss to follow-up.

Figure 3.  Decision curves of all models. Net benefit was standardized to have a max value of 1. Curves are 
shown as pointwise mean curves calculated by bootstrapping. BP blood pressure, KNN K-nearest neighbors, 
SVM support vector machines, XGBoost eXtreme gradient boosting.
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Discussion
In this study, we used a large cohort to create several risk models for incident hypertension, the first study 
using data from Norway. The developed models displayed good discrimination on the test set, indicating that 

Figure 4.  Decision curves with histogram of predictions above. The histogram is colored by the proportion 
of incidence. Net Benefit is standardized to have a max value of 1. Curves are shown as pointwise mean curves 
with red shaded 95% confidence interval calculated by bootstrapping. KNN K-nearest neighbors, SVM support 
vector machines, XGBoost eXtreme gradient boosting.
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individuals at risk of developing hypertension within 11 years could be well identified. Based on calibration 
curves and ICI, the predictions provided by most of the models were well-calibrated, and all models displayed 
higher net benefit for their decision curves than the decision curve benchmarks. Subgroup analyses show that 
the models were effective in identifying individuals that had optimal or normal BP at baseline but experienced 
a substantial increase in BP and developed hypertension before the 11-year follow-up.

We found ML models to perform well and improve upon the reference regression model and decision rule 
used. Although the performance measures worsened slightly in subgroup analyses, the overall pattern was simi-
lar with ML models excelling over references. On another remark, while the XGBoost and SVM methods are 
capable of learning non-linear effects of its input features, the Elastic regression model using only linear effects 
performed similarly. While this is not proof of absence for non-linear effects in our dataset, it suggests that linear 
models are sufficient to obtain a practically optimal risk prediction model for this cohort from the HUNT Study.

The external risk models validated in our dataset had good discrimination, comparable to the developed 
models. However, as expected, all external models had poor calibration on the HUNT Study data. Indeed, 
external risk models often require recalibration to new cohorts and do not perform as well as internal  models40. 
After recalibration of the Framingham risk model, the model performed comparably with some of the newly 
developed ML models, providing an AUC only one percentage point lower than the best-performing ML model 
whilst having excellent calibration. Considering that only a single parameter was estimated for the recalibration, 
the use of an external model seems like an attractive option compared to developing new risk models.

The 95% prediction interval for the AUC of a new hypertension risk model has been shown to be quite wide in 
a recent meta-analysis, i.e., 0.660–0.865 for traditional models and 0.547 – 0.943 for ML models, and influenced 
by both study design and cohort  characteristics7. Thus, knowing how well new models perform requires context 
provided within the study itself. By using reference models, we can obtain an indication if a superficially well-
performing model achieves its performance from aspects related to the model or the data. This is exemplified 
by the High normal BP rule we included, which, although simple in its construction, produces AUC scores on 
par with several risk models presented in the field, including several ML  models7. The simple reference model 
using only age and BP, as well as the external model validations, serves as context as more complex models are 
developed, e.g., using ML. In addition, we see that comparisons must be made on the same data, as using dif-
ferent datasets may affect performance measures. This is exemplified by the difference in performance for the 
Framingham risk model on the complete dataset versus the test set, and the differences seen in our sensitivity 
analysis using MI on missing feature data. Hence, our results emphasize the importance of including reference 
models for comparison, and comparing on the same data.

In our analyses, we employ decision curves to evaluate the net benefit of the developed, reference, and external 
models in clinical practice. Yet, to aptly interpret a decision curve, we would be required to define a range of 
reasonable threshold probabilities for determining when interventions are  warranted64. However, there are no 
established threshold probabilities for hypertension, and Vickers et al. emphasize that one should not use the 
decision curve to select one  either64. Similar works developing risk models for incident hypertension have used 
different thresholds in calculating performance measures or characterize the risk level of individuals, e.g., 4%, 
5%, 8%, 10%, 15%, 16%, 20%, etc.9,36,39,65–70. The incidence rate could be an option; however, the incidence rate 
has been seen to vary considerably in studies developing risk models. While we did not define a reasonable range 
of threshold probabilities, the XGBoost, Elastic regression and SVM models show the highest and similar benefit 
across most thresholds, indicating that they should be preferred over the other  alternatives64.

