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Electron scattering at a potential 
temporal step discontinuity
Furkan Ok , Amir Bahrami  & Christophe Caloz *

We solve the problem of electron scattering at a potential temporal step discontinuity. For this 
purpose, instead of the Schrödinger equation, we use the Dirac equation, for access to back-scattering 
and relativistic solutions. We show that back-scattering, which is associated with gauge symmetry 
breaking, requires a vector potential, whereas a scalar potential induces only Aharonov–Bohm type 
energy transitions. We derive the scattering probabilities, which are found to be of later-forward and 
later-backward nature, with the later-backward wave being a relativistic effect, and compare the 
results with those for the spatial step and classical electromagnetic counterparts of the problem. 
Given the unrealizability of an infinitely sharp temporal discontinuity—which is of the same nature 
as its spatial counterpart!—we also provide solutions for a smooth potential step and demonstrate 
that the same physics as for the infinitely sharp case is obtained when the duration of the potential 
transition is sufficiently smaller than the de Broglie period of the electron (or deeply sub-period).

Electron scattering at a potential spatial step is a canonical problem that is treated in the introductory section of 
most textbooks on quantum  mechanics1–6 and that underpins uncountable phenomena (e.g., quantum reflection, 
transmission and interference, quantum tunneling, quantum wells and scattering resonances, quantum coherent 
transport) and applications (e.g., p–n junction diodes, transistors, semiconductor lasers, and detectors, scanning 
tunneling microscopy, quantum computing, particle accelerators). The problem is typically addressed by resolving 
the Schrödinger  equation7 for non-relativistic particles, but requires promotion to the Klein–Gordon  equation8,9 
or to the Dirac  equation10 for relativistic particles, of spin 0 or 1/2, respectively.

The problem of electron scattering at a potential temporal step is arguably, from space–time duality, 
as fundamental as that of the spatial step. A number of works on quantum phenomena occurring at step 
discontinuities have been reported in the  literature11–23, but the specific problem of electron scattering at a 
potential temporal step has surprisingly not been explicitly resolved yet. Such a gap needs to be filled. This is all 
the more obvious when considering the promising opportunities of transposing to the quantum realm recent 
concepts developed in the booming field of classical electromagnetic modulation-based time-varying24–27 and 
space–time  varying28–32  metamaterials29,33–35, which have already led to a wealth of novel effects and applications, 
including the inverse  prism36, linear-time invariance bound  breaking37, temporal  aiming38, extreme energy 
 transformation39, temporal antireflection  coating40, temporal polarization  conversion41, temporal analog 
 computing42,43, static-to-dynamic field  conversion44, temporal Faraday  rotation45–47, arbitrary transfer function 
 emulation48, optimization-free filter and matched-filter49, broadband parametric  amplification50,51, wave 
deflection and shifted  refocusing52 and nonreciprocity and optical  isolation53–57.

We present here an exact and comprehensive resolution of the problem of electron scattering at a potential 
temporal step discontinuity. We first show that the Schrödinger equation cannot account for electron back-
scattering for that problem and therefore decide to resort to the (more general) Dirac equation. We then 
demonstrate that a scalar potential temporal step does not produce back-scattering, whereas a vector potential 
temporal step does (see Supplementary Sect. 1), and explain this fact in terms of related gauge symmetry 
and symmetry breaking. We next derive formulas for the scattering coefficients, probabilities, and energy 
transitions of the electronic wave. Finally, we demonstrate that the corresponding scattering is a relativistic 
effect. Throughout the report, we systematically compare the problem with its spatial counterpart, and also point 
out some similarities and differences with corresponding electromagnetic  problems33–35. Finally, we also provide 
solutions for a smooth step potential and investigate the related physics versus the transition duration of the step 
with respect to the de Broglie period of the electron.

Spatial and temporal sharp potential step discontinuities
Figure 1 represents the problem of electron scattering at a potential step discontinuity, with the discontinuity 
being spatial in Fig. 1a and temporal in Fig. 1b. The latter is the problem at hand in the report while the former is 
considered as its dual reference. In both cases, the changing parameter is a component of the four-vector potential 
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Aµ = (V ,A) and we shall later see why, as indicated in the figure, V and A are the most relevant components for 
the spatial and temporal cases, respectively.

