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The giant protein titin (TTN) is a sarcomeric protein that forms the myofibrillar backbone for

the components of the contractile machinery which plays a crucial role in muscle disorders and
cardiomyopathies. Diagnosing TTN pathogenic variants has important implications for patient
management and genetic counseling. Genetic testing for TTN variants can help identify individuals
at risk for developing cardiomyopathies, allowing for early intervention and personalized treatment
strategies. Furthermore, identifying TTN variants can inform prognosis and guide therapeutic
decisions. Deciphering the intricate genotype-phenotype correlations between TTN variants and
their pathologic traits in cardiomyopathies is imperative for gene-based diagnosis, risk assessment,
and personalized clinical management. With the increasing use of next-generation sequencing (NGS),
a high number of variants in the TTN gene have been detected in patients with cardiomyopathies.
However, not all TTN variants detected in cardiomyopathy cohorts can be assumed to be disease-
causing. The interpretation of TTN variants remains challenging due to high background population
variation. This narrative review aimed to comprehensively summarize current evidence on TTN
variants identified in published cardiomyopathy studies and determine which specific variants are
likely pathogenic contributors to cardiomyopathy development.
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Cardiomyopathies refer to a diverse range of complex diseases affecting heart muscle, which can lead to abnor-
malities in the structure and function of the myocardium. These abnormalities occur in the absence of other
conditions like coronary artery disease, hypertension, or valvular heart disease. The American Heart Associa-
tion (AHA) has categorized cardiomyopathies into genetic, acquired or mixed forms like virally induced post-
myocarditis cardiomyopathy. The European Society of Cardiology Organization (ESCO) proposed an alternative
classification system dividing cardiomyopathies into two subgroups—familial/genetic cardiomyopathies and
non-familial/non-genetic cardiomyopathies®*. Based on morpho-functional phenotypes®, cardiomyopathies
are classified into hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), restrictive cardio-
myopathy (RCM), and arrhythmogenic right ventricular (ARVC) which each one has their specific features®.
The hallmark features of cardiomyopathies are genetic and clinical heterogeneity, variable expressivity, and
incomplete penetrance. Numerous genes and mutations have been identified that can cause the various types of
cardiomyopathies. The majority of known mutations are linked to DCM and HCM, while fewer are associated
with RCM and ARVC. Cardiomyopathies demonstrate considerable genetic heterogeneity—mutations in vari-
ous different genes can lead to cardiomyopathy. There is also phenotypic heterogeneity, where mutations in the
same gene can result in diverse types and degrees of severity of cardiomyopathy’. Cardiomyopathy following
myocarditis is probably the result of an interaction interplay between the viral infection and a person’s inherent

!Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran,
Iran. 2Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of
Medical Sciences, Tehran, Iran. “’email: samira.kalayi@yahoo.com

Scientific Reports|  (2024) 14:5313 | https://doi.org/10.1038/s41598-024-56154-7 nature portfolio


http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-56154-7&domain=pdf

www.nature.com/scientificreports/

susceptibility. Certain subgroups induced by viral infection may be influenced, at least partially, by genetic fac-
tors, suggesting that the elimination of the virus and the immune response could be genetically predetermined®.

Among the genes involved in cardiomyopathies, the TTN gene plays a central role which is attributable to its
key structural properties and mechanical function within the striated muscle sarcomeres’. TTN is a major human
muscle disease-related gene that encodes the largest human protein, Titin, which is a fundamental structural and
functional unit of striated muscles'®'!. Due to the size and complexity of this gene, its sequencing was difficult
to study the mutations and variants. The initial family studies were performed with primer pairs searching on
the exons contained in a 280 kb genomics 2q31 region. This indeed led to the identification of titin mutations
causing DCM by Gramlich et al.!* Subsequently, the introduction of NGS has allowed for the exploration of
larger cohorts and various clinical entities.

Following the development of next-generation sequencing (NGS), as a potent tool for sequencing large and
complex genes, TTN gene sequencing which was previously impossible to conduct a comprehensive analysis, has
been performed. This improvement in study tools has led to identifying more than 60,000 TTN missense variants
reported in the 1000 Genomes Project'>!*. Determining which TTN variants actually cause disease versus which
are benign is challenging. The goal of this review is to discuss the current state of understanding regarding the
challenges in establishing clear associations between particular TTN mutations and specific cardiomyopathy
subtypes in a clinical context.

Method and materials

Systematic search, selection criteria and data collection

The study systematically collected TTN variants associated with cardiomyopathy from the Human Gene Mutation
Database (HGMD) and public archive of interpretations of clinically relevant variants (ClinVar). In prioritizing
data reliability, only variants with documented reference articles were included, while those lacking reference
articles were excluded. The search strategy, extending until February 2023, employed key parameters such as
Position on Chromosome, Human Genome Variation Society (HGVS) DNA, HGVS Protein, exon or intron
number, and dbSNP identifiers.

Variant annotation and pathogenicity assessment
The annotation of TTN variants involved a comprehensive pathogenicity assessment using multiple tools. This
included the application of the American College of Medical Genetics and Genomics (ACMG) guidelines, con-
sultation of ClinVar for variant interpretation, insights from Mutation Taster regarding potential pathogenicity,
the use of the Combined Annotation Dependent Depletion (CADD) scoring system for deleteriousness predic-
tion, and evaluation through Genomic Evolutionary Rate Profiling (GERP) to assess evolutionary conservation
which are explain more in the following.

We determineded the ACMG score for each variant using franklin, an online database (https://franklin.
genoox.com/clinical-db). After adding the name in this website, varints ACMG score anongside with other
features are provided.

ACMG score

The American College of Medical Genetics and Genomics (ACMG) previously established guidelines for inter-
preting sequence variants. With the rapid advancements in sequencing technology over the past decade, this
report suggests the adoption of standardized terms such as “pathogenic,” “likely pathogenic,” “uncertain signifi-
cance,” “likely benign,” and “benign” to characterize variants found in genes associated with Mendelian disorders.
Additionally, the recommendation outlines a systematic approach for classifying variants into these categories,
relying on various types of evidence, including population data (Population, disease-specific, and sequence
databases), computational data (using silico tools for missense prediction, splice site prediction and nucleotide
conservation prediction), functional data, and segregation data'>'®.

In this classification a variant is considered pathogenic if it meets the requirement of having a very strong
criterion (PVS1) along with at least one strong criterion (PS1-PS4), or alternatively, two or more moderate crite-
ria (PM1-PMS6), or a combination of one moderate criterion and one supporting criterion (PP1-PP5). Another
condition is that a variant can be classified as pathogenic if it satisfies the condition of having at least two strong
criteria (PS1-PS4). Additionally, a variant can be considered pathogenic if it meets the criteria of having one
strong criterion (PS1-PS4) and either three moderate criteria (PM1-PM6), two moderate criteria and at least
two supporting criteria (PP1-PP5), or one moderate criterion and at least four supporting criteria (PP1-PP5)'¢,

A variant is considered likely pathogenic if it satisfies the condition of having one very strong criterion (PVS1)
in combination with one moderate criterion (PM1-PM6). Alternatively, a likely pathogenic variant may exhibit
one strong criterion (PS1-PS4) along with one to two moderate criteria (PM1-PM6). Another criterion designates
a variant as likely pathogenic if it possesses one strong criterion (PS1-PS4) and at least two supporting criteria
(PP1-PP5). Furthermore, likely pathogenic variants may be identified if they meet the requirement of having
three or more moderate criteria (PM1-PM6). Additionally, a variant is classified as likely pathogenic if it has
two moderate criteria (PM1-PM6) and at least two supporting criteria (PP1-PP5), or if it exhibits one moderate
criterion (PM1-PM6) along with at least four supporting criteria (PP1-PP5)'¢. More information is provided
in “Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the
American College of Medical Genetics and Genomics and the Association for Molecular Pathology™®.

The ACMG score for each variant is determined using Franklin, an online database available at https://frank
lin.genoox.com/clinical-db. Upon entering the variant’s name on this website, the ACMG score, along with other
relevant features, is provided.
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CADD score
CADD, or Combined Annotation Dependent Depletion, serves as a tool for evaluating the deleteriousness of vari-
ous genetic variants, including single nucleotide changes, multi-nucleotide substitutions, and insertion/deletion
variants within the human genome. In contrast to many other annotation tools that often rely on a singular type
of information or have limited applicability, CADD offers a versatile metric that objectively combines diverse
annotations. The framework integrates multiple annotations into a unified metric by comparing variants that have
undergone natural selection with simulated mutations. It incorporates information from more than 60 genomic
features to assess single nucleotide variants and short insertions and deletions across the reference assembly. The
C-scores generated by CADD demonstrate robust correlations with allelic diversity, pathogenicity of coding and
non-coding variants, and experimentally measured regulatory effects. Notably, C-scores of variants associated
with complex traits in genome-wide association studies (GWAS) are significantly higher than matched controls,
showing correlation with study sample size, indicative of improved accuracy in larger GWAS. CADD employs a
machine learning model that distinguishes between simulated de novo variants, potentially encompassing neutral
or harmful alleles, and variants persisting in human populations since the split from chimpanzees.

CADD’s capability to quantitatively prioritize functional, deleterious, and disease-causing variants spans
a wide range of functional categories, effect sizes, and genetic architectures. This tool enhances the scoring of
coding variants through features derived from the ESM-1v protein language model and improves the scoring of
regulatory variants using features from a convolutional neural network trained on open chromatin regions. For
more information CADD has been detailed in four publications'”-2°.

MutationTaster

MutationTaster is a web-based application designed to assess the disease-causing potential of DNA sequence
variants. It employs in silico tests to estimate the impact of a variant on the gene product or protein, conducting
assessments at both the protein and DNA levels. Unlike tools limited to single amino acid substitutions, Muta-
tionTaster can handle a variety of variants, including synonymous and intronic ones?'. The software, written in
Perl programming language and utilizes integrated databases (Ensembl, UniProt, ClinVar, EXAC, 1000 Genomes
Project, phyloP and phastCons) to filter out known harmless polymorphisms. Various tests, such as amino acid
substitution, conservation, domain functionality, splicing effects, and regulatory element abrogation, are per-
formed on the remaining single-nucleotide polymorphisms (SNPs). The results are evaluated by a Naive Bayes
classifier, and the output indicates whether the alteration is known or predicted to be harmless or disease-causing,
providing detailed information about the mutation. While the tool demonstrates a raw accuracy of approximately
90%, considering knowledge about common polymorphisms and known disease mutations significantly improves
the rate of correct classifications. However, it is important to note that predictions of clinical effects suffer from
a lack of specificity, a common constraint across various prediction methods*>?*.

GERP

Comparative genomic approaches have historically identified mutation sites under purifying selection by exam-
ining conserved sequences across distantly related species. Additionally, the performance of such approaches
may be limited for short-lived functional elements that don’t exhibit sequence conservation across numerous
species. Genomic Evolutionary Rate Profiling (GERP) score is associated with the strength of selection (Nes).
Results indicate that the GERP score is linked to the intensity of purifying selection. Nevertheless, variations in
selection coefficients or turnover of functional elements over time can significantly impact the GERP distribution,
leading to unexpected relationships between GERP and Nes**. The GERP score is characterized as the decrease
in the count of substitutions in the multi-species sequence alignment in comparison to the neutral expectation.
GERP** scores span from —12.3 to 6.17, with elevated scores signifying a greater level of evolutionary constraint.

Data integration

Data integration encompassed the consolidation of relevant information, including Position on Chromosome,
HGVS DNA, HGVS Protein, exon or intron number, and dbSNP identifiers. Rigorous quality control measures
were then applied to ensure the accuracy and consistency of data extraction and annotation.

Statistical analysis
Descriptive statistics were employed for a comprehensive analysis, summarizing the distribution of TTN variants
in terms of positions, types, and associated pathogenicity.

Ethical considerations

Ethical considerations are considered in the study, with a commitment to adhering to Data reliability and respon-
sible data handling. In the present study, it is important to note that no human subjects were involved, as this
investigation is a comprehensive review rather than an experimental study. The research focused on analyz-
ing reported variants available on PubMed, and ethical approval or consent from human participants was not
applicable.

Results

The molecular structure of titin

The TTN gene located on the second human chromosome in the 2q31 area. This gene contains 364 exons, which
their translation produces a 4200-kDa protein with ~ 38,000 amino acid residues, the largest polypeptide found
in the human body. The Titin giant protein, also known as connectin, is the third most abundant protein found
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in striated muscle among the vertebrates, after myosin and actin. The Titin is a flexible filament that is more than
1 um long and 3-4 nm wide and spans half of the sarcomere as the repeating contractile unit that gives striated
muscle characteristic striped appearance?.