In the feature importance analyses, ‘age’ and ‘systolic/diastolic BP’ at baseline were particularly important. This 
was also shown by the well-performing reference model, which had an AUC only two percentage points lower 
than the best ML model on the test set. Other emphasized features were ‘BMI’, ‘height’, ‘family history of hyper-
tension’, and various blood serum markers, but to a far lower degree than ‘age’ and ‘systolic/diastolic BP’. Both 
LASSO and permutation importance showed similar results. This is in line with other works in the  field11,14,15. 

Table 2.  External model results achieved on the complete dataset, n = 17 852. Best observed mean 
performances are in [bold]. Performance obtained applying the fitted models on the whole dataset. Reported 
as mean and 95% confidence interval after bootstrapping. The symbols (↑) and (↓) indicates increasing or 
decreasing values as improved performance, respectively. a A negative Scaled Brier score implies predicted 
probabilities were on average worse than using the outcome rate, i.e., 24.41%, as a prediction. This is likely due 
to the poor calibration exhibited by all models. AUC  area under the receiver–operator curve, ICI integrated 
calibration index.

External models AUC (↑) Scaled Brier (↑) a ICI (↓)

Framingham risk model,  original9 0.788 [0.781, 0.795] 0.080 [0.059, 0.103] 0.115 [0.109, 0.121]

Chinese clinical risk  model36 0.768 [0.760, 0.775] − 1.344 [− 1.413, − 1.281] 0.515 [0.509, 0.522]

Chinese clinical risk model, from individuals without diabetes at  baseline36 0.761 [0.752, 0.769] − 1.474 [− 1.546, − 1.409] 0.537 [0.530, 0.543]

KoGES  model37 0.789 [0.782, 0.796] − 0.113 [− 0.143, − 0.081] 0.204 [0.198, 0.210]

TLGS  model38 0.787 [0.779, 0.794] − 0.265 [− 0.300, − 0.229] 0.248 [0.242, 0.255]

CAVAS  model39 0.788 [0.782, 0.795] − 0.049 [− 0.073, − 0.023] 0.201 [0.195, 0.207]

F-CAVAS  model39 0.788 [0.781, 0.795] − 0.056 [− 0.080, − 0.030] 0.204 [0.198, 0.210]
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Further, the notion that few features were required for obtaining well-performing models has been demonstrated 
in previous work, albeit mostly with traditional  models36,71–73.

With the use of more complex data sources, such as Electronic Health Records (EHRs) or genetic profiles, 
knowledge-driven feature selection can be replaced or supplemented by data-driven feature selection, which 
ML could prove to be more flexible and capable for than traditional models in risk modelling. Examples include 
risk models developed by Datta et al. and Kanegae et al. for  EHRs13,14, and Niu et al. for  genetics12. Further, 

Figure 5.  (a) Coefficient sizes in least absolute shrinkage and selection operator (LASSO) regression fitted on 
the training set with increasing regularization. Only the 10 last features to be zeroed out are shown. (b) The 
performance of the LASSO regression model on the test set as regularization was increased. Curves are shown as 
pointwise mean curves with red shaded 95% confidence interval calculated by bootstrapping. AUC  area under 
the receiver-operator curve, BMI body mass index, BP blood pressure, Chol cholesterol, Fam. hist. of hyp. family 
history of hypertension, HDL high-density lipid, ICI integrated calibration index. Log natural logarithm, PAI 
physical activity indicator.
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important features for model performance could be used to identify new risk factors relevant for understanding 
hypertension development.

ML for hypertension risk prediction has received increased interest in later years, with multiple risk models 
being  developed6,7. In this study, we applied ML simply as a modelling alternative to traditional methods for 
prognostic risk prediction models. Although no improvement was found for non-linear models compared to 
linear models in our main analysis, non-linear ML models excelled somewhat in identifying individuals with 
a large increase in BP (> 20/10 mmHg). Early identification and initiation of preventative treatment for these 
individuals could be valuable, as such large increases in BP is associated with double risk of ischemic heart disease 
and stroke, regardless of sex and age. In our view, ML techniques in hypertension diagnostics should focus on 
identifying individuals that would be likely to benefit from earlier intervention, e.g. lifestyle modifications, to 
prevent or at least delay the onset of hypertension.