As known from textbooks, the scattered electronic waves in the spatial problem (Fig. 1a) are reflected and 
transmitted waves, with conserved energy ( �E = 0 ) and transformed momentum ( �p  = 0 ), as in classical 
electromagnetics. We shall show that scattering is quite different in the counterpart temporal problem (Fig. 1b). 
First, the scattered electronic waves are generally later-backward and later-forward waves, as opposed to reflected 
and transmitted waves, where the term later means “after the temporal discontinuity”, contrasting with the 
term earlier, which refers to the wave launched before the temporal discontinuity, while the terms forward and 
backward denote corresponding propagation directions in  space33. Second, it is now the momentum that is 
conserved ( �p = 0 ), while the energy is transformed ( �E  = 0 ). These two aspects parallel the situation that 
prevails in classical  electromagnetics24,34, but with a number of differences, such as the fact the phase and group 
velocities are generally distinct, as represented in the figure, and the fact that the later-backward wave exists only 
in the relativistic regime, whereas it is always present in classical electromagnetics. Throughout the paper, we 
shall restrict our attention to the 1+1-dimensional case, with one dimension of space (z) and the dimension of 
time (t). Moreover, we shall use natural units ( � = c = 1 ) and the Minkowski metric ηµν = diag(1,−1,−1,−1) 
throughout the report.

Choice of an appropriate equation
Limitations of the Schrödinger equation
One may first be tempted to address the problem of the sharp temporal potential step (Fig. 1b) with the 
Schrödinger equation, as typically done for the sharp spatial potential step (Fig. 1a) in the non-relativistic 
regime. The Schrödinger equation reads i∂tψ = −∇2ψ/(2m)1–6, where m is the mass of the particle, which we 
shall consider from now on as being the electron. This equation has unpaired spatial and temporal derivatives, 
with the former ( ∇2 ) being of the second order and the latter ( ∂t ) of the first order.

In the case of the sharp spatial step, where one typically assumes the monochromatic ansatz ψ ∝ e−iEt , the 
Schrödinger equation reduces to ψ = −∇2ψ/(2mE) . Therefore, ∇2ψ must be finite to ensure finite ψ , and 
hence ∇ψ must be continuous. In addition, ψ must also be continuous, for otherwise, ∇ψ would be singular, 
and so would then also be ψ ∝ ∇2ψ , and hence ψ . We have then the double boundary condition that both ψ 
and ∇ψ must be continuous at the spatial discontinuity. Thus, the second-order derivative operator ∇2 provides 
two boundary conditions, viz., the continuity of both ψ and of ∇ψ at the spatial discontinuity, which leads to 

Figure 1.  Electron scattering at a potential (a) spatial and (b) temporal step discontinuity, in spacetime (top 
panels) and space/time-transverse coordinates (bottom panels). The subscripts i, r, t, b, and f stand for incident, 
reflected, transmitted, later-backward, and later-forward, while the subscripts p and g stand for phase and group 
(velocity), respectively.
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a fully determined problem whose resolution provides the usual reflected and transmitted scattered electronic 
waves (Fig. 1a).

In contrast, the first-order derivative ∂t provides only one boundary condition in the sharp temporal 
potential step problem (Fig. 1b). Assuming the plane-wave ansatz ψ ∝ eipz , the Schrödinger equation reduces 
to ψ = i(2m/p2)∂tψ and ∂tψ must therefore be finite to ensure finite ψ , which entails that ψ must be continuous 
at the temporal discontinuity. However, this is indeed the the only boundary condition, due to the absence of a 
higher-order temporal derivative. Consequently, the Schrödinger equation does not readily include sufficient 
information to account for more than one scattered wave, which would involve more unknowns, specifically two 
unknowns in the possible case of later-forward and later-backward waves. Moreover, the Schrödinger equation 
is not relativistic, and would hence miss related solutions.

Selection of the Dirac equation
The Dirac equation, which reads for the free-electron case i∂tψ = −(iαi∂i − γ 0m)ψ , where ψ is a ( 4× 1 ) spinor 
and where αi and γ 0 are ( 4× 4 )  matrices3,10,58,59 (see Supplementary Sect. 2), seems to represent a safer approach 
for obtaining a complete solution to our temporal step problem. It also has, as the Schrödinger equation, a first-
order temporal derivative order ( ∂t ), but it involves multiple sub-equations that might together support sufficient 
information to account for more than one scattered wave, including relativistic ones.