Titin has a complex multidomain structure which is composed of four main structural and functional regions:
the N-terminal Z-line acts as an anchor for the sarcomeric Z-disk; the I-band provides elastic properties; the
A-band stabilizes the thick filament; and the C-terminal M-line extremity overlaps in an antiparallel orienta-
tion with another titin molecule’s C-terminus, allowing for modulation of titin expression and turnover via the
tyrosine kinase domain®.

The N-terminus contains immunoglobulin (Ig) domains, fibronectin (FN) domains, and a Z-disk region?.
The rest of the titin molecule includes an elastic I-band region, a spring-like Pro-Glu-Val-Lys (PEVK) domain,
three unique sequences called Novex 1, 2, and 3, cardiac-specific N2B and N2A domains, a thick A-band region,
and an M-band region where the C-terminus is embedded.

Extensive alternative splicing in the 364 exons of TTN leads to forming various molecular isoforms. Previous
studies have shown three main titin isoforms expressed in cardiomyocytes: the adult N2B isoform, the adult
N2BA isoform, and the fetal cardiac titin (FCT) isoform. The distinct characteristics of each titin isoform arise
from differences in their I-band sequences, while the Z-disk, A-band, and M-line regions are highly conserved
across all isoforms?®. Due to the longer extensible I-band region, the N2BA isoform is more compliant than N2B.
The N2BA isoform contains additional spring-like elements in the PEVK and tandem Ig regions, leading to lower
passive tension in cardiomyocytes compared to other isoforms?-*..

Molecular structure of sarcomere and the interaction of Titin with thin and thick filaments is demonstrated
in Fig. 1.

Z-disk

The Z-disk region spans 826 amino acids horizontally across the structure and contains seven Ig domains sepa-
rated by Z-insertion sequences. As the site of numerous structural and functional interactions with myofibrillar
and sarcolemmal proteins, the Z-disk is critical for myofibril assembly, stability, and signaling. Z-disks anchor
essential proteins like titin-Tcap (telethonin), which enables key Z-disk functions including mechanosens-
ing. Mechanosensing involves recruiting other interacting and signaling partners to the Z-disk in response to
mechanical stimuli. Overall, Z-disks play indispensable roles in anchoring titin and enabling vital structural
and sensory functions®*=4,

Myofibril

Thick filament

Cardiac Muscles cell

—— —
—— e —5
| S— ] —

I-band H-band
N —
A-band

Sarcomer

Thin filament (actin) ==eeeees

Elastic filament (titin) 00000000

Thick filament W
(myosin)

I-band A-band "'*._‘I-band

Sarcomere

TTN complet meta transcript

Figure 1. Molecular structure of sarcomere and the interaction of Titin with thin and thick filaments.
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The Z-disk interacts with small ankyrin proteins, spectrin, desmin, and obscurin, connecting it to other
cytoskeletal structures. Filamin C links the Z-disk to costameres via integrins and sarcoglycans, participating
in mechanosensory pathways. Additionally, the Z-disk binds nebulin, which helps stabilize Z-disk anchor-
age through interactions with actin, desmin, CapZ and myopalladin. a-Actinin binding also enhances Z-disk
mechanical stability. Overall, the Z-disk forms critical protein interactions that provide structural support and
sensory functions®.

I-band

The I-band region of titin displays extensive alternative splicing, generating diverse isoforms that confer tissue-
specific mechanical properties in cardiac and skeletal muscles. Through alternative splicing mechanisms, a spec-
trum of isoforms emerges, tailoring titin'’s mechanical functions to meet the needs of different muscle types. The
I-band thus acts as a central adapter, converting titin into specialized molecular springs via splicing variability.
This interactive segment contains a meta-transcript with principal cardiac and skeletal isoforms. Key compo-
nents include immunoglobulin folds, the cardiac N2B zone, and the skeletal N2A zone containing nonrepetitive
sequences and immunoglobulin domains. The proline-glutamate-valine-lysine (PEVK) domain follows, acting
as a spring-like element. Together, the I-band components enable the elasticity of titin*>*!.

The I-band region has distinct proximal and distal segments with specialized roles. The proximal I-band
maintains sarcomere integrity, while the medial/distal I-band acts as a bidirectional molecular ruler setting rest-
ing length and passive tension*?. The I-band also functions as a biochemical stress sensor through interactions
with af-crystallin, a chaperone that stabilizes I-band immunoglobulin domains. Additionally, metabolic enzymes
like DRAL, FHLI, and FHL2 associate with I-band sarcomere regions via the Gaq-MAPK pathway*”*>*. Indeed,
though I-band interactions with the Ca*>-dependent proteases Calpain-1 and Calpain-3, I-band not only con-
tributes to a sarcomeric quality control pathway but also serves as a reservoir for inactive forms of Calpain-3434°,

A-band

The A-band spans the sarcomere from M-line to M-line, containing thick filaments of myosin. Within the
A-band, titin forms a network that maintains the structural integrity of the thick filaments and regulates their
length. The A-band exclusively contains fibronectin type III (FnIII) motifs. Inmunoglobulin (Ig) and FnIII motifs
are arranged in two super-repeats bisected by Ig folds. Unlike the elastic I-band, the A-band is inextensible,
providing myosin binding sites that function as stable anchors. A-band super-repeat domains interact with and
position sarcomeric myosin binding protein C (MyBP-C). The A-band also contains binding sites for muscle
ring finger proteins MURF1 and MURF2. MURF1 likely facilitates quality control and protein turnover at the
sarcomere center, while MURF?2 interactions aid formation of mature A-band structures3®-38.

M-band

The M-band integrates structural, signaling, metabolic and protein quality control functions. It contains a puta-
tive serine/threonine kinase domain and immunoglobulin cross-hatched rectangle (CII) domains interspersed
with M-insertion sequences*’. While its kinase activity is debated, the M-band kinase domain likely participates
in stress sensing through Ca**-calmodulin-regulated mechanochemical signaling®®*%. During sarcomerogenesis,
myomesin constructs an M-band scaffold linking titin to myosin thick filaments, establishing the myomesin-titin-
myosin stability axis*. The M-band also senses metabolic stress via ligands DRAL/FHL2 that tether metabolic
enzymes, and enables ubiquitin-mediated turnover through interactions with nbr1, p62, MURF1 and MURF2%.
MURF2 binding facilitates M-band’s role in cardiac development®'. Additionally, the extreme C-terminal TTN/
calpain-3/p94 interaction participates in M-band-associated protein turnover®”>%

The molecular function of titin

Since the discovery of titin, the complexity and diverse functional roles of titin in health and disease continue to
emerge. As the third filament system of the sarcomere alongside actin and myosin, titin forms a unique filament
network in cardiomyocytes that engages in mechanical and signaling roles'’. During muscle development, titin
likely controls the assembly of actin and myosin contractile proteins, regulating sarcomere size and thick fila-
ment structure. In mature muscle, titin contributes to elasticity mechanisms affecting sarcomere resting lengths
and tension-related processes®.

The enormity and intricate three-dimensional structure of titin provides structural support to maintain
sarcomere integrity during contraction while generating passive tension during stretching. Additionally, the
numerous titin-binding proteins arranged in signaling hotspots allow titin to participate in mechanosensing
and signal transduction®®*. Thus, titin has multifaceted roles beyond viscoelastic force generation: (a) center-
ing thick filaments for optimal active force; (b) assembling sarcomeres; (c) mechanochemical signaling through
binding partners; and (d) potentially enabling length-dependent activation underlying the Frank-Starling law>*.

Comparative analysis of TTN variants
In this study we found 611 distant TTN variant which were not benign and they were pathogenic, likely patho-
genic or variant of uncertain significance (VUS).

85% of the variants were reported in exon fragments, while 15% were reported in intron fragments. In ACMG
classification, 69.6% of the variants were classified as Pathogenic, 21.6% as Likely Pathogenic, and 8.8% as Vari-
ants of Uncertain Significance (VUS). Substitution accounted for 57.25% of the variants, deletion for 29.62%,
duplication for 7.36%, and insertion for 5.72%.

The majority of variants occurred in the interval from exon 200 to the end of the molecule, with the hotspot
regions identified at exon 326 and 358 being the most common points for variations (Fig. 2).
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Figure 2. Prevalence of variants in different exons and introns in TTN.

Most pathogenic variants are located after the exon 326 to the end of the molecule which has higher CADD
number compared to others (Fig. 3A). The Genomic Evolutionary Rate Profiling (GERP) score is used to com-
pare the gene nucleotides among the species in the TTN gene®*. It is supposable that the nucleotides and exons
which are conserved in the evolution, can be considered a vital element for survive and loss of function of these
components are associated with death and the prevention of its inheritance. In the comparison of the conservity
of the gene nucleotides, it can be concluded that most the variants have a notable GERP score which indicates
their conservity (Fig. 3B).

In comparing the average CADD score of various exons, it can be concluded that exons with higher CADD
scores are located in the end of the gene and the middle part of the gene, the average CADD score is not notable.
The first few exons of the gene have a higher CADD score but in the last exons, the CADD score is increased
considerably especially in the last 50 exons. VUS variants have less CADD score and likely pathogenic variants
also have lesser scores compared to pathogenic variants (Fig. 3C,D).

In the comparing type of genetic alternation in variants, it can be concluded that the most common alterna-
tions are substitution and deletions. Most of the deletions have high score numbers while substitutions have
various CADD scores. Most of the insertion and duplications also have notable CADD score because of frameshift
events while in the substitutions we can observe some lesser CADD score which is not exists in other types of
alternations. As demonstrated, most of the pathogenic variants in the first parts of the gene are deletions but the
most pathogenic variants in the last parts of the gene have substitutions (Fig. 3E,F).
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Figure 3. Comparative analysis of TTN variants with their pathogenicity, type of alternation, and conservity.

The biogenesis pathways of TTN

Role of alternative splicing

TTN gene consists of 364 exons as translatable parts according to NCBI*® and is estimated to code 34,350 amino
acid residues according to UniProt®. TTN can be spliced in different ways to produce different transcript forms.
Since alternative splicing of TTN, the protein has various sizes. The I-band, M-line, and Z-disc areas of Titin are
the most variable parts, which lead to various isoforms with a wide range of elasticity. Due to variations in the
I-band area, different muscle types have varying degrees of elasticity. The Titin gene’s I-band encoding region
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is the site of many splicing processes resulting in isoforms with various spring compositions. This process even
can discriminate cardiac Titin with skeletal muscle Titin.

All cardiac Titin isoforms have exon 49, which contains the N2B sequence; however, skeletal muscle does
not®’. The cardiac isoform known as N2B Titin is a small 2970-kDa weight protein produced by splicing exons
49/50. Deletion of Titin N2B region causes diastolic dysfunction and cardiac atrophy®®. Another isoform is N2BA
which is made up of exons 102 to 109, which code for the N2A element. A specific property of this isoform is
that it contains more PEVK segments and is longer with more Ig domains®®.

I-band and its isoforms in cardiac compliance and DCM

Protein composition patterns can change among different populations and even in various stages of human
life. The isoform transforming of sarcomeric proteins in the troponin complex, Myosine heavy chain (MHC),
Myosine light chain (MLC) and Titin from fetal to adult through transcriptional changes or alternative splicing
is the essential element of myofibril maturation®.

A study by Lahmers et al.* revealed that fetal titin isoforms are expressed in neonates, containing additional
spring elements in the tandem Ig and PEVK regions. This leads to lower stiffness compared to adults, explained
by the unique spring composition of fetal cardiac titin in neonates. Changes in titin expression during develop-
ment likely impact functional transitions and diastolic filling as the heart matures. The fetal cardiac titin isoform,
with its extra Ig and PEVK spring elements, gradually disappears postnatally in a species-dependent manner.

In the human heart, the ratio of titin isoform expression is established based on passive tension. There is a
high correlation between titin-based passive tension and I-band region size, with lower tension associated with
a larger, more elastic I-band. In healthy adult hearts, the N2BA and N2B titin isoforms express at 30-40% and
60-70% respectively. The relative levels of these two isoforms are a key determinant of cardiomyocyte stiffness®.
Titin plays a central role in the passive ventricular tension. Animal studies have proved that the N2BA isoform
is present in the near-term fetus 6 days before birth but after birth disappears and is replaced by a smaller N2B
isoform, which predominates in 1-week-old neonate and adults. Adult cardiomyocytes have 15 times more pas-
sive tension compared to fetal cardiomyocytes which is confirmed by immunofluorescence microscopy. This
transformation is compatible with the heart’s function in each stage of life which after birth needs more passive
tension to pump the blood effectively through the vessels®'.