Figure 6.  Permutation importance calculated for XGBoost, SVM, KNN and random forest models. The 
importance of a feature or cluster was determined as the average decrease in Scaled Brier score on the test set 
when the feature or cluster was permuted. Features are colored following Fig. 5—Panel A, with gray for ‘Sex’ and 
‘Marital status’, and combined colors for clusters. Irrelevant features or clusters, defined as those with a mean 
decrease of less than 0.004 in Scaled Brier score, were left out for conciseness. Features in clusters were permuted 
simultaneously. BMI body mass index, BP blood pressure, Cl. # feature cluster #, HDL high-density lipid, KNN 
K-nearest neighbors, SVM support vector machines, XGBoost eXtreme gradient boosting.

Table 3.  Model results achieved on records within the test set that had normal BP or lower (< 130/85 mmHg) 
at baseline, n = 3 573. Best observed mean performances are in [bold]. Performance obtained applying the 
fitted models on the test set after excluding individuals with high normal BP (≥ 130/85 mmHg) at baseline. 
Reported as mean and 95% confidence interval after bootstrapping. The symbols (↑) and (↓) signify increasing 
or decreasing values as improved performance, respectively. Note that the ‘High normal BP’ rule was not 
included as the subgroup does not contain any individuals with high normal BP at baseline. AUC  area under 
the receiver–operator curve, ICI integrated calibration index, KNN K-nearest neighbors, ML machine learning, 
SVM support vector machines, XGBoost eXtreme gradient boosting.

Models AUC (↑) Scaled Brier (↑) ICI (↓)

ML

 XGBoost 0.778 [0.758, 0.796] 0.135 [0.108, 0.160] 0.017 [0.010, 0.025]

 Elastic regression 0.774 [0.753, 0.792] 0.132 [0.106, 0.158] 0.017 [0.009, 0.026]

 SVM 0.768 [0.747, 0.787] 0.125 [0.099, 0.151] 0.015 [0.009, 0.024]

 KNN 0.761 [0.741, 0.779] 0.121 [0.096, 0.143] 0.013 [0.006, 0.020]

 Random forest 0.753 [0.732, 0.773] 0.105 [0.075, 0.133] 0.024 [0.014, 0.034]

Reference

 Logistic regression 0.751 [0.729, 0.771] 0.111 [0.086, 0.134] 0.013 [0.007, 0.022]

External

 Framingham risk model, original 0.762 [0.741, 0.782] 0.061 [0.017, 0.101] 0.066 [0.055, 0.077]

 Framingham risk model, recalibrated 0.762 [0.741, 0.782] 0.122 [0.098, 0.144] 0.014 [0.006, 0.023]
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Although ML may have potential for hypertension risk modelling, there are several drawbacks that increase 
the required workload and computational cost. First, to overcome the “black box” nature of many ML methods, 
one must rely on auxiliary methods. Second, the no-free-lunch  theorem74 implies that multiple ML methods 
should be considered, as we do not know in advance which method that works best. Third, with the increased 
capacity of many ML methods for learning data patterns, ensuring proper internal validation during model 
development is  important50, which has been lacking for hypertension risk  models7. Fourth, adequate attribution 
of any performance improvement requires comparison to alternatives, e.g., less complex models, to eliminate 
alternative explanations. Finally, the application of ML does not by itself guarantee improved performance, as 
demonstrated in our study’s main analysis. While many of these items are relevant for risk modelling in general, 
they become particularly important to ensure transparency and scientific value when applying ML on health 
data. Further analyses of ML risk models for hypertension by external researchers are often not possible as 
the models are not made available in the  literature7. In addition, reproduction of the models on the same data 
is unlikely due to general data protection regulations that prevent open access to data from health surveys or 
medical records for external researchers.

Limitations
One study limitation arises from the long time between baseline to follow-up combined with the modifiability 
of features. Although we included 18 features representing well-established risk factors of hypertension, many of 
these are highly modifiable and our models do not account for lifestyle changes during follow-up. For instance, we 
know that body mass and prevalence of diabetes increased in the study population between 1995 and 2008, while 
total cholesterol and the prevalence of daily smoking  decreased22,23. In addition, the risk profile in HUNT2, which 
the developed risk models are based on, was collected about 3 decades ago. Although the risk factors remain the 
same, the composite risk profiles may have changed since then.