Let us then try to address the problem with the Dirac equation. In order to account for the potentials in Fig. 1, 
we extend the free-electron Dirac equation to its minimal-coupling  form3,10,58,59 (see Supplementary Sect. 2) 

where γ µ are the matrices (Dirac-Pauli representation)

with I and σi being the ( 2× 2 ) unit and Pauli matrices, respectively. Inserting the positive-energy monochromatic 

plane traveling wave ansatz ψ =

(

ϕ

ϑ

)

e−i(Et−pz) into Eq. (1) yields the general solution form (see Supplementary 

Sect. 3.1)

where q = −e ( e > 0 ) is the charge of the electron. We make here the choice of a non-localized, continuous-
wave ansatz because it is both the simplest and most appropriate regime to reveal the fundamental physics of 
the problem. The localized, wave-packet regime would be the next interesting regime to consider, with expected 
interesting novel time-delay physics, such as the quantum analog of the temporal Goos–Hänchen  shift60.

Scalar potential discontinuity
One may first attempt to apply the general solution (2) to the case of a pure-scalar potential, i.e., Aµ = (V , 0) , 
as typically done for the spatial step (Fig. 1a), which corresponds in the problem at hand to a temporal scalar 
potential step V(t), with V(t < t0) = V1 and V(t > t0) = V2 = V1 +�V  , with �V = V2 − V1 , where t0 is 
the switching time. However, it may be easily verified (see Supplementary Sect. 3.2.1) that, although providing 
the expected energy shift (from Ei =

√

p2 +m2 + qV1 to Ef =
√

p2 +m2 + qV2 ), of potential interest for 
amplification  applications6, such a potential does not produce any later-backward wave scattering! This result, 
which might a priori appear surprising, may be explained in terms of gauge invariance symmetry.

The (external) electric and magnetic fields, E and B , associated with the potential modulation, are 
generally related to the potentials as E = −∇V − ∂tA and B = ∇ × A , which are invariant under the gauge 
 transformation61,62

where � is an arbitrary scalar function. The sharp temporal potential step V(t) considered in the previous 
paragraph is equivalent to the transformation V ′ = V1 +�Vθ(t − t0) , where θ(t − t0) is the Heaviside 
step function, and A′ = 0 , which is a particular case of the gauge transformation  (3) with V = V1 , 
−∂t� = �Vθ(t − t0) , A = 0 and ∇� = 0 , corresponding to � = −�Vtθ(t − t0) . Therefore, this sharp 
potential step does not involve any change in the external fields, which explains why we found that it produces 
no later-backward scattering. [In fact, a similar result – unchanged external fields and the consequent absence 
of back-scattering – is found in the case of the sharp spatial step for the potential A(z) (see Supplementary 
Sects. 4.2 and 3.2.3)]. The external fields are actually zero, since A = 0 and ∇V = ∇V(t) = 0 ; the related energy 
transition due to potential without field is therefore somewhat akin to the Aharonov–Bohm  effect63. This absence 
of back-scattering contrasts with the situation of the pure-scalar sharp spatial potential step V(z) (Fig. 1a), 
whose (reflected wave) back-scattering results from the breaking of the gauge condition (3) (see Supplementary 
Sect. 4.1).
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Vector potential discontinuity
We may suspect at this point that, since V(t) fails to break the gauge symmetry (3), its pure-vector potential 
counterpart A(t) should break it, and hence bring about back-scattering, as the familiar (reflection) sharp spatial 
step V(z). That this is indeed the case is shown as follows. Assuming A(t) = A(t)ẑ , the step function reads now 
A(t < t0) = A1 and A(t > t0) = A2 = A1 +�A , with �A = A2 − A1 . The corresponding transformation is 
A′ = A1 +�A θ(t − t0) and V ′ = V1 +�V  with V1 = �V = 0 . Consistency with the gauge (3), given the 
mapping A = A1 , ∇� = �A(t) or ∂z� = �Aθ(t − t0) , V = V1 = 0 and −∂t� = 0 , would now demand that 
� = �Aθ(t − t0)z = �(z, t) along with �  = �(t) . The incompatibility between the last two conditions on 
� indicates that the transformation indeed breaks the symmetry of the gauge (3), which entails transformed 
external fields and which may hence lead to electron back-scattering.