Alternative splicing of the TTN gene plays significant roles in cardiac diseases like dilated cardiomyopathy
(DCM). In DCM, the more compliant N2BA isoform is upregulated, decreasing passive stiffness and increasing
chamber compliance. Overall, variable expression and splicing of titin isoforms critically influence myocardial
passive tension and compliance®®?1:6%6%,

Hidalgo et al.* conducted sophisticated experiments to identify the mechanisms influencing myocardial pas-
sive stiffness by modifying the phosphorylation state of titin. The study revealed that titin serves as a substrate not
only for protein kinase A but also for protein kinase G and protein kinase C a (PKCa). The researchers pinpointed
the PEVK region of titin as the primary site for PKCa phosphorylation, demonstrating that phosphorylation at
this site enhances passive tension in the myocardium.

Novex variants and tiny titin results alternative splicing

The whole sequence of the human TTN gene contains three isoform-specific mutually exclusive exons named
novel exons (novex), which encode for the I-band sequence. Novex1 is presented in exon 45, novex-2 is located
in exon 46, and novex-3 is placed in exon 48. The novex-1 and novex-2 Titin isoforms are encoded by transcripts
that either include the novex-1 or novex-2 exons. Early stop-gain codon in the novex-3 transcript produces a
remarkably tiny isoform (700 kDa) known as novex-3 Titin. The ’tiny Titin’ isoform, expressed in all striated
muscles, stretches from the Z-disc to the novex-3 domain (C-terminus). Therefore, stress-induced sarcomeric
rearrangement may be mediated by novex-3 Titin because of its regulatory involvement in calcium level and
GTPase-associated myofibrillar pathways®. Furthermore, novexes 2 and 3 may be linked to DCM or ARVC based
on the expression levels of novex variations in human cardiac tissues affected by cardiomyopathies. Previous

research suggests that novex variations may be attributable to cardiomyopathy®®.

Splicing regulation of alternative splicing

Encoding Titin by a single gene into various forms is the result of different mRNA splice pathways which leads to
Titin isoform classes®. The titin gene contains 409 introns, enabling generation of 57 distinct mRNA transcripts
through extensive alternative splicing. These include 29 unspliced forms and 28 spliced isoforms. Additional
diversity arises from 5 alternative promoters, 9 non-overlapping final exons, and 9 verified polyadenylation sites.
The resulting mRNAs vary in: 3’ end truncations, 5’ end truncations, presence/absence of 173 cassette exons,
overlapping exons with different borders, and splicing versus retention of 3 introns®”.

RBM20 regulates a subset of genes involved in developing the heart’s muscles by modulating their mRNA
alternative splicing. Titin, known to undergo extremely complex alternative splicing, is one of the RBM20’s
targets. RBM20 specifically manipulates alternative splicing within the I-band of TTN pre-mRNA, which pos-
sesses the highest frequency of the alternative splicing process. It has been demonstrated that some alterations
in the protein can produce pathogenic TTN isoforms, which are believed to lead to DCM®. Surprisingly, Khan
et al.®, detected 80 distinct circRNAs among nearly a thousand from human hearts, indicating that the I-band
of Titin is a hotspot region of circRNAs. Remarkably, the introns on each side of the back-spliced junctions were
enriched in RBM20 binding sites, and the introns related to the TTN circRNAs had a five-fold higher frequency of
RBM20 binding sites compared to a control set of introns. Studies on the RBP20 knock-out animals, and a cardiac
sample of heterozygous RBM20 mutation carrier with substantially compromised synthesis of TTN circRNAs,
both provided evidence that RBP20 is involved in the biogenesis of these TTN circRNAs®. Furthermore, the
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most recent study by Czubak et al.”’, also found that Type 1 diabetes patients’ human skeletal muscles included

a significant amount of circRNAs primarily derived from the I-band of Titin. Titin has considerable interaction
with other functional and structural proteins of sarcomeres. So, it is assumable that it has numerous binding
sites for muscle-associated proteins and serves as an adhesion template for contractile machinery assembly in
cardiac cells. So, it should be considered a dynamic and transformable molecule.

The role of TTN variants in cardiomyopathies

Heterozygous mutations in TTN are commonly associated with cardiomyopathies and TTN has been reported
as the most common gene involved in cardiomyopathies’’. The mutations can be broadly classified into two
categories, which are truncating or missense mutations. Truncating mutations lead to premature termination
of Titin protein synthesis, resulting in either an altered protein or the loss of functional domains. In contrast,
missense mutations result in the replacement of amino acids, potentially causing interference with the typical
operation of the Titin protein’®.

The ongoing inquiry into the exact molecular mechanisms by which TTN mutations lead to cardiomyopathies
illuminates the intricate relationship between TTN mutations and various forms of cardiomyopathies. The hap-
loinsufficiency model is a notable mechanism that proposes the presence of truncating mutations in one allele
of the TTN gene results in a reduction in Titin expression, consequently inducing a functional deficit of Titin
protein. The phenomenon mentioned above possesses the capability to disrupt the sarcomere assembly process,
alter the mechanical properties of cardiac muscle cells, and prevent the heart’s contractile function, leading to
the manifestation of cardiomyopathy. Another proposed mechanism which even can be manifest in dominant
pattern is missense mutations. This occurrence takes place when the mutated form of the Titin protein impairs
the normal functioning of the unaltered Titin protein, leading to compromised assembly and operation of the
sarcomere.

Moreover, it is plausible that TTN mutations may trigger aberrant splicing occurrences, leading to the pro-
duction of deficient or abnormal Titin isoforms, thus playing a role in the pathogenesis of cardiomyopathy c.
The bioinformatics analysis of reported variants in TTN related to cardiomyopathies has been shown in Table 1.

Dilated cardiomyopathy

Idiopathic factors are just as significant in the pathophysiology of DCM as acquired variables (such as infec-
tions, poisons, or autoimmune diseases). Individuals harboring TTN mutations exhibit a higher susceptibility to
developing DCM compared to other forms of the disease®®”*7. Idiopathic DCM, including familial and sporadic
instances, has a genetic etiology, according to a vast number of studies”>’°.

A review study by Chauveau et al.? reported that Among the TTN mutations linked to DCM, 29 are catego-
rized as nonsense mutations, with three of them occurring in the I-band, while the remaining 26 are located in
the A-band. Additionally, 17 frameshift mutations are reported, with three in the I-band and 14 in the A-band.
Furthermore, 18 mutations are predicted to affect TTN splicing TTN mutations, particularly truncating variants
(TTNtv) in the A-band region and in exons that are highly utilized across the range of titin isoforms, have been
shown in a number of studies to be strongly associated with the occurrence of DCM and its severity, accounting
for the majority of cases””-%.

Although fewer TTNtv have been identified in pediatrics, a study by Fatkin et al.*! on the young population
showed that the prevalence between adolescents and adults is similar, indicating that they need to have multiple
clinical and genetic risk factors other than a single TTNtv to present with CDM. TTNtv accounts for 25% of
familial cases and 18% of sporadic cases of idiopathic dilated cardiomyopathy®?. The aforementioned TTNtv
have demonstrated a remarkably low prevalence within the broader populace.

According to Fatkin et al. the prevalence of TTNtv is 20% among individuals with DCM, whereas only 0.5%
of the general population carries this type of mutation®®*. The aforementioned data aligns with the results of
Fang et al.*® survey, which indicated an overall prevalence rate of 17%. The survey also revealed that 23% of cases
were familial, while 16% were sporadic. For example, mutations in the A-band are implicated as predominant
genetic causes of DCM?36-%8,

An important question is how minor TTNtv carrier populations can avoid presenting with DCM. A convinc-
ing explanation comes from a study by Roberts et al.”” showing that the two major adult cardiac titin isoforms,
N2BA and N2B, are responsible. These abundant full-length isoforms predominantly contain distal A-band
exons, where most DCM-causing TTNtvs are located. However, mutations in proximal exons not present in all
TTN transcripts do not cause DCM.

Hypertrophic cardiomyopathy

HCM is the most common inherited cardiomyopathy, frequently arising from sarcomere gene defects. Character-
ized by arrhythmias and heart failure symptoms due to left ventricular outflow obstruction, diastolic dysfunction,
ischemia, or mitral regurgitation, HCM displays autosomal dominant inheritance. Mutations, predominantly
missense, in one or more sarcomere genes underlie most cases of HCM. To date, over 1400 mutations have been
identified in genes encoding primarily sarcomeric proteins®.

Due to the involvement of a vast range of mutations with distinctive penetrance, a comprehensive understand-
ing of the pathophysiological mechanisms underlying the development of HCM in the presence of sarcomere-
related gene mutations is still unfulfilling®. In a study conducted by Ingles et al.”! on 33 genes reported to have
an association with HCM, only 8 genes (MYBPC3, MYH7, TNNT2, TNNI3, TPM1, ACTCI1, MYL2, and MYL3)
were shown to have a definitive impact on occurring HCM. It is estimated that around 30% of HCM patients
have unidentified genes responsible for the condition.
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The gene MYBPC3, which codes for cardiac myosin-binding protein C, is the most important gene in this pro-
cess accounting for up to half of the mutations identified®**. In the second place, MYH?7, which is responsible for
encoding the beta-myosin heavy chain, is present in approximately 15-25% of patients diagnosed with HCM?>%.

In comparison to other plausible etiologies of HCM, the presence of the TTN gene mutations exhibits a
relatively low ranking. Several studies reported four TTN variants resulting in gain-of-function effects in HCM
patients. Satoh et al.”® found a Z-line mutation (c.2219G > T, p.Arg740Leu) which increases alpha-actinin binding
affinity. Two studies, similarly, reported a mutation in cardiac-specific N2B exon 49 [c.12347C> A, p.Ser4116Tyr]
resulting in increased TTN binding to DRAL/FHL2°7%%. The TTN/T-CARP interaction is reinforced by the
presence of two mutations located in exons 103 and 104-N2A, ¢.29231G > A, p.Arg9744 (initially reported as
p-Arg8500His) and ¢.29543G > A, p.Arg9848Gln (initially reported as p.Arg8604Gln), as reported by Arimura
etal”. Lopes et al., in a different study, reported 219 TTN variants in a population of unrelated HCM patients.
Of those 87% coexisted with mutations in HCM-related sarcomere gene defects and only 13% were found
isolated®1%. However, in a study on 90 HCM patients and their close relatives, the mutation screening revealed
no clue of the TTN gene being involved in their pathogenesis'®. Similarly, Martijn Bos et al.'”* detected no TTN
mutation in a group of 389 HCM patients.

Restrictive cardiomyopathy

Restrictive cardiomyopathy is a diverse collection of disorders that primarily affect the myocardium, with a lesser
impact on the endocardium and sub-endocardium. It is characterized by increased stiffness of the ventricular
walls leading to restricted ventricular filling, which consequently results in significant diastolic dysfunction,
elevated end-diastolic pressure, and reduced ejection fraction in the advanced stages'%>'%.

The epidemiology of this disease is not well understood in the literature due to classification and etiology
reporting difficulties, but RCM is surely the least common form of cardiomyopathies, representing 2% to 5% of
cases”'%, There are a variety of diseases that can cause it, including infiltrative disorders like amyloidosis and
sarcoidosis, non-infiltrative disorders like diabetes and scleroderma, storage disease, endomyocardial disease,
and cardiotoxicity brought on by chemotherapy or radiotherapy?.

Numerous genes that encode non-sarcomeric, sarcomeric, and sarcomere-associated proteins have been
shown to play a role in RCM occurrence and inheritance. Examples include the TTR gene variants (V122[;
168L; L111M; T60A; S23N; P24S; W41L; V30M; V20I) and APOAI gene in Amyloidosis; GLA gene in Fabry
disease; GBA gene in Gaucher disease; HAMP, HFE, HFE2, H]V, PNPLA3, SLC40A1, TfR2 genes in Hereditary
hemochromatosis; NPC1, NPC2 and SMPDI genes in Niemann-Pick disease; AG3, CRYAB, DES, DNAJB6, FHLI,
FLNC, LDB3, and MYOT genes in Myofibrillar myopathies; ABCC6 gene in Pseudoxanthoma elasticum; ACTC,
MHC, TNNT2, TNNI3, TNNCI, DES, MYH, MYL3, and CRYAB genes in Sarcomeric protein disorders; WRN
gene in Werner’s syndrome; and BMP5, BMP7 and TAZ genes in Endocardial fibroelastosis!>!%61%7,

The role of TTN variants in RCM is relatively unknown and more investigations are needed to illustrate this
fact. In 2013, for the first time, Peled et al. discovered a novel missense mutation (c.50057A > G, p.Tyr16686Cys)
in the intersection of the A and I regions of Titin (IA junction). This mutation was found to play a role in early-
onset familial RCM, which affected six members of a family. They asserted that Titin determines the sarcomere’s
resting tension, and their study offers genetic proof of its critical significance in diastolic function.**1%%%° In
another study, Kizawa et al.''? found another novel TTN missense mutation (c.22769C > A, p.P7590Q) in a young
boy with neurofibromatosis type 1, which is thought to be responsible for RCM co-occurrence. This de novo
mutation is also located at the IA junction.