Another limitation of our work is that we were restricted to a moderate set of features. Firstly, in other works 
where ML has been applied, ML risk models for incident hypertension has been found to produce high AUC 
scores in studies with large number (> 100) of features, such as those using electronic health  records13,75. In stud-
ies where a moderate number of features were included, the results were more mixed: ML exceled over logistic 
regression or Cox regression in some  studies12,14,17 but performed similarly based on AUC in  others10,11,15,71. The 
impact on calibration and clinical usefulness is unclear, as both have been given limited attention in studies 
developing ML models. Secondly, we did not employ any feature-selection prior to inclusion into our models. 
The motivation was that we only had a moderate number of features, that several of the methods already had 
built-in capabilities for regularization, and that it would add more complexity to the analyses as we would have 
to decide on one of many feature selection strategies and methods. Thirdly, we did not address the accessibil-
ity of features that were included in our analyses. This would be relevant in the case a model is considered for 
adoption into clinical practice, and can be included as an additional consideration in decision  analysis64. Finally, 
important risk factors related to hypertension progression such as diet and alcohol use were absent from the 
 features1. Although highly modifiable, the inclusion of features related to these could allow more accurate risk 
prediction for the developed models. In the literature, Nusinovici et al. and Kanegae et al. found alcohol to be of 
little importance relative to systolic  BP11,14, and Kadomatsu et al. found that alcohol did not improve the mean 
AUC in a model with age, smoking and  BP73. Neither assessed features related to diet. Chowdhury et al. found 
both vegetable/fruit consumption and alcohol ranked as among the least-important features for their models 

Table 4.  Model results achieved on records within the test set that had optimal BP (< 120/80 mmHg) at 
baseline, n = 1 809. Best observed mean performances are in [bold]. Performance obtained applying the 
fitted models on the test set after excluding individuals with high normal BP (≥ 130/85 mmHg) at baseline. 
Reported as mean and 95% confidence interval after bootstrapping. The symbols (↑) and (↓) signify increasing 
or decreasing values as improved performance, respectively. Note that the ‘High normal BP’ rule was not 
included as the subgroup does not contain any individuals with high normal BP at baseline. AUC  area under 
the receiver–operator curve, ICI integrated calibration index, KNN K-nearest neighbors, ML machine learning, 
SVM support vector machines, XGBoost eXtreme gradient boosting.

Models AUC (↑) Scaled Brier (↑) ICI (↓)

ML

 XGBoost 0.783 [0.747, 0.817] 0.091 [0.055, 0.124] 0.020 [0.010, 0.032]

 Elastic regression 0.768 [0.730, 0.804] 0.084 [0.053, 0.113] 0.021 [0.012, 0.032]

 SVM 0.757 [0.721, 0.794] 0.071 [0.038, 0.104] 0.021 [0.012, 0.031]

 KNN 0.753 [0.716, 0.79] 0.072 [0.039, 0.105] 0.016 [0.009, 0.025]

 Random forest 0.750 [0.712, 0.787] 0.061 [0.011, 0.107] 0.025 [0.013, 0.037]

Reference

 Logistic regression 0.728 [0.688, 0.766] 0.051 [0.025, 0.076] 0.022 [0.013, 0.033]

External

 Framingham risk model, original 0.755 [0.714, 0.792] 0.066 [0.023, 0.103] 0.029 [0.019, 0.040]

 Framingham risk model, recalibrated 0.755 [0.714, 0.792] 0.071 [0.047, 0.093] 0.025 [0.014, 0.037]
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using multiple ranking  methods15. Nevertheless, features related to diet and alcohol are often considered for 
hypertension risk  prediction7.

Lastly, we did not evaluate our models on an external dataset, which should be done before clinical 
 adoption8,40. In this study, we focused on developing risk models and assess the possible advantages of using 
ML. Acknowledging the large variation in AUC between studies in the  field7, it is likely that study conditions 
such as study design, features, and cohort characteristics could affect model performance. Further, the generaliz-
ability of the models may also be limited as our cohort consisted of an ethnically homogenous population from 
a country with high standards of living. Also, we note that there were fewer men than women in the complete 
cohort, with incidence rates differing. While men represented 38% of the participants in the complete cohort, they 
represented 43% of the outcomes, i.e., men were more at risk of developing hypertension compared to women.