We can now solve the problem of interest, for the potential, A(t), using the later-forward and later-backward 
ansätze corresponding to the related temporal-step classical electromagnetic  solutions24,34 (Fig. 1b). According 
to Noether’s  theorem64, for such a potential, momentum is conserved ( �p = 0 ) due to spatial translational 
symmetry, viz., pi = pf = pb = p , while broken temporal translational symmetry leads to energy transitions, 
which are given by the dispersion relation (see Supplementary Sects. 3.1 and 3.2.4)

where the subscript labels 1 and 2 refer to the earlier and later potential regions, respectively. Equation (4) leads 
to the energy relations 

 where, assuming Ef > 0 , the apparent negative energy Eb < 0 in the last relation simply represents propagation 
in the negative z direction ( vg,b < 0 ), with positive energy ( |Eb| > 0 ) (see Supplementary Sect. 5).

Dispersion and transition diagrams
Figure 2 plots the dispersion relations and electronic transitions for the two problems in Fig. 1, with Fig. 2a,b 
corresponding to the (reference) spatial step and temporal step problems in Fig. 1a,b, respectively, and with 
indications of the phase and group velocities (see Supplementary Sect. 5), corresponding to those in Fig. 1.

The spatial step (Fig. 2a) features the well-known vertical dispersion shifting with horizontal (momentum) 
transitions from the incident to the reflected and transmitted states (see Supplementary Sect. 3.2.2). The temporal 
step (Fig. 2b) [Eqs. (4) and (5)] exhibits perfectly dual characteristics, with horizontal dispersion shifting and 
vertical (energy) transitions from the earlier to the later-backward and later-forward states, whose energy levels 
versus Ei are obtained by solving Eq. (5a) for p and inserting the result into Eqs. (5b), which yields

Note that the orthogonal dispersion shifting in electronic scattering in Fig. 2 is a feature that does not exist in 
the classical electromagnetic counterparts of these problems, which rather involve (refractive index) dispersion 
curves that are rotated with respect to each other and that do not differ between the space and time  cases34 (see 
Supplementary Sect. 6).

Scattering coefficients
Upon the basis of the energy relations (5), the scattering amplitudes and probabilities may be easily found 
by inserting the expression for the vector potential step function A(t) into the general solution form (2) and 
enforcing the continuity condition ψ1|t=t0 = ψ2|t=t0 . The resulting later-backward and later-forward amplitude 
coefficients are (see Supplementary Sect. 3.2.4) 

corresponding to the probabilities

where
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Interestingly, the amplitude coefficients in Eq. (7a) are formally identical to those for classical electromagnetic 
scattering at a refractive index temporal step  discontinuity24,34, with the parameter Ŵt in Eq. (7c) replacing the 
refractive index contrast N = n2/n1 (see Supplementary Sect. 6).

Figure 3 plots the electron scattering probabilities versus potential strength for the two problems in Fig. 1, 
with Fig. 3a,b corresponding to the (reference) spatial step and temporal step problems in Fig. 1a,b, respectively. 
The probabilities for the spatial step (Fig. 3a), also computed here from the Dirac equation (see Supplementary 
Sect. 3.2.2), show the well-known Klein  paradox58,65, corresponding to the transmission gap in the range 
qV = [E −m,E +m] and increasing transmission with increasing potential beyond the gap. In contrast, the 
probabilities for the temporal step (Fig. 3b) do not exhibit such a gap; they follow a monotonic trend of exchange 
from forward propagation at low potentials to backward propagation at high potentials. These observations 
interestingly suggest that a shifted Klein gap may be expected in the case of a space–time (traveling) step. The 
asymptotic response at high potentials ( qV/m, qA/m � 5 ) is another fundamental difference: while the temporal 
step is mostly “reflective” (backward-wave) there, the spatial discontinuity is mostly transmissive, as a result of 
the double reflection-transmission crossing due to the Klein effect. Otherwise, the temporal step supports quasi-
total forward transmission up to energies ( qA/m ≈ 2 ) more than twice the cutoff of the quasi-total transmission 
in the spatial case ( qV/m < 1 ) and a forward-backward crossing point ( qA/m ≈ 3.4 ) almost identical to the 

(7c)Ŵt =

�

�

�

E2i −m2 − (qA2 − qA1)

�2

+m2

�

�

E2i −m2 − (qA2 − qA1)

�





Ei −m
�

E2i −m2



+m

.