Arrhythmogenic right ventricular cardiomyopathy (ARVC)

Arrhythmogenic cardiomyopathy (ACM), is a rare and potentially life-threatening heart muscle disease with a
prevalence of approximately 1:1000 to 1:5000'''-!13, Although asymptomatic in most instances upon diagnosis,
it is characterized by palpitations, atypical chest pain, and syncope caused by cardiac arrhythmia, mostly in the
right ventricle, which leads to the term “arrhythmogenic right ventricular cardiomyopathy (ARVC)”14-116_ This
condition is characterized by the progressive replacement of the myocardium with fibrofatty tissue, a process that
begins at the epicardium, turns into a regional wall motion abnormality, and eventually spreads throughout the
myocardium, resulting in the development of ventricular dilation and multiple aneurysms'7-1%°.

The primary etiology of ACM is attributed to mutations in genes that encode desmosomal proteins, mainly
with an autosomal dominant pattern of inheritance and over 30 percent of cases being familial. JUP, DSP, PKP2,
DSG2, and DSC2 genes are the most probable to be involved. LMNA and TMEM43 are two additional genes that
have been linked to the nuclear envelope, and there are genes that are shared with other cardiomyopathies (such
as DES, PLN, TGFB3, TTN, and SCN5A)!12120-123,

Several studies have been conducted on the role of TTN variations in the pathogenesis of ARVC. In one study
by Taylor et al.’?!, eight novel TTN variants (c.C29453T, p.Thr28961le; c.A97341G, p.Tyr8031Cys; c.C106734T,
p.His8848Tyr; ¢.T215598C, p.1le16949Thr; ¢.G221380A, p.Alal8579Thr; ¢.G226177T, p.Alal9309Ser;
c.C272848T, p.Pro30847Leu; c.T281801C, p.Met33291Thr) were identified in seven unrelated families with
well-established ARVC. They claimed the most prominent variant was Thr2896lle, showing strong segrega-
tion evidence. In another investigation on the phenotype-genotype relationship of ARVC in 39 families, Brun
et al.'® found 13% of their studied population, had rare TTN variants (c.29453C> T, p.Thr28961le; 281801T > C,
Alal8579Thr; ¢.221380AG > T, p.Met33291Thr; ¢.226177G > T, p.Ala19309Ser; c.97341G > A, p.Tyr8031Cys;
€.272848C>T, p.Pro30847Leu). In the investigation of the levels of Novex variant expression in human hearts

with cardiomyopathies, Chen et al.'** came to the conclusion that this factor was altered in cardiomyopathies
such as DCM and ARVC.
Scientific Reports|  (2024) 14:5313 | https://doi.org/10.1038/s41598-024-56154-7 nature portfolio



www.nature.com/scientificreports/

Other muscle disorders

Beyond cardiomyopathies, TTN mutations are implicated in numerous non-cardiac muscle disorders. According
to Chauveau et al.?, 39 TTN mutations have been identified so far in four pure skeletal muscle myopathies: limb
girdle muscular dystrophy type 2] (LGMD2]), late-onset autosomal dominant tibial muscular dystrophy (TMD),
hereditary myopathy with early respiratory failure (HMERF), and congenital centronuclear myopathy (CNM).
Additional conditions associated with TTN variants include early adult onset recessive distal titinopathy, early-
onset myopathy with fatal cardiomyopathy, multi-minicore disease with heart disease, childhood-juvenile Emery-
Dreifuss-like phenotype without cardiomyopathy, and adult-onset recessive proximal muscular dystrophy'**.

Frequent TTN-related molecules in cardiomyopathies

There are several molecules which play a considerable role in the signaling and function of Titin. In the present
study, we evaluated their interaction with Titin and consider their interaction with Titin in the pathogenesis of
cardiomyopathies (Fig. 4).

Calpain

Calpain, a family of Ca**-dependent cytosolic cysteine proteases, plays a role in various cellular processes,
including cell death and tissue remodeling!?. It has been implicated in several cardiac conditions, including
dilated cardiomyopathy, alcohol-related cardiomyopathy, chemotherapy-induced cardiomyopathy, arrhythmo-
genic cardiomyopathy, and diabetic cardiomyopathy'?’~1*!. Sustained over-expression of calpain-2, specifically

in cardiomyocytes, induced age-dependent dilated cardiomyopathy in mice'?.
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Figure 4. Illustration of the intricate signaling pathway implicated in the development of cardiomyopathy
associated with Titin and other related proteins.
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MuRF1/2

Muscle ring finger (MuRF) proteins are muscle-specific ubiquitin E3 ligases that regulate the ubiquitin-protea-
some system and modulate cardiac mass and function'*?. A study by Su et al.'** showed a higher prevalence of
rare MuRF1 and MuRF2 variants in hypertrophic cardiomyopathy (HCM) patients compared to controls. HCM
patients with these rare MuRF1/2 variants were younger and had greater maximum left ventricular wall thickness
than those without the variants'*.

ERK

ERK (Extracellular signal-regulated kinase) plays a central role in cardiac physiology and hypertrophy
ERK signaling is implicated in various forms of cardiac hypertrophy and progression to heart failure'*. Altered
ERK activity has been linked to HCM!**. ERKs are considered key regulators of cardiac hypertrophy since they
are activated by most, if not all, stress stimuli known to induce hypertrophic growth'*”. Studies show that con-
currently eliminating ERK1 and ERK2 in the heart leads to eccentric hypertrophy with chamber dilatation and
cardiomyocyte elongation'*.

134-136

NFAT

Nuclear factor of activated T-cells (NFAT) transcription factors are implicated in developing cardiac hypertrophy
and heart failure!*®. Activation of NFAT signaling induces pathological remodeling of cardiomyocytes'®. Inhibi-
tion of NFAT prevents maladaptive cardiac growth in response to stress stimuli'*’. Targeting NFAT signaling
pathways may be therapeutic for specific cardiomyopathies'*2,

FHL1/2

Mutations in the four-and-a-half LIM domain proteins 1 and 2 (FHL1 and FHL2) are associated with reducing
body myopathy and hypertrophic cardiomyopathy'**. FHL1/2 are involved in sarcomere assembly and signaling
and highly expressed in skeletal and cardiac muscle'*#!**. Abnormal FHL proteins cause structural defects in
sarcomeres and impaired muscle contraction'*®. FHL1 mutations account for 8-10% of familial reducing body
myopathy cases which can include cardiomyopathy'*'**. Chu et al.'** reported FHL1 upregulation in Cardiac
ventricles of two mouse models with cardiac hypertrophy and dilated cardiomyopathy.

MARP

Muscle ankyrin repeat proteins (MARPs), including CARP, Ankrd1/2, and DARP, are a family of ankyrin repeat
proteins expressed in striated muscle that are induced by stress. MARPs play regulatory roles in the muscle stress
response and hypertrophy pathogenesis'*. Overexpression of CARP is linked to dilated cardiomyopathy in ani-
mal models'®. In addition, Patients with hypertrophic, dilated, ischemic, and arrhythmogenic right ventricular
cardiomyopathy are more likely to develop CARP upregulation®®#151152. Missense mutations in the Ankrdl
gene have recently been identified as the cause of dilated and hypertrophic cardiomyopathy in humans®*!4133154,
CARP modulation of gene expression may contribute to adverse ventricular remodeling in cardiomyopathies'>>.

Nbrl1

Neighbor of BRCA1 gene 1 (Nbrl) is a cardiac-expressed protein involved in autophagy, protein degradation
and sarcomere organization'*®. Several studies suggested role of Nbrl overexpression in developing dilated
cardiomyopathy'>-1%,

SRF

Serum response factor (SRF) is a transcription factor regulating cardiac gene expression important for adapta-
tion to stress'®. SRF inactivation in animal models causes dilated cardiomyopathy'®. SRF likely controls genes
involved in maintaining normal cardiac structure and function'®. Alterations in SRF-dependent gene regulation
may underlie some cardiomyopathies'®.

MLP
Muscle LIM protein (MLP) is involved in mechanosensing and stretch response in cardiomyocytes'®>. MLP
knockout mice develop dilated cardiomyopathy'®*. Loss of MLP leads to impaired myocyte stretch signaling and

contraction'®®. MLP deficiency is implicated in some forms of familial dilated cardiomyopathy'®°.

MyBP-C

Myosin binding protein C (MyBP-C) is important for maintaining sarcomere structure and regulating muscle
contraction'®’. Mutations in cardiac MyBP-C are the most common cause of hypertrophic cardiomyopathy'®.
Abnormal MyBP-C disrupts sarcomere function leading to reduced contractility and development of
hypertrophy'®.

Myomesin
Myomesin is a major component of the sarcomeric M-band involved in thick filament organization'”°. Myomesin
mutations have been associated with hypertrophic and dilated cardiomyopathy in some patients'’!. Altered

myomesin disrupts myofilament integrity and crosstalk resulting in cardiomyocyte damage'”>.

170
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Sh2 domain

Src homology 2 (SH2) domains mediate protein—protein interactions in cell signaling cascades'”>. Mutations
affecting SH2 domains of ZASP/Cypher proteins are linked to dilated cardiomyopathy'’%. Disruption of ZASP
protein interactions likely impairs structural organization and signaling processes in cardiac muscle!”.

173

Ras

Ras family small GTPases regulate growth and survival signaling'”®. Constitutively active mutant Ras expressed
in mouse hearts causes dilated cardiomyopathy phenotype!””. Hyperactive Ras leads to increased cell growth,
altered metabolism and myocardial dysfunction'”®.

176

Raf

Raf kinases act downstream of Ras to activate MEK/ERK signaling involved in cell proliferation and
differentiation'”®. Cardiac-specific expression of activated Raf in transgenic mice induces dilated
cardiomyopathy'®.

Alpha actinin

Alpha-actinin-2 (ACTN2) is the sole muscle isoform of a-actinin expressed in cardiac muscle'®!. Previous studies
have shown that novel ACTN2 variants are associated with familial HCM'#2. Previous studies have shown that
novel ACTN?2 variants are associated with!®!. Mutations in ACTN2 have been linked to mild to moderate forms
of HCM'®!. Disease modeling of an ACTN2 mutation has guided clinical therapy in HCM'®*. Genome-wide
analyses have also demonstrated that ACTN2 mutations can cause HCM'#“.

181

Filamin C

In striated muscle, different forms of the Ank3 gene product (ankyrins-G) are produced due to tissue-specific
alternative splicing. These ankyrins-G have a shared segment called the Obscurin/Titin-Binding-related Domain
(OTBD), which is consistent across ankyrin genes and links obscurin and Titin to Ank1 gene products. Previ-
ously, it was suggested that the OTBD segment in ankyrins plays a unique role in muscle protein interactions. In
recent studies, muscle proteins that can bind to the ankyrin-G OTBD were identified as plectin and filamin C,
both crucial for muscle development and structure. These three proteins (ankyrin-G, plectin, and filamin C) are
found together in skeletal muscle and are observed in the same regions (costameres) of adult muscle fibers'.
Filamin C (FLNC) is an actin-binding cytoskeletal protein encoded by the FLNC gene, instrumental in maintain-
ing sarcomeric integrity. While first identified as causative in myofibrillar myopathy, recent evidence reveals a
key role for FLNC in cardiomyopathy pathogenesis. Truncated FLNC variants predominate in DCM and ARVC,
while non-truncated forms are more common in hypertrophic cardiomyopathy and restrictive cardiomyopathy.
The primary mechanisms underlying FLNC-associated cardiomyopathies are protein aggregation from non-
truncating mutations and haploinsufficiency resulting from filamin C truncation'®.

Nebulin

Members of the nebulin protein family, which includes nebulin, nebulette, LASP-1, LASP-2, and N-RAP, are
diverse in size, expression pattern, and function, but they all bind to actin. While nebulin’s presence in the heart
is minimal, nebulette stands out for its heart-specific expression. Crucially, mutations in the nebulette gene have
been linked to DCM. Transgenic mice with these mutations display symptoms that mirror this human heart
condition'®’,

Mechanosensory signaling mechanism of titin

Titin plays a crucial role in mechanosensing, which is the ability of cells to sense mechanical forces. When
muscles undergo stretch or contraction, Titin is subjected to mechanical stress and strain. This mechanical
deformation of Titin can trigger mechanotransduction pathways, converting mechanical signals into biochemical
signals. These pathways involve the activation of various signaling molecules, including kinases, phosphatases,
and transcription factors, leading to cellular responses such as gene expression changes, protein synthesis, and
remodeling of the contractile apparatus'® (Fig. 4).