Conclusion
We developed models for predicting the 11-year risk of incident hypertension in a Norwegian cohort consider-
ing multiple alternative methods including both ML and traditional risk models. The models were mostly well-
calibrated and successful in identifying individuals at risk of developing hypertension, even among individuals 
that had optimal or normal BP at baseline. The risk models developed using XGBoost and Elastic regression 
performed similarly and slightly better than the others in our analyses. However, the improvements upon the 
reference model using only age and BP or the recalibrated external Framingham risk model were small. In feature 
importance analysis, age, systolic and diastolic BP was emphasized as particularly important for risk prediction, 
followed by BMI, height, and family history of hypertension. We found that linear effects were sufficient for 
obtaining a well-performing model compared to non-linear modelling for our data. Further, few features were 
needed for a well-performing model, shown by the reference model and feature importance. The externally 
developed Framingham risk model performed well on our cohort after recalibration. Our work demonstrates 
the importance of including reasonable reference models when evaluating risk models, as well as the benefit of 
considering existing models from the literature.

Data availability
The data that support the findings of this study are available from HUNT Research Centre but are currently not 
publicly available. The data can be obtained upon approval from Regional Committee on Medical and Health 
Research Ethics of Norway and HUNT Research Centre. For more information see: www. ntnu. edu/ hunt/ data. 
To request the data from this study, please contact the corresponding author.
Availability of developed models.
To allow for scientific dissemination by external researchers, we share the developed models and resources for 
using them at https:// github. com/ filsch/ hyper tensi on_ predi ction_ models_ hunt_ study.

Received: 9 November 2023; Accepted: 3 March 2024

References
 1. Williams, B. et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur. Heart J. 39, 3021–3104 (2018).
 2. Zhou, B., Perel, P., Mensah, G. A. & Ezzati, M. Global epidemiology, health burden and effective interventions for elevated blood 

pressure and hypertension. Nat. Rev. Cardiol. 18, 785–802 (2021).
 3. Gaziano, T. A., Bitton, A., Anand, S. & Weinstein, M. C. The global cost of nonoptimal blood pressure. J. Hypertens. 27, 1472–1477 

(2009).
 4. Echouffo-Tcheugui, J. B., Batty, G. D., Kivimäki, M. & Kengne, A. P. Risk models to predict hypertension: A systematic review. 

PLoS ONE 8, e67370 (2013).
 5. Sun, D. et al. Recent development of risk-prediction models for incident hypertension: An updated systematic review. PLoS ONE 

12, e0187240 (2017).
 6. Chowdhury, M. Z. I. et al. Prediction of hypertension using traditional regression and machine learning models: A systematic 

review and meta-analysis. PLoS ONE 17, e0266334 (2022).
 7. Schjerven, F., Lindseth, F. & Steinsland, I. Prognostic risk models for incident hypertension: A PRISMA systematic review and 

meta-analysis. (in press). PLoS ONE (2024).
 8. Steyerberg, E. W. et al. Assessing the performance of prediction models: A framework for traditional and novel measures. Epide-

miology 21, 128–138 (2010).
 9. Parikh, N. I. et al. A risk score for predicting near-term incidence of hypertension: The Framingham Heart Study. Ann. Intern. 

Med. 148, 102–110 (2008).
 10. Dritsas, E., Fazakis, N., Kocsis, O., Fakotakis, N. & Moustakas, K. Long-Term hypertension risk prediction with ML techniques 

in ELSA database. In Learning and Intelligent Optimization Vol. 12931 (eds Simos, D. E. et al.) 113–120 (Springer, Cham, 2021).
 11. Nusinovici, S. et al. Logistic regression was as good as machine learning for predicting major chronic diseases. J. Clin. Epidemiol. 

122, 56–69 (2020).
 12. Niu, M. et al. Identifying the predictive effectiveness of a genetic risk score for incident hypertension using machine learning 

methods among populations in rural China. Hypertens. Res. 44, 1483–1491 (2021).
 13. Datta, S. et al. Predicting hypertension onset from longitudinal electronic health records with deep learning. JAMIA OPEN 5, 

(2022).
 14. Kanegae, H. et al. Highly precise risk prediction model for new-onset hypertension using artificial intelligence techniques. J. Clin. 

Hypertens. 22, 445–450 (2020).
 15. Chowdhury, M. Z. I. et al. A comparison of machine learning algorithms and traditional regression-based statistical modeling for 

predicting hypertension incidence in a Canadian population. Sci. Rep. 13, 13 (2023).
 16. Sakr, S. et al. Using machine learning on cardiorespiratory fitness data for predicting hypertension: The Henry Ford ExercIse 

Testing (FIT) Project. PLoS ONE 13, e0195344 (2018).
 17. Jeong, Y. W. et al. Prediction Model for Hypertension and Diabetes Mellitus Using Korean Public Health Examination Data 

(2002–2017). Diagnostics (Basel) 12, (2022).

http://www.ntnu.edu/hunt/data
https://github.com/filsch/hypertension_prediction_models_hunt_study


15

Vol.:(0123456789)

Scientific Reports |         (2024) 14:5609  | https://doi.org/10.1038/s41598-024-56170-7

www.nature.com/scientificreports/

 18. Fang, M. et al. A hybrid machine learning approach for hypertension risk prediction. Neural Comput. Appl. https:// doi. org/ 10. 
1007/ s00521- 021- 06060-0 (2021).

 19. Völzke, H. et al. A new, accurate predictive model for incident hypertension. J. Hypertens. 31, 2142–2150 (2013).
 20. Moons, K. G. M. et al. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): 

Explanation and elaboration. Ann. Intern. Med. 162, W1–W73 (2015).
 21. Åsvold, B. O. et al. Cohort profile update: The HUNT study, Norway. Int. J. Epidemiol. https:// doi. org/ 10. 1093/ ije/ dyac0 95 (2022).
 22. Holmen M.Fl,J. The Nord-Trøndelag Health Study 1995–97 (HUNT 2). Nor. J. Epidemiol 13, 19–32 (2011).
 23. Krokstad, S. et al. Cohort profile: The HUNT Study, Norway. Int. J. Epidemiol. 42, 968–977 (2013).
 24. Kurtze, N., Rangul, V., Hustvedt, B.-E. & Flanders, W. D. Reliability and validity of self-reported physical activity in the Nord–

Trøndelag Health Study (HUNT 2). Eur. J. Epidemiol. 22, 379–387 (2007).
 25. Kieffer, S. K. et al. Association between personal activity intelligence (PAI) and body weight in a population free from cardiovascular 

disease—The HUNT study. Lancet Reg. Health Eur. 5, 100091 (2021).
 26. Nauman, J. et al. Personal activity intelligence (PAI): A new standard in activity tracking for obtaining a healthy cardiorespiratory 

fitness level and low cardiovascular risk. Prog. Cardiovasc. Dis. 62, 179–185 (2019).
 27. Nes, B. M., Gutvik, C. R., Lavie, C. J., Nauman, J. & Wisløff, U. Personalized activity intelligence (PAI) for prevention of cardio-

vascular disease and promotion of physical activity. Am. J. Med. 130, 328–336 (2017).
 28. Dmitrienko, A. & D’Agostino, R. Traditional multiplicity adjustment methods in clinical trials. Stat. Med. 32, 5172–5218 (2013).
 29. Chen, T. & Guestrin, C. XGBoost: A scalable tree boosting system, in Proceedings of the 22nd ACM SIGKDD International Confer-

ence on Knowledge Discovery and Data Mining 785–794 (2016). https:// doi. org/ 10. 1145/ 29396 72. 29397 85.
 30. Chen, T. et al. xgboost: Extreme Gradient Boosting. (2021).
 31. Zou, H. & Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. B 67, 301–320 (2005).
 32. Cortes, C. & Vapnik, V. Support-vector networks. Mach. Learn. 20, 273–297 (1995).
 33. Deng, H. Guided Random Forest in the RRF Package. arXiv: 1306. 0237 (2013).
 34. Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
 35. Borisov, V. et al. Deep neural networks and tabular data: A survey. Preprint at http:// arxiv. org/ abs/ 2110. 01889 (2022).
 36. Chien, K.-L. et al. Prediction models for the risk of new-onset hypertension in ethnic Chinese in Taiwan. J. Hum. Hypertens. 25, 

294–303 (2011).
 37. Lim, N.-K., Lee, J.-W. & Park, H.-Y. Validation of the Korean genome epidemiology study risk score to predict incident hyperten-

sion in a large nationwide Korean cohort. Circ. J. 80, 1578–1582 (2016).
 38. Koohi, F. et al. Validation of the Framingham hypertension risk score in a middle eastern population: Tehran lipid and glucose 

study (TLGS). BMC Public Health 21, 790 (2021).
 39. Namgung, H. K. et al. Development and validation of hypertension prediction models: The Korean Genome and Epidemiology 

Study_Cardiovascular Disease Association Study (KoGES_CAVAS). J. Hum. Hypertens. https:// doi. org/ 10. 1038/ s41371- 021- 00645-
x (2022).

 40. Moons, K. G. M. et al. Risk prediction models: II. External validation, model updating, and impact assessment. Heart 98, 691 
(2012).

 41. Steyerberg, E. W., Borsboom, G. J. J. M., van Houwelingen, H. C., Eijkemans, M. J. C. & Habbema, J. D. F. Validation and updating 
of predictive logistic regression models: A study on sample size and shrinkage. Stat. Med. 23, 2567–2586 (2004).

 42. Brier, G. W. Verification of forecasts expressed in terms of probability. Mon. Weather Rev. 78, 1–3 (1950).
 43. Gneiting, T. & Raftery, A. E. Strictly proper scoring rules, prediction, and estimation. J. Am. Stat. Assoc. 102, 359–378 (2007).
 44. Austin, P. C. & Steyerberg, E. W. The Integrated Calibration Index (ICI) and related metrics for quantifying the calibration of 

logistic regression models. Stat. Med. 38, 4051–4065 (2019).
 45. Calster, B. V., McLernon, and D. J., Smeden, M. van, Wynants, L. & Steyerberg, E. W. Calibration: the Achilles heel of predictive 

analytics. BMC Med. 17, 230 (2019).
 46. Vickers, A. J. & Elkin, E. B. Decision curve analysis: A novel method for evaluating prediction models. Med. Decis. Mak. 26, 565–574 

(2006).
 47. Weng, S. F., Reps, J., Kai, J., Garibaldi, J. M. & Qureshi, N. Can machine-learning improve cardiovascular risk prediction using 

routine clinical data?. PLoS ONE 12, e0174944 (2017).
 48. Tibshirani, R. Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. Ser. B (Methodol.) 58, 267–288 (1996).
 49. Fisher, A., Rudin, C. & Dominici, F. All models are wrong, but many are useful: Learning a variable’s importance by studying an 

entire class of prediction models simultaneously. J. Mach. Learn. Res. 20, 177 (2019).
 50. Moons, K. G. M. et al. PROBAST: A tool to assess risk of bias and applicability of prediction model studies: Explanation and 

elaboration. Ann. Intern. Med. 170, W1 (2019).
 51. Buuren, S. V. & Groothuis-Oudshoorn, K. mice : Multivariate Imputation by Chained Equations in R. J. Stat. Soft. 45, 1–67 (2011).
 52. Howe, C. J., Cole, S. R., Lau, B., Napravnik, S. & Eron, J. J. Selection bias due to loss to follow up in cohort studies. Epidemiology 

27, 91–97 (2016).
 53. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing (2021).
 54. RStudio Team. RStudio: Integrated Development Environment for R. RStudio, PBC (2022).
 55. Wickham, H. et al. Welcome to the Tidyverse. JOSS 4, 1686 (2019).
 56. Attali, D. & Baker, C. ggExtra: Add Marginal Histograms to ‘ggplot2’, and More ‘ggplot2’ Enhancements. (2022).
 57. Wilke, C. O. Cowplot: Streamlined Plot Theme and Plot Annotations for ‘Ggplot2’. (2020).
 58. FC, M., Davis, T. L., & ggplot2 authors. Ggpattern: ‘ggplot2’ Pattern Geoms. (2022).
 59. Waring, E. et al. skimr: Compact and Flexible Summaries of Data. (2022).
 60. Kuhn, M. caret: Classification and Regression Training. (2022).
 61. Kuhn, M. Building predictive models in R using the caret package. J. Stat. Soft. 28,1–26 (2008).
 62. Corporation, M. & Weston, S. doSNOW: Foreach Parallel Adaptor for the ‘snow’ Package. (2022).
 63. Sjoberg, D. D. dcurves: Decision Curve Analysis for Model Evaluation. (2022).
 64. Vickers, A. J., Van Calster, B. & Steyerberg, E. W. A simple, step-by-step guide to interpreting decision curve analysis. Diagn. Progn. 

Res. 3, 18 (2019).
 65. Bozorgmanesh, M., Hadaegh, F., Mehrabi, Y. & Azizi, F. A point-score system superior to blood pressure measures alone for 

predicting incident hypertension: Tehran lipid and glucose study. J. Hypertens. 29, 1486–1493 (2011).
 66. Chowdhury, M. Z. I. et al. Development and validation of a hypertension risk prediction model and construction of a risk score 

in a Canadian population. Sci. Rep. 12, 12780 (2022).
 67. Kivimäki, M. et al. Validating the Framingham hypertension risk score: Results from the Whitehall II study. Hypertension 54, 

496–501 (2009).
 68. Kivimäki, M. et al. Incremental predictive value of adding past blood pressure measurements to the Framingham hypertension 

risk equation: the Whitehall II Study. Hypertension 55, 1058–1062 (2010).
 69. Lim, N.-K., Lee, J.-Y., Lee, J.-Y., Park, H.-Y. & Cho, M.-C. The role of genetic risk score in predicting the risk of hypertension in 

the Korean population: Korean genome and epidemiology study. PLoS ONE 10, e0131603 (2015).
 70. Niiranen, T. J., Havulinna, A. S., Langén, V. L., Salomaa, V. & Jula, A. M. Prediction of blood pressure and blood pressure change 

with a genetic risk score. J. Clin. Hypertens. (Greenwich) 18, 181–186 (2016).

https://doi.org/10.1007/s00521-021-06060-0
https://doi.org/10.1007/s00521-021-06060-0
https://doi.org/10.1093/ije/dyac095
https://doi.org/10.1145/2939672.2939785
http://arxiv.org/abs/1306.0237
http://arxiv.org/abs/2110.01889
https://doi.org/10.1038/s41371-021-00645-x
https://doi.org/10.1038/s41371-021-00645-x


16

Vol:.(1234567890)

Scientific Reports |         (2024) 14:5609  | https://doi.org/10.1038/s41598-024-56170-7

www.nature.com/scientificreports/

 71. Xu, F. et al. Development and validation of prediction models for hypertension risks in rural Chinese populations. J. Global Health 
9, 020601 (2019).

 72. Muntner, P. et al. Comparison of the Framingham Heart Study hypertension model with blood pressure alone in the prediction 
of risk of hypertension: The multi-ethnic study of atherosclerosis. Hypertension 55, 1339–1345 (2010).

 73. Kadomatsu, Y. et al. A risk score predicting new incidence of hypertension in Japan. J. Hum. Hypertens. 33, 748–755 (2019).
 74. Wolpert, D. H. & Macready, W. G. No free lunch theorems for optimization. IEEE Trans. Evol. Computat. 1, 67–82 (1997).
 75. Ye, C. et al. Prediction of incident hypertension within the next year: Prospective study using statewide electronic health records 

and machine learning. J. Med. Internet Res. 20, e22 (2018).

Acknowledgements
The HUNT Study is a collaboration between HUNT Research Centre (Faculty of Medicine and Health Sciences, 
Norwegian University of Science and Technology, Trøndelag County Council, Central Norway Regional Health 
Authority, and the Norwegian Institute of Public Health. We thank the participants and management team of 
the HUNT Study. We also thank the staff at HUNT Cloud who aided us with tools for data storage and analysis.

Author contributions
F.E.S. contributed to the conception and design of the study. F.E.S. performed the analysis. F.E.S. and E.M.L.I. 
drafted the manuscript, and E.M.L.I., I.S. and F.L. critically reviewed it and suggested amendments before sub-
mission. All authors approved the final version of the manuscript and took responsibility for the integrity of the 
reported findings.

Funding
Open access funding provided by Norwegian University of Science and Technology.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 024- 56170-7.

Correspondence and requests for materials should be addressed to F.E.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2024

https://doi.org/10.1038/s41598-024-56170-7
https://doi.org/10.1038/s41598-024-56170-7
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Development of risk models of incident hypertension using machine learning on the HUNT study data
	Materials and methods
	Data
	Data statistics
	Preprocessing
	Modelling
	Internal model validation
	Validation of external models
	Performance indicators
	Feature importance
	Subgroup analyses
	Imputation of missing feature data
	Selection bias due to loss to follow-up
	Software

	Results
	Validation of external models
	Feature importance
	Subgroup analyses
	Imputation of missing feature data
	Selection bias due to loss to follow-up

	Discussion
	Limitations
	Conclusion
	References
	Acknowledgements