Figure 2.  Dispersion relations and electronic transitions corresponding to Fig. 1 for (a) the spatial step V(z) 
(Fig. 1a), with (horizontal) momentum transitions, and (b) the temporal step A(t) (Fig. 1b), with (vertical) 
energy transitions, as well as corresponding (c) momenta and (d) energies versus potential steps.
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transmission-reflection crossing point in the spatial case ( qV/m ≈ 3.2 ); these two observations correspond to 
trends that are generally valid when the (incident) energy is sufficient to produce a transition to the backward 
state, as understandable from the dispersion diagram in Fig. 2b.

Smooth temporal potential step
The infinitely sharp temporal potential step discussed so far is a canonical structure, but it is not practically 
realizable, given its instantaneous transition from A1 to A2 and corresponding electric field singularity 
[ E = −∂A/∂t = −δ(t − t0) ]. Note that the same unrealizability issue occurs in the infinitely sharp spatial (scalar) 
potential discontinuity, given the dual contiguous transition from V1 to V2 and corresponding electric field 
singularity [ E = −∇V = −δ(z − z0) ]. What really matters then is to determine whether the interesting physics 
predicted for the infinitely sharp (unphysical) discontinuity survives as its transition is replaced by a smooth one.

For this purpose, we choose a smooth-transition potential corresponding to the hyperbolic tangent function

where the η parameter is proportional to the transition time and whose exact Dirac solution is derived in 
Supplementary Sect. 7. The corresponding results are provided in Fig. 4, with Fig. 4a plotting the hyperbolic-
tangent potential and Fig. 4b plotting the scattering probabilities for three representative transition times in 
terms of the “de Broglie period” of the electron, TdB . In the sharpest case, η = TdB/40 , the scattering probabilities 
are indistinguishable from those for the infinitely sharp discontinuity in Fig. 3b, because the transition is deeply 
sub-period, the temporal dual regime of deep sub-wavelength. At η = TdB/4 , which may be considered as the 
temporal dual of the (spatial) Fabry-Pérot condition, the back-scattering level is less than half of that in the former 
case. Finally, in the smoothest case, η = 2TdB , the transition has become so slow with respect to the period, that 
the electron does not “see” it anymore, which results in zero back-scattering.

The deeply sub-period regime ( η < TdB/10 ) can unfortunately not readily be attained in current technologies, 
because of the extremely short de Broglie period, TdB = h/E = h/(2mc2) ∼ 4× 10−21  s, but it might be 
reachable soon, given recent spectacular progress in attosecond lasers. Moreover, the present investigation can 
be easily extended to Dirac-type materials, such as graphene, whose de Broglie period is much smaller (e.g., 

(8)A(t) =

[

A1 +
A2 − A1

2

(

1+ tanh
t − t0

η

)]

ẑ ,

Figure 3.  Electron scattering probabilities versus potential strength corresponding to Fig. 1 for (a) reflection 
and transmission at the spatial step V(z) (Fig. 1a) with (V1,V2) = (0,V) and (b) later-backward and later-
forward propagation at the temporal step A(t) (Fig. 1b) with (A1,A2) = (0,A) , for the (incident) energy to rest 
mass ratio E/m = 2.

Figure 4.  Alternative problem of a smooth temporal potential step for three different transition durations 
in terms of the de Broglie period, TdB , for an electron with energy to rest mass ratio of E/m = 2 , as in Fig. 3. 
(a) Hyperbolic tangent function [Eq. (8)] of the related transition, between the potentials A1 and A2 , over the 
time η . (b) Corresponding later-backward and later-forward probabilities, B and F.
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T
graphene
dB = (3a/2)/vF ≈ 3.7× 10−16 s, where a = 0.246 nm is the lattice constant and vF ≈ 106 m/s is the Fermi 

velocity).