Z disk region

The Z-disc region of Titin consists of Z-repeats and Ig-domains Z1 and Z2, forming the very NH2-terminal end.
Telethonin connects two Titin molecules from one sarcomere, which is essential for sarcomere integrity. Cardiac
telethonin undergoes phosphorylation by various kinases and mutations in telethonin are linked to various
cardiac cardiomyopthies. Some mutations might disrupt its phosphorylation and, thus, its function. Telethonin
interacts with the muscle LIM protein (MLP), together with actinin, MLP, Titin, and telethonin might form a
complex that senses mechanical stretch™.

N2-B region

Cardiac-specific N2-B region which made up of Ig-domains can bind to two isoforms of the LIM domain pro-
tein, FHL-1 and FHL-2 which respond strongly to biomechanical stress, and can move to the nucleus to work as
transcriptional co-activators. FHL-2’s activity could suppress calcineurin, inhibiting pathological cardiac growth
while FHL1 might connect to the MAPK signaling cascade. Under non-stimulating conditions, MEK1/2 anchors
ERK in the cytoplasm, but after activation, it shifts ERK to the nucleus, activating specific transcription factors.
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ERK?2 has been seen to phosphorylate Titin's N2-Bus sequence, potentially affecting myofilament stiftness.
Knocking down FHLI in mice changed myofibrillar responsiveness and reduced hypertrophic signaling. Hence,
the N2-B/FHL-1/MAPK complex might be a key biomechanical stress sensor in cardiomyocytes**>81371819,

M-band region

The M-band region of Titin, particularly the Titin kinase (TK) domain, is a significant area for hypertrophic sign-
aling. TK’s conformational changes, suggesting its role as a biomechanical stress sensor, might be biomechanically
induced. When activated, TK interacts with Nbr1, forming a complex with p62/SQSTM1 and muscle-specific
ubiquitin E3 ligases MuRF1, MuRF2, and MuRF3.

The TK signaling complex with the zinc-finger protein nbrl is involved in mechanically-activated signaling.
Nbr1 directs the ubiquitin-binding protein p62/SQSTMLI to sarcomeres where it interacts with the muscle-
specific E3 ligase MuRF2, linked to the transactivation domain of serum response factor (SRF). Mechanical
inactivity triggers MuRF2 nuclear migration, decreasing nuclear SRF and suppressing transcription. Mutations
in the TK domain disrupt this mechanism, resulting in hereditary muscle disorders®*!*!.

Of course, it should be considered that subsequent investigations have proposed that TK functions as an
inactive pseudokinase, utilizing its kinase scaffold to recruit MuRF1 for biomechanically regulated autophagy
pathways!®>193,

The hotspot region for TTN variants

In a quantitative analysis of variants, it was revealed that the most common hotspot region for variants is the
exon number 326 which is located in the A band as the Fibronectin type III domain'** and has a more consider-
able number of variants compared to other parts which are followed by exon 358 (containing Ig-like domain
and Fibronectin type III domain)'** and exon 48. Among the introns, intron 47 can be considered as the hotspot
point for variants compared to other introns'** (Fig. 2).

Discussion

This study identified 611 distant TTN variants, classified as pathogenic, likely pathogenic, or variants of uncertain
significance (VUS). These variants predominantly occurred in exon fragments (85%), with 69.6% classified as
pathogenic, 21.6% as likely pathogenic, and 8.8% as VUS in ACMG classification. Substitutions accounted for
57.25% of the variants, deletions for 29.62%, duplications for 7.36%, and insertions for 5.72%. The majority of
pathogenic variants were located after exon 326, exhibiting higher CADD scores. GERP scores indicated con-
servity among gene nucleotides, with most variants having notable GERP scores. Exons at the end of the gene
displayed higher average CADD scores. VUS variants had lower CADD scores.

TTN, a functionally and structurally essential component of striated muscles, is the largest human protein
It consists of four functional regions including N-terminal, I-band, A-band, and C-terminal®. The N-terminal is
an anchor for Z-disk, which not only plays a crucial role in myofibril assembly and stability but also in sensory
functions, protein interactions, and signaling pathways®>-*". Owing to alternative splicing, I-band is the central
adopter specializing titin for specific tissues. The elasticity of the titin is mostly attributable to the I-band unit***!.
On the contrary to the I-band, the A-band is not extensible and is a stable anchor for myosin fibers. It also inter-
acts with various proteins contributing to protein turnover at the sarcomeric center***!. The M-band constitutes
the myomesin-titin-myosin and also senses and responds to the metabolic stress™.

The passive tension of the human heart is determined by the pattern of expression of titin isoforms. Expression
of more elastic and larger I-band isoforms is associated with lower titin passive tension. The ratio of N2BA and
N2B isoform expression determines the stiffness of cardiomyocytes®. If the balance between N2BA and N2B is
disrupted and N2BA isoform upregulates, the decrease in passive stiffness of the heart brings about DCM?3**!-6263,
Mutations in the TTN gene are speculated to bring about cardiomyopathies through disruption in sarcomere
assembly or contractility, or triggering aberrant splicing®®31:%63,

In accordance with our study, another study demonstrated that most TTN variants associated with TTN are
located in the A-band unit followed by the I-band?®. Truncating TTN variants located in the A-band region are
the predominant TTN mutations associated with the DCM”7-886-88 The N2BA and N2B isoforms contain distal
exons of the A-band. Therefore, variants affecting the A-band and its distal regions are more frequently reported
to manifest with DCM, while, the N-terminal mutations are less likely to bring about DCM, considering they
are not expressed in N2BA and N2B isoforms””.

TTN mutations are not as prominent in HCM compared to DCM. HCM is speculated to arise from mutations
in sarcomere-related genes; nonetheless, the exact pathophysiology of HCM is yet to be found®’. Mutations in
Sarcomeric, non-sarcomeric, and sarcomere-associated proteins are proposed to contribute to the development
and inheritance of RCM">!%1%7_Although the role of TTN variants in the pathogenesis and inheritance of RCM
is not fully understood, it is known that titin is the key determinant of sarcomere resting tension and diastolic
function®®1%%1%_Similarly, the impact of TTN mutations in ARVC is not yet determined. However, rare TTN
variants have been reported in probands and family members of ARVC patients'*"'%3.

The most common hotspot for mutations is exon 326 of the TTN gene which is located in the A-band region.
Notably, the exon containing the most TTN variants is 358, also in the A-band. As presented, the TTN variants
were primarily located in a small number of exons which are mostly situated at A- and I-bands. This localization
of TTN variants might stem from the higher fatality of mutations in other locations, or conversely, these muta-
tions do not exhibit clinical symptoms to prompt genetic evaluation.

The conservatory TTN exons seem to be associated with the pathogenicity of the variants This might be
explained, at least in part, by the theory that more conserved nucleotides could be essential, and mutations
affecting this nucleotide could be more pathogenic.

10,11
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Data availability

The datasets generated and/or analyzed during the current study are available in the the public archive of inter-
pretations of clinically relevant variants (ClinVar) repository, (https://www.ncbi.nlm.nih.gov/clinvar/?term=
TTN%5Bgene%5D&redir=gene).

Received: 22 November 2023; Accepted: 1 March 2024
Published online: 04 March 2024

References

1.
2.
3.

10.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.

25.

27.

28.
29.

30.

31.

32.

34.

35.

36.

37.

Ormerod, J.O. and A. Yavari, Cardiomyopathies. Medicine, 2022.

Ciarambino, T. et al. Cardiomyopathies: An Overview. Int. . Mol. Sci. 22(14), 7722 (2021).

Maron, B. J. et al. Contemporary definitions and classification of the cardiomyopathies: An American heart association scientific
statement from the council on clinical cardiology, heart failure and transplantation committee; quality of care and outcomes
research and functional genomics and translational biology interdisciplinary working groups; and council on epidemiology and
prevention. Circulation 113(14), 1807-1816 (2006).

Elliott, P. et al. Classification of the cardiomyopathies: A position statement from the European society of cardiology working
group on myocardial and pericardial diseases. Eur. Heart J. 29(2), 270-276 (2008).

Maurizia Grasso, B., Favalli, V. & Riccardo Bellazzi, M. The MOGE (8) classification of cardiomyopathy for clinicians. J. Am.
College Cardiol. 64(3), 304-318 (2014).

Brandenburg, R. Report of the WHO/ISFC task force on the definition and classification of cardiomyopathies. Br. Heart . 44,
672-673 (1980).

Czepluch FS, Wollnik B, Hasenfuf3 G, (2018) Genetic determinants of heart failure: facts and numbers, Wiley Online Library.
Cham. 211-217

Cannata, A. et al. Myocarditis evolving in cardiomyopathy: When genetics and offending causes work together. Eur. Heart J.
Suppl. 21(Suppl B), B90-b95 (2019).

The Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and
3,000 shared controls. Nature 447(7145), 661-678 (2007).

Gerull, B. The rapidly evolving role of titin in cardiac physiology and cardiomyopathy. Can. J. Cardiol. 31(11), 1351-1359 (2015).
Tabish, A. M. et al. Genetic epidemiology of titin-truncating variants in the etiology of dilated cardiomyopathy. Biophys. Rev.
9(3), 207-223 (2017).

Gerull, B. et al. Mutations of TTN, encoding the giant muscle filament titin, cause familial dilated cardiomyopathy. Nat. Genet.
30(2), 201-204 (2002).

Arbustini, E. et al. Desmin accumulation restrictive cardiomyopathy and atrioventricular block associated with desmin gene
defects. Eur. J. Heart Fail. 8(5), 477-483 (2006).

Merlo, M. et al. Poor prognosis of rare sarcomeric gene variants in patients with dilated cardiomyopathy. Clin. Transl. Sci. 6(6),
424-428 (2013).

Richards, S. et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the
American college of medical genetics and genomics and the association for molecular pathology. Genet. Med. 17(5), 405-424
(2015).

Richards, S. et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the
American college of medical genetics and genomics and the association for molecular pathology. Genet. Med. 17(5), 405-423
(2015).

Kircher, M. et al. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet 46(3),
310-315 (2014).

Rentzsch, P. et al. CADD: Predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res. 47(D1),
D886-d894 (2019).

Rentzsch, P. et al. CADD-Splice-improving genome-wide variant effect prediction using deep learning-derived splice scores.
Genome Med. 13(1), 31 (2021).

Schubach, M. et al. CADD v1.7: Using protein language models, regulatory CNNs and other nucleotide-level scores to improve
genome-wide variant predictions. Nucleic Acids Res. 52(D1), D1143-d1154 (2024).

Schwarz, J. M. et al. MutationTaster evaluates disease-causing potential of sequence alterations. Nat. Methods 7(8), 575-576
(2010).

Steinhaus, R. et al. MutationTaster2021. Nucleic Acids Res. 49(W1), W446-w451 (2021).

Siméikovd, D. & Heneberg, P. Refinement of evolutionary medicine predictions based on clinical evidence for the manifestations
of Mendelian diseases. Sci. Rep. 9(1), 18577 (2019).

Huber, C. D, Kim, B. Y. & Lohmueller, K. E. Population genetic models of GERP scores suggest pervasive turnover of constrained
sites across mammalian evolution. PLoS Genet. 16(5), e1008827 (2020).

Tskhovrebova, L. & Trinick, J. Titin: Properties and family relationships. Nat. Rev. Mol. Cell Biol. 4(9), 679-689 (2003).
Chauveau, C., Rowell, ]. & Ferreiro, A. A rising titan: TTN review and mutation update. Hum. Mutat. 35(9), 1046-1059 (2014).
Tskhovrebova, L. et al. Elasticity and unfolding of single molecules of the giant muscle protein titin. Nature 387(6630), 308-312
(1997).

LeWinter, M. M. & Granzier, H. Cardiac titin: A multifunctional giant. Circulation 121(19), 2137-2145 (2010).

Lahmers, S. et al. Developmental control of titin isoform expression and passive stiffness in fetal and neonatal myocardium.
Circ. Res. 94(4), 505-513 (2004).

Cazorla, O. et al. Differential expression of cardiac titin isoforms and modulation of cellular stiffness. Circ. Res. 86(1), 59-67
(2000).

Neagoe, C. et al. Gigantic variety: expression patterns of titin isoforms in striated muscles and consequences for myofibrillar
passive stiffness. J. Muscle Res. Cell Motil. 24(2), 175-189 (2003).

Knoll, R., Buyandelger, B. & Lab, M. The sarcomeric Z-disc and Z-discopathies. J. Biomed. Biotechnol. 2011, 569628 (2011).
Knoll, R., Hoshijima, M. & Chien, K. R. Muscle LIM protein in heart failure. Exp. Clin. Cardiol. 7(2-3), 104-105 (2002).
Knoll, R. et al. A common MLP (muscle LIM protein) variant is associated with cardiomyopathy. Circ. Res. 106(4), 695-704
(2010).

Clark, K. A. et al. Striated muscle cytoarchitecture: An intricate web of form and function. Ann. Rev. Cell Dev. Biol. 18(1), 637-706
(2002).

Gigli, M. et al. A review of the giant protein titin in clinical molecular diagnostics of cardiomyopathies. Front Cardiovasc. Med.
3,21 (2016).

Granzier, H. L. & Labeit, S. Titin and its associated proteins: The third myofilament system of the sarcomere. Adv. Protein Che.
71, 89-119 (2005).

Scientific Reports |

(2024) 14:5313 |

https://doi.org/10.1038/s41598-024-56154-7 nature portfolio


https://www.ncbi.nlm.nih.gov/clinvar/?term=TTN%5Bgene%5D&redir=gene
https://www.ncbi.nlm.nih.gov/clinvar/?term=TTN%5Bgene%5D&redir=gene

www.nature.com/scientificreports/

38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.

52.

53.
54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

67.
68.
69.
70.
71.
72.
73.
74.
75.
77.
78.
79.
80.

81.

82.
83.

84.

Kontrogianni-Konstantopoulos, A. et al. Muscle giants: Molecular scaffolds in sarcomerogenesis. Physiol. Rev. 89(4), 1217-1267
(2009).

Linke, W. A. Sense and stretchability: The role of titin and titin-associated proteins in myocardial stress-sensing and mechanical
dysfunction. Cardiovasc. Res. 77(4), 637-648 (2008).

Miller, M. K. et al. The muscle ankyrin repeat proteins: CARP, ankrd2/Arpp and DARP as a family of titin filament-based stress
response molecules. J. Mol. Biol. 333(5), 951-964 (2003).

Trombitas, K. et al. Titin extensibility in situ: Entropic elasticity of permanently folded and permanently unfolded molecular
segments. J. Cell Biol. 140(4), 853-859 (1998).

Helmes, M., Trombitas, K. & Granzier, H. Titin develops restoring force in rat cardiac myocytes. Circ. Res. 79(3), 619-626 (1996).
Hojayev, B. et al. FHL2 binds calcineurin and represses pathological cardiac growth. Mol. Cell. Biol. 32(19), 4025-4034 (2012).
Hojayev, B. et al. FHL2 binds calcineurin and represses pathological cardiac growth. Mol. Cell Biol. 32(19), 4025-4034 (2012).
Granzier, H. L. & Labeit, S. The giant protein titin: A major player in myocardial mechanics, signaling, and disease. Circ. Res.
94(3), 284-295 (2004).

Witt, C. C. et al. Induction and myofibrillar targeting of CARP, and suppression of the Nkx2.5 pathway in the MDM mouse with
impaired titin-based signaling. J. Mol. Biol. 336(1), 145-54 (2004).

Obermann, W. M. et al. Molecular structure of the sarcomeric M band: Mapping of titin and myosin binding domains in
myomesin and the identification of a potential regulatory phosphorylation site in myomesin. EMBO J. 16(2), 211-220 (1997).
Gautel, M. et al. A calmodulin-binding sequence in the C-terminus of human cardiac titin kinase. Eur. J. Biochem. 230(2),
752-759 (1995).

Musa, H. et al. Targeted homozygous deletion of M-band titin in cardiomyocytes prevents sarcomere formation. J. Cell Sci.
119(20), 4322-4331 (2006).

Kotter, S., Andresen, C. & Kruger, M. Titin: central player of hypertrophic signaling and sarcomeric protein quality control.
Biol. Chem. 395(11), 1341-1352 (2014).

McElhinny, A. S. et al. Muscle-specific RING finger-2 (MURF-2) is important for microtubule, intermediate filament and
sarcomeric M-line maintenance in striated muscle development. J. Cell Sci. 117(15), 3175-3188 (2004).

Beckmann, J. S. & Spencer, M. Calpain 3, the “gatekeeper” of proper sarcomere assembly, turnover and maintenance. Neuromusc.
Disord. 18(12), 913-921 (2008).

Granzier, H. et al. Titin: Physiological function and role in cardiomyopathy and failure. Heart Fail. Rev. 10(3), 211-223 (2005).
Tskhovrebova, L. and J. Trinick, Roles of titin in the structure and elasticity of the sarcomere. Journal of Biomedicine and Biotech-
nology, 2010 (2010).

Medicine, N.L.o. TTN titin [ Homo sapiens (human) |. 2024; Available from: https://www.ncbi.nlm.nih.gov/gene/7273.
Resource, T.U.P. Q§WZ42 - TITIN_HUMAN. Available from: https://www.uniprot.org/uniprotkb/Q8WZ42/entry.

Bang, M. L. et al. The complete gene sequence of titin, expression of an unusual approximately 700-kDa titin isoform, and its
interaction with obscurin identify a novel Z-line to I-band linking system. Circ. Res. 89(11), 1065-1072 (2001).

Radke, M. H. et al. Targeted deletion of titin N2B region leads to diastolic dysfunction and cardiac atrophy. Proc. Natl. Acad.
Sci. USA 104(9), 3444-3449 (2007).

Lahmers, S., Wu, Y., Call, D. R., Labeit, S. & Granzier, H. Developmental control of titin isoform expression and passive stiffness
in fetal and neonatal myocardium. Circ. Res. 94, 505-513 (2004).

Hidalgo, C. & Granzier, H. Tuning the molecular giant titin through phosphorylation: Role in health and disease. Trends Car-
diovasc. Med. 23(5), 165-171 (2013).

Opitz, C. A. et al. Developmentally regulated switching of titin size alters myofibrillar stiffness in the perinatal heart. Circ. Res.
94(7), 967-975 (2004).

Nagueh, S. F. et al. Altered titin expression, myocardial stiffness, and left ventricular function in patients with dilated cardio-
myopathy. Circulation 110(2), 155-162 (2004).

Opitz, C. A. et al. Developmentally regulated switching of titin size alters myofibrillar stiffness in the perinatal heart. Circ. Res.
94(7), 967-975 (2004).

Ahmed, S. H. & Lindsey, M. L. Titin phosphorylation: Myocardial passive stiffness regulated by the intracellular giant. Circ. Res.
105(7), 611-613 (2009).

Kellermayer, D., Smith, J. E. 3rd. & Granzier, H. Novex-3, the tiny titin of muscle. Biophys. Rev. 9(3), 201-206 (2017).

Chen, Z. et al. Characterization of TTN novex splicing variants across species and the role of RBM20 in novex-specific exon
splicing. Genes (Basel) 9(2), 86 (2018).

View, A. Homo sapiens complex locus CCDC141andTTN, encoding titin and coiled-coil domain containing 141. . 2010; Available
from: https://www.ncbi.nlm.nih.gov/ieb/research/acembly/av.cgi?db=human&term=ttn&submit=Go.

Legnini, I. et al. Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol. Cell 66(1), 22-37
(2017).

Khan, M. A. et al. RBM20 regulates circular RNA production from the titin gene. Circ. Res. 119(9), 996-1003 (2016).

Czubak, K. et al. Global increase in circular RNA levels in myotonic dystrophy. Front. Genet. 10, 649 (2019).

Ellepola, C. D. et al. Genetic testing in pediatric cardiomyopathy. Pediatr. Cardiol. 39(3), 491-500 (2018).

Waldmuller, S. ef al. Targeted 46-gene and clinical exome sequencing for mutations causing cardiomyopathies. Mol. Cell Probes.
29(5), 308-314 (2015).

Marian, A. J., Asatryan, B. & Wehrens, X. H. T. Genetic basis and molecular biology of cardiac arrhythmias in cardiomyopathies.
Cardiovasc. Res. 116(9), 1600-1619 (2020).

Monserrat, L. et al. Genetics of cardiomyopathies: Novel perspectives with next generation sequencing. Curr. Pharm. Des. 21(4),
418-430 (2015).

Schultheiss, H. P. et al. Dilated cardiomyopathy. Nat. Rev. Dis. Primers 5(1), 32 (2019).

Weintraub, R. G., Semsarian, C. & Macdonald, P. Dilated cardiomyopathy. The Lancet 390(10092), 400-414 (2017).

Roberts, A. M. et al. Integrated allelic, transcriptional, and phenomic dissection of the cardiac effects of titin truncations in
health and disease. Sci. Transl. Med. 7(270), 270ra6 (2015).

Akinrinade, O. et al. Genetics and genotype-phenotype correlations in Finnish patients with dilated cardiomyopathy. Eur. Heart
J. 36(34), 2327-2337 (2015).

van Spaendonck-Zwarts, K. Y. et al. Titin gene mutations are common in families with both peripartum cardiomyopathy and
dilated cardiomyopathy. Eur. Heart J. 35(32), 2165-2173 (2014).

Pugh, T. J. et al. The landscape of genetic variation in dilated cardiomyopathy as surveyed by clinical DNA sequencing. Genet.
Med. 16(8), 601-608 (2014).

Fatkin, D. et al. Titin truncating mutations: A rare cause of dilated cardiomyopathy in the young. Progress Pediatr. Cardiol. 40,
41-45 (2016).

Herman, D. S. et al. Truncations of titin causing dilated cardiomyopathy. N. Engl. . Med. 366(7), 619-628 (2012).

Fatkin, D. & Huttner, I. G. Titin-truncating mutations in dilated cardiomyopathy: The long and short of it. Curr. Opin. Cardiol.
32(3), 232-238 (2017).

Akinrinade, O., Koskenvuo, J. W. & Alastalo, T. P. Prevalence of titin truncating variants in general population. PLoS One 10(12),
€0145284 (2015).

Scientific Reports |

(2024) 14:5313 |

https://doi.org/10.1038/s41598-024-56154-7 nature portfolio


https://www.ncbi.nlm.nih.gov/gene/7273
https://www.uniprot.org/uniprotkb/Q8WZ42/entry
https://www.ncbi.nlm.nih.gov/ieb/research/acembly/av.cgi?db=human&term=ttn&submit=Go

www.nature.com/scientificreports/

85.

86.

87.

88.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.
104.

105.
106.
107.
108.
109.
110.
111.

112.

113.
114.

115.
116.

117.

118.

119.
120.

121.

122.

123.

124.

125.
126.

127.

128.

Fang, H. J. & Liu, B. P. Prevalence of TTN mutations in patients with dilated cardiomyopathy: A meta-analysis. Herz 45(Suppl
1), 29-36 (2020).

Akinrinade, O., Alastalo, T. P. & Koskenvuo, J. W. Relevance of truncating titin mutations in dilated cardiomyopathy. Clin. Genet.
90(1), 49-54 (2016).

Schafer, S. et al. Titin-truncating variants affect heart function in disease cohorts and the general population. Nat. Genet. 49(1),
46-53 (2017).

Yoskovitz, G. et al. A novel titin mutation in adult-onset familial dilated cardiomyopathy. Am. J. Cardiol. 109(11), 1644-1650
(2012).

Herrero-Galén, E., et al., Conserved cysteines in titin sustain the mechanical function of cardiomyocytes. bioRxiv, (2020).
Marian, A. J. & Braunwald, E. Hypertrophic cardiomyopathy: Genetics, pathogenesis, clinical manifestations, diagnosis, and
therapy. Circ. Res. 121(7), 749-770 (2017).

Ingles, J. et al. Evaluating the clinical validity of hypertrophic cardiomyopathy genes. Circ. Genom. Precis. Med. 12(2), 002460
(2019).

Van Driest, S.L., et al. Sarcomeric genotyping in hypertrophic cardiomyopathy. in Mayo Clinic Proceedings. 2005. Elsevier.

Van Driest, S. L. et al. Myosin binding protein C mutations and compound heterozygosity in hypertrophic cardiomyopathy. J.
Am. Coll. Cardiol. 44(9), 1903-1910 (2004).

Richard, P. et al. Hypertrophic cardiomyopathy: Distribution of disease genes, spectrum of mutations, and implications for a
molecular diagnosis strategy. Circulation 107(17), 2227-2232 (2003).

Van Driest, S. L. et al. Comprehensive analysis of the beta-myosin heavy chain gene in 389 unrelated patients with hypertrophic
cardiomyopathy. J. Am. Coll. Cardiol. 44(3), 602-610 (2004).

Satoh, M. et al. Structural analysis of the titin gene in hypertrophic cardiomyopathy: Identification of a novel disease gene.
Biochem. Biophys. Res. Commun. 262(2), 411-417 (1999).

Itoh-Satoh, M. et al. Titin mutations as the molecular basis for dilated cardiomyopathy. Biochem. Biophys. Res. Commun. 291(2),
385-393 (2002).

Matsumoto, Y. et al. Functional analysis of titin/connectin N2-B mutations found in cardiomyopathy. J. Muscle Res. Cell Motil.
26(6-8), 367 (2005).

Arimura, T. et al. Cardiac ankyrin repeat protein gene (ANKRD1) mutations in hypertrophic cardiomyopathy. J. Am. Coll.
Cardiol. 54(4), 334-342 (2009).

Lopes, L. R. et al. Genetic complexity in hypertrophic cardiomyopathy revealed by high-throughput sequencing. J. Med. Genet.
50(4), 228-239 (2013).

Andersen, P. S. et al. Diagnostic yield, interpretation, and clinical utility of mutation screening of sarcomere encoding genes in
Danish hypertrophic cardiomyopathy patients and relatives. Hum. Mutat. 30(3), 363-370 (2009).

Bos, J. M. et al. Genotype-phenotype relationships involving hypertrophic cardiomyopathy-associated mutations in titin, muscle
LIM protein, and telethonin. Mol. Genet. Metab. 88(1), 78-85 (2006).

Lewis, A. B. Clinical profile and outcome of restrictive cardiomyopathy in children. Am. Heart ]. 123(6), 1589-1593 (1992).
Muchtar, E., Blauwet, L. A. & Gertz, M. A. Restrictive cardiomyopathy: Genetics, pathogenesis, clinical manifestations, diagnosis,
and therapy. Circ. Res. 121(7), 819-837 (2017).

Sayegh, A. L. C. et al. Cardiac and peripheral autonomic control in restrictive cardiomyopathy. ESC Heart Fail. 4(3), 341-350
(2017).

Yang, Z. et al. Genotype-phenotype associations with restrictive cardiomyopathy induced by pathogenic genetic mutations. Rev.
Cardiovasc. Med. 23(6), 185 (2022).

Pereira, N. L., Grogan, M. & Dec, G. W. Spectrum of restrictive and infiltrative cardiomyopathies: Part 1 of a 2-part series. J.
Am. College Cardiol. 71(10), 1130-1148 (2018).

Peled, Y. et al. Titin mutation in familial restrictive cardiomyopathy. Int. J. Cardiol. 171(1), 24-30 (2014).

Neiva-Sousa, M. et al. Titin mutations: The fall of Goliath. Heart Fail. Rev. 20(5), 579-588 (2015).

Kizawa, M. et al. Identification of a novel titin variant underlying myocardial involvement in neurofibromatosis type 1. Can J
Cardiol 34(10), 1369 €5-1369 e7 (2018).

Groeneweg, J. A. et al. Clinical presentation, long-term follow-up, and outcomes of 1001 arrhythmogenic right ventricular
dysplasia/cardiomyopathy patients and family members. Circ. Cardiovasc. Genet. 8(3), 437-446 (2015).

Corrado, D. & Thiene, G. Arrhythmogenic right ventricular cardiomyopathy/dysplasia: Clinical impact of molecular genetic
studies. Circulation 113(13), 1634-1637 (2006).

McKenna, W. J. & Judge, D. P. Epidemiology of the inherited cardiomyopathies. Nat. Rev. Cardiol. 18(1), 22-36 (2021).
Marrone, D,, et al., History of the discovery of Arrhythmogenic Cardiomyopathy: The history of arrhythmogenic cardiomyopathy
(AC) is a paradigm in the progress of Cardiovascular Medicine knowledge, from nosology to diagnosis, treatment, and prevention.
In this review, we focus on the discovery of this heart muscle disease at the beginning of Modern Medicine, something you cannot
find on the Internet or PubMed. 2019, Oxford University Press.

Basso, C. et al. Arrhythmogenic right ventricular cardiomyopathy. Lancet 373(9671), 1289-1300 (2009).

Sen-Chowdhry, S. et al. Arrhythmogenic right ventricular cardiomyopathy: Clinical presentation, diagnosis, and management.
Am. J. Med. 117(9), 685-695 (2004).

Corrado, D. et al. Spectrum of clinicopathologic manifestations of arrhythmogenic right ventricular cardiomyopathy/dysplasia:
a multicenter study. J. Am. Coll. Cardiol. 30(6), 1512-1520 (1997).

Towbin, J. A. et al. 2019 HRS expert consensus statement on evaluation, risk stratification, and management of arrhythmogenic
cardiomyopathy. Heart Rhythm 16(11), e301-¢372 (2019).

List, P.G. and D. CTNNA, Arrhythmogenic Right Ventricular Cardiomyopathy Panel. 2021.

Calabrese, F. et al. Arrhythmogenic right ventricular cardiomyopathy/dysplasia: Is there a role for viruses?. Cardiovasc. Pathol.
15(1), 11-17 (2006).

Taylor, M. et al. Genetic variation in titin in arrhythmogenic right ventricular cardiomyopathy-overlap syndromes. Circulation
124(8), 876-885 (2011).

Sen-Chowdhry, S., Syrris, P. & McKenna, W. J. Role of genetic analysis in the management of patients with arrhythmogenic right
ventricular dysplasia/cardiomyopathy. J. Am. Coll. Cardiol. 50(19), 1813-1821 (2007).

Brun, E ef al. Titin and desmosomal genes in the natural history of arrhythmogenic right ventricular cardiomyopathy. J. Med.
Genet. 51(10), 669-676 (2014).

Chen, Z. et al. Characterization of TTN novex splicing variants across species and the role of RBM20 in novex-specific exon
splicing. Genes 9(2), 86 (2018).

Savarese, M. et al. Increasing role of titin mutations in neuromuscular disorders. J. Neuromuscul. Dis. 3(3), 293-308 (2016).
Martinez, J. A. et al. Calpain and caspase processing of caspase-12 contribute to the ER stress-induced cell death pathway in
differentiated PC12 cells. Apoptosis 15(12), 1480-1493 (2010).

Ji, X. Y. et al. Sustained over-expression of calpain-2 induces age-dependent dilated cardiomyopathy in mice through aberrant
autophagy. Acta Pharmacol. Sin. 43(11), 2873-2884 (2022).

Kartkaya, K. et al. Protective effect of calpain inhibitor N-acetyl-L-leucyl-L-leucyl-L-norleucinal on acute alcohol consumption
related cardiomyopathy. Mol. Biol. Rep. 41(10), 6743-6753 (2014).

Scientific Reports |

(2024) 14:5313 |

https://doi.org/10.1038/s41598-024-56154-7 nature portfolio



www.nature.com/scientificreports/

129.

130.

131.

132.

133.

134.

135.
136.

137.
138.
139.
140.
141.
142.

143.

144.
145.

146.

147.

148.

149.

150.

151.

152.

153.

154.

155.

156.
157.

158.

159.

160.

161.

162.

163.

164.

165.

166.

167.

168.

169.

170.

Ng, R., et al., Patient mutations linked to arrhythmogenic cardiomyopathy enhance calpain-mediated desmoplakin degradation.
JCI Insight, 2019. 5(14).

Ni, R. et al. Mitochondrial calpain-1 disrupts ATP synthase and induces superoxide generation in type 1 diabetic hearts: A novel
mechanism contributing to diabetic cardiomyopathy. Diabetes 65(1), 255-268 (2016).

Zuo, S. et al. CRTH2 promotes endoplasmic reticulum stress-induced cardiomyocyte apoptosis through m-calpain. EMBO Mol.
Med. 10(3), e8237 (2018).

Willis, M. S. et al. Muscle ring finger 1 and muscle ring finger 2 are necessary but functionally redundant during developmental
cardiac growth and regulate E2F1-mediated gene expression in vivo. Cell Biochem. Funct. 32(1), 39-50 (2014).

Su, M. et al. Rare variants in genes encoding MuRF1 and MuRF2 are modifiers of hypertrophic cardiomyopathy. Int. J. Mol. Sci.
15(6), 9302-9313 (2014).

Gilbert, C. J., Longenecker, J. Z. & Accornero, E ERK1/2: An integrator of signals that alters cardiac homeostasis and growth.
Biology (Basel) 10(4), 346 (2021).

Gallo, S. et al. ERK: A key player in the pathophysiology of cardiac hypertrophy. Int. J. Mol. Sci. 20(9), 2164 (2019).

Mutlak, M. & Kehat, I. Extracellular signal-regulated kinases 1/2 as regulators of cardiac hypertrophy. Front. Pharmacol. 6, 149
(2015).

Bueno, O. E et al. The MEK1-ERK1/2 signaling pathway promotes compensated cardiac hypertrophy in transgenic mice. EMBO
J.19(23), 6341-6350 (2000).

Heineke, J. & Molkentin, J. D. Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat. Rev. Mol. Cell Biol.
7(8), 589-600 (2006).

Wilkins, B. J. & Molkentin, J. D. Calcium-calcineurin signaling in the regulation of cardiac hypertrophy. Biochem. Biophys. Res.
Commun. 322(4), 1178-1191 (2004).

Bourajjaj, M. et al. NFATc2 is a necessary mediator of calcineurin-dependent cardiac hypertrophy and heart failure. J. Biol.
Chem. 283(32), 22295-22303 (2008).

He, X. et al. Cardiac CIP protein regulates dystrophic cardiomyopathy. Mol. Ther. 30(2), 898-914 (2022).

Kura, B. et al. Oxidative Stress-Responsive MicroRNAs in Heart Injury. Int ] Mol Sci 21(1), 358 (2020).

Windpassinger, C. et al. An X-linked myopathy with postural muscle atrophy and generalized hypertrophy, termed XMPMA,
is caused by mutations in FHL1. Am. J. Hum. Genet. 82(1), 88-99 (2008).

Liang, Y. et al. Four and a half LIM domain protein signaling and cardiomyopathy. Biophys. Rev. 10(4), 1073-1085 (2018).
Chu, P. H. et al. Expression patterns of FHL/SLIM family members suggest important functional roles in skeletal muscle and
cardiovascular system. Mech. Dev. 95(1-2), 259-265 (2000).

Schessl, J. et al. Clinical, histological and genetic characterization of reducing body myopathy caused by mutations in FHL1.
Brain 132(Pt 2), 452-464 (2009).

Selcen, D. et al. Reducing bodies and myofibrillar myopathy features in FHL1 muscular dystrophy. Neurology 77(22), 1951-1959
(2011).

San Roman, I. et al. Unclassifiable arrhythmic cardiomyopathy associated with Emery-Dreifuss caused by a mutation in FHLI.
Clin. Genet. 90(2), 171-176 (2016).

Bang, M. L. et al. The muscle ankyrin repeat proteins CARP, Ankrd2, and DARP are not essential for normal cardiac develop-
ment and function at basal conditions and in response to pressure overload. PLoS One 9(4), €93638 (2014).

Aihara, Y. et al. Doxorubicin represses CARP gene transcription through the generation of oxidative stress in neonatal rat cardiac
myocytes: Possible role of serine/threonine kinase-dependent pathways. J. Mol. Cell Cardiol. 32(8), 1401-1414 (2000).

Wei, Y. J. et al. Upregulated expression of cardiac ankyrin repeat protein in human failing hearts due to arrhythmogenic right
ventricular cardiomyopathy. Eur. J. Heart Fail. 11(6), 559-566 (2009).

Zolk, O. et al. Cardiac ankyrin repeat protein, a negative regulator of cardiac gene expression, is augmented in human heart
failure. Biochem. Biophys. Res. Commun. 293(5), 1377-1382 (2002).

Duboscq-Bidot, L. et al. Mutations in the ANKRD1 gene encoding CARP are responsible for human dilated cardiomyopathy.
Eur. Heart J. 30(17), 2128-2136 (2009).

Moulik, M. et al. ANKRDI, the gene encoding cardiac ankyrin repeat protein, is a novel dilated cardiomyopathy gene. J. Am.
Coll. Cardiol. 54(4), 325-333 (2009).

Kuo, H. et al. Control of segmental expression of the cardiac-restricted ankyrin repeat protein gene by distinct regulatory
pathways in murine cardiogenesis. Development 126(19), 4223-4234 (1999).

Marsh, T. & Debnath, J. Autophagy suppresses breast cancer metastasis by degrading NBR1. Autophagy 16(6), 1164-1165 (2020).
Bogomolovas, J. et al. Induction of Ankrd1 in dilated cardiomyopathy correlates with the heart failure progression. Biomed. Res.
Int. 2015, 273936 (2015).

Harris, M. P. et al. Perinatal versus adult loss of ULK1 and ULK2 distinctly influences cardiac autophagy and function. Autophagy
18(9), 2161-2177 (2022).

Radke, M. H. et al. Deleting full length titin versus the Titin M-band region leads to differential mechanosignaling and cardiac
phenotypes. Circulation 139(15), 1813-1827 (2019).

Parlakian, A. et al. Temporally controlled onset of dilated cardiomyopathy through disruption of the SRF gene in adult heart.
Circulation 112(19), 2930-2939 (2005).

Miano, J. M. Serum response factor: Toggling between disparate programs of gene expression. J. Mol. Cell. Cardiol. 35(6), 577-593
(2003).

Kuwahara, K. et al. Myocardin-related transcription factor A is a common mediator of mechanical stress-and neurohumoral
stimulation-induced cardiac hypertrophic signaling leading to activation of brain natriuretic peptide gene expression. Mol. Cell.
Biol. 30(17), 4134-4148 (2010).

Knoll, R., Hoshijima, M. & Chien, K. Cardiac mechanotransduction and implications for heart disease. J. Mol. Med. (Berl) 81(12),
750-756 (2003).

Arber, S. et al. MLP-deficient mice exhibit a disruption of cardiac cytoarchitectural organization, dilated cardiomyopathy, and
heart failure. Cell 88(3), 393-403 (1997).

Ehler, E. & Perriard, J. C. Cardiomyocyte cytoskeleton and myofibrillogenesis in healthy and diseased heart. Heart Fail. Rev.
5(3), 259-269 (2000).

Geier, C. et al. Beyond the sarcomere: CSRP3 mutations cause hypertrophic cardiomyopathy. Hum. Mol. Genet. 17(18), 2753-
2765 (2008).

Karsai, A., Kellermayer, M. S. & Harris, S. P. Mechanical unfolding of cardiac myosin binding protein-C by atomic force micros-
copy. Biophys. J. 101(8), 1968-1977 (2011).

Maron, B. J., Maron, M. S. & Semsarian, C. Genetics of hypertrophic cardiomyopathy after 20 years: Clinical perspectives. J.
Am. Coll. Cardiol. 60(8), 705-715 (2012).

Harris, S. P. et al. Hypertrophic cardiomyopathy in cardiac myosin binding protein-C knockout mice. Circ. Res. 90(5), 594-601
(2002).

Agarkova, I. & Perriard, J.-C. The M-band: An elastic web that crosslinks thick filaments in the center of the sarcomere. Trends
Cell Biol. 15(9), 477-485 (2005).

Scientific Reports |

(2024) 14:5313 |

https://doi.org/10.1038/s41598-024-56154-7 nature portfolio



www.nature.com/scientificreports/

171.

172.

173.

174.

175.

176.

177.

178.

179.
180.

181.

182.

183.

184.

185.

186.

187.

188.

189.

190.

191.

192.

193.

194.
195.

196.

197.

198.

199.
200.

202.

203.

204.

205.
206.

207.

208.

209.
210.

212.
213.
214.

215.

Forleo, C. et al. Targeted next-generation sequencing detects novel gene-phenotype associations and expands the mutational
spectrum in cardiomyopathies. PLoS One 12(7), €0181842 (2017).

Lange, S. et al. Obscurin and KCTDG6 regulate cullin-dependent small ankyrin-1 (sAnk1.5) protein turnover. Mol. Biol. Cell
23(13), 2490-504 (2012).

Krishnamoorthy, S. et al. A novel phosphopeptide microarray based interactome map in breast cancer cells reveals phospho-
protein-GRB2 cell signaling networks. PLoS One 8(6), €67634 (2013).

Vatta, M. et al. Mutations in Cypher/ZASP in patients with dilated cardiomyopathy and left ventricular non-compaction. J. Am.
Coll. Cardiol. 42(11), 2014-2027 (2003).

Hoshijima, M. Mechanical stress-strain sensors embedded in cardiac cytoskeleton: Z disk, titin, and associated structures. Am.
J. Physiol. Heart Circ. Physiol. 290(4), H1313-H1325 (2006).

Pylayeva-Gupta, Y., Grabocka, E. & Bar-Sagi, D. RAS oncogenes: Weaving a tumorigenic web. Nat. Rev. Cancer 11(11), 761-774
(2011).

Sussman, M. A. et al. Altered focal adhesion regulation correlates with cardiomyopathy in mice expressing constitutively active
racl. J. Clin. Invest. 105(7), 875-886 (2000).

Yamaguchi, K. et al. A spin correction procedure for unrestricted Hartree-Fock and Meller-Plesset wavefunctions for singlet
diradicals and polyradicals. Chem. Phys. Lett. 149(5-6), 537-542 (1988).

Wellbrock, C. & Hurlstone, A. BRAF as therapeutic target in melanoma. Biochem. Pharmacol. 80(5), 561-567 (2010).

Harris, L. S. et al. Raf-1 kinase is required for cardiac hypertrophy and cardiomyocyte survival in response to pressure overload.
Circulation 110(6), 718-723 (2004).

Haywood, N. J. et al. Hypertrophic cardiomyopathy mutations in the calponin-homology domain of ACTN2 affect actin binding
and cardiomyocyte Z-disc incorporation. Biochem. J. 473(16), 2485-2493 (2016).

Girolami, . et al. Novel alpha-actinin 2 variant associated with familial hypertrophic cardiomyopathy and juvenile atrial arrhyth-
mias: A massively parallel sequencing study. Circ. Cardiovasc. Genet. 7(6), 741-750 (2014).

Prondzynski, M. et al. Disease modeling of a mutation in alpha-actinin 2 guides clinical therapy in hypertrophic cardiomyopathy.
EMBO Mol. Med. 11(12), 11115 (2019).

Chiu, C. et al. Mutations in alpha-actinin-2 cause hypertrophic cardiomyopathy: A genome-wide analysis. . Am. Coll. Cardiol.
55(11), 1127-1135 (2010).

Maiweilidan, Y., Klauza, I. & Kordeli, E. Novel interactions of ankyrins-G at the costameres: The muscle-specific Obscurin/
Titin-Binding-related Domain (OTBD) binds plectin and filamin C. Exp. Cell Res. 317(6), 724-736 (2011).

Song, S. et al. Filamin C in cardiomyopathy: From physiological roles to DNA variants. Heart Fail. Rev. 27(4), 1373-1385 (2022).
Bang, M. L. & Chen, J. Roles of nebulin family members in the heart. Circ. J. 79(10), 2081-2087 (2015).

Voelkel, T. & Linke, W. A. Conformation-regulated mechanosensory control via titin domains in cardiac muscle. Pflugers Arch.
462(1), 143-154 (2011).

Sheikh, E. et al. An FHL1-containing complex within the cardiomyocyte sarcomere mediates hypertrophic biomechanical stress
responses in mice. J. Clin. Invest. 118(12), 3870-3880 (2008).

El-Bizri, N. et al. Abstract 13402: FHL-1 contributes to and colocalizes with titin in cardiac hypertrophy. Circulation
142(Suppl_3), A13402-A13402 (2020).

Lange, S. et al. The kinase domain of titin controls muscle gene expression and protein turnover. Science 308(5728), 1599-1603
(2005).

Bogomolovas, J. et al. Titin kinase ubiquitination aligns autophagy receptors with mechanical signals in the sarcomere. EMBO
Rep. 22(10), 48018 (2021).

Bogomolovas, J. et al. Titin kinase is an inactive pseudokinase scaffold that supports MuRF1 recruitment to the sarcomeric
M-line. Open Biol. 4(5), 140041 (2014).

Yang, K., et al., Clinical efficacy and safety of atorvastatin for chronic subdural hematoma: A randomized controlled trial.
Campuzano, O. et al. Rare titin (TTN) variants in diseases associated with sudden cardiac death. Int. J. Mol. Sci. 16(10),
25773-25787 (2015).

Evila, A. et al. Targeted next-generation sequencing reveals novel TTN mutations causing recessive distal titinopathy. Mol.
Neurobiol. 54(9), 7212-7223 (2017).

Lahrouchi, N. et al. Utility of post-mortem genetic testing in cases of sudden arrhythmic death syndrome. J. Am. Coll. Cardiol.
69(17), 2134-2145 (2017).

Hackman, P. et al. Tibial muscular dystrophy is a titinopathy caused by mutations in TTN, the gene encoding the giant skeletal-
muscle protein titin. Am. J. Hum. Genet. 71(3), 492-500 (2002).

Herman, D. S. et al. Truncations of titin causing dilated cardiomyopathy. New Engl. J. Med. 366(7), 619-628 (2012).

Krenn, M. et al. Genotype-guided diagnostic reassessment after exome sequencing in neuromuscular disorders: Experiences
with a two-step approach. Eur. J. Neurol. 27(1), 51-61 (2020).

Harris, E. et al. A ‘second truncation’in TTN causes early onset recessive muscular dystrophy. Neuromusc. Disord. 27(11),
1009-1017 (2017).

Roberts, A. M. et al. Integrated allelic, transcriptional, and phenomic dissection of the cardiac effects of titin truncations in
health and disease. Sci. Transl. Med. 7(270), 270ra6 (2015).

Schultze-Berndt, A. et al. Reduced systolic function and not genetic variants determine outcome in pediatric and adult left
ventricular noncompaction cardiomyopathy. Front. Pediatr. 9, 722926 (2021).

Chauveau, C. et al. Recessive TTN truncating mutations define novel forms of core myopathy with heart disease. Hum. Mol.
Genet. 23(4), 980-991 (2014).

Haas, J. et al. Atlas of the clinical genetics of human dilated cardiomyopathy. Eur. Heart J. 36(18), 1123-1135 (2015).

De Cid, R. et al. A new titinopathy: Childhood-juvenile onset Emery-Dreifuss-like phenotype without cardiomyopathy. Neurol-
ogy 85(24), 2126-2135 (2015).

Deo, R. C. Alternative splicing, internal promoter, nonsense-mediated decay, or all three: explaining the distribution of trunca-
tion variants in titin. Circ. Cardiovasc. Genet. 9(5), 419-425 (2016).

Mukhtar, M.M. and M.A. Salih, C-Terminal Titin Deletions Cause a Novel Early-Onset Myopathy with Fatal Cardiomyopathy.
2007, University of Khartoum.

Savarese, M. et al. Genotype-phenotype correlations in recessive titinopathies. Genet. Med. 22(12), 2029-2040 (2020).
Ceyhan-Birsoy, O. et al. Recessive truncating titin gene, TTN, mutations presenting as centronuclear myopathy. Neurology
81(14), 1205-1214 (2013).

Fattori, F. et al. Centronuclear myopathies: genotype-phenotype correlation and frequency of defined genetic forms in an Italian
cohort. J. Neurol. 262(7), 1728-1740 (2015).

Hackman, P, et al., Salih myopathy. 2019.

Evila, A. et al. Atypical phenotypes in titinopathies explained by second titin mutations. Ann. Neurol. 75(2), 230-240 (2014).
Witting, N., et al., Phenotypes, genotypes, and prevalence of congenital myopathies older than 5 years in Denmark. Neurology
Genetics, 2017. 3(2).

Rich, K. A. et al. Novel heterozygous truncating titin variants affecting the A-band are associated with cardiomyopathy and
myopathy/muscular dystrophy. Mol. Genet. Genomic. Med. 8(10), 1460 (2020).

Scientific Reports |

(2024) 14:5313 |

https://doi.org/10.1038/s41598-024-56154-7 nature portfolio



www.nature.com/scientificreports/

216.

217.

218.

219.

220.

221.

222.

223.

224.

225.

226.

227.

228.

229.
230.

231.
232.

233.

234.

235.
236.

237.

238.

239.

240.
241.

242.

243.

244.

245.

246.

247.

248.

249.

250.

251.

252.

253.

254.

255.

256.

257.

258.

Hackman, P. et al. Truncating mutations in C-terminal titin may cause more severe tibial muscular dystrophy (TMD). Neuro-
muscul. Disord. 18(12), 922-928 (2008).

Marschall, C., Moscu-Gregor, A. & Klein, H. G. Variant panorama in 1,385 index patients and sensitivity of expanded next-
generation sequencing panels in arrhythmogenic disorders. Cardiovasc. Diagn. Ther. 9(Suppl 2), S292-5298 (2019).
Laquerriere, A. et al. Mutations in CNTNAP1 and ADCY6 are responsible for severe arthrogryposis multiplex congenita with
axoglial defects. Hum. Mol. Genet. 23(9), 2279-2289 (2014).

Enriquez, A. et al. Substrate characterization and outcomes of ventricular tachycardia ablation in TTN (Titin) cardiomyopathy:
A multicenter study. Circ. Arrhythm. Electrophysiol. 14(9), €010006 (2021).

Peri¢, S. et al. A novel recessive TTN founder variant is a common cause of distal myopathy in the Serbian population. Eur. J.
Hum. Genet. 25(5), 572-581 (2017).

Haskell, G. T. et al. Whole exome sequencing identifies truncating variants in nuclear envelope genes in patients with cardio-
vascular disease. Circ. Cardiovasc. Genet. 10(3), 001443 (2017).

Nykamp, K. et al. Sherloc: A comprehensive refinement of the ACMG-AMP variant classification criteria. Genet. Med. 19(10),
1105-1117 (2017).

Dalin, M. G. et al. Massive parallel sequencing questions the pathogenic role of missense variants in dilated cardiomyopathy.
Int. J. Cardiol. 228, 742-748 (2017).

Walsh, R. et al. Reassessment of Mendelian gene pathogenicity