Discussion
Relativistic nature of back-scattering
The Dirac solutions in Eq. (7) and Fig. 3b confirm the validity of the later-forward wave and later-backward wave 
ansatz for the scattering potential A = A(t)ẑ . In the non-relativistic regime, where Ŵt = 1 (see Supplementary 
Sect. 8), these solutions reduce to b = 0 and f = 1 , actually corresponding to the purely later-forward solution 
of the Schrödinger equation. This fact reveals that later-backward scattering is a relativistic effect. Note that 
the temporal step problem, which may be seen as the infinite-velocity limit of a superluminal space–time 
modulation  medium34, does not seem to be relativistic per se. Indeed, the corresponding Lorentz factor is 
γ = 1/

√

1− (vf /c)2  with vf = c2/vm , where vf  is the velocity of the (instantaneous) frame and vm is the 
velocity of the  modulation66, so that γ vm→∞

= 1 (no boost); it is really the speed of the electron (v) (not that of the 
modulation ( vm ) in which it propagates) that may be relativistic in our problem. The conditional (relativistic) 
nature of the later-backward wave may a priori seem contradictory, given that the electromagnetic-counterpart 
problem unconditionally supports back-scattering24,34. However, considering that the particle (photon) in the 
latter case is inherently relativistic ( vphoton = c ), whereas it is not necessarily in the former case ( velectron < c ), 
makes the finding a posteriori much less surprising.

Experimental perspectives
Potential generation
It is well-known that producing a magnetic vector potential ( A ) to our liking might be a difficult task. This 
is at least the case when A is produced from a B-field source, according to the relation B = ∇ × A , as in the 
experiment originally proposed by Aharonov and  Bohm63 and later realized by Tonomura et al.67,68, where A is a 
distant effect of an enclosed B field, theoretically requiring an infinite solenoid and producing an inconvenient 
curved  potential63 or requiring a toroid with cumbersome superconductor  shielding67,68. Fortunately, our interest 
here is not to produce a potential in a field-free region, as in the Aharonov–Bohm effect, but just a temporal 
step potential with a short transition, without any further specific restriction. This might be realized from an 
E-field source, according to the relation E = −∂A/∂t . Indeed, inserting Eq. (8) into this relation leads to the 
pulse function

which may be produced by an ultrashort-pulse  laser69 to provide the desired potential step function [Eq. (8)] 
– collocated and aligned with the electric field. Achieving maximal back-scattering as in Fig. 3b requires, as 
shown in the previous section, a sub-period ( η < TdB/10 ) pulse, but a broader (larger η ) pulse, simply generating 
a smoother step, may still produce some back-scattering, as shown in Fig. 4.

Measurement
Once the potential has been generated, as just described, electrons should be shot by an electron gun parallel 
to the electric field (perpendicular to the laser beam axis) and an appropriate detection procedure should be 
used to measure the scattering probabilities predicted by Eqs. (7b) (Fig. 3b). That detection procedure might be 
delicate because the physical interpretation of Dirac spinors [Eq. (2)] and related quantities is not trivial: while the 
operators (position, momentum, energy, spin, etc.) associated with the Schrödinger equation directly correspond 
to observables, those associated with the Dirac equation do not! However, the scattering probabilities to measure 
here are not problematic. Their magnitudes can be obtained by placing an electron counter in the forward region 
of the setup, measuring the related electron count, NF , and deducing the corresponding electron count in the 
backward direction as NB = Ngun − NF , to obtain Fmeas = NF/Ngun and Bmeas = NB/Ngun . Moreover, their 
energy levels, predicted by Eqs. (6) (Fig. 2d), can be obtained via the phase differences �φf ,b = −

(

Ei − Ef ,b
)

t/� 
measured by an electron interferometer.

Summary and outlook
In this report, we have resolved the fundamental problem of electron scattering at a potential temporal step 
discontinuity, with a systematic comparison to the spatial counterpart of the problem and mention of similarities 
and differences with the classical electromagnetic counterparts of the two problems. The related effects described 
in this report might lead to a wide range of new concepts and applications in semiconductor electronics, quantum 
computing and information processing, and attosecond physics. A simple application would be a versatile 
(aligned-outputs) beam splitter, with tunable splitting ratio and splitting angle, consisting of a rotatable laser 
with varying intensity, where the latter controls the splitting ratio, according to Fig. 3b, and the former controls 
the output splitting direction.

Data availability
All data generated or analyzed during this study are included in this published article and its supplementary 
information files.
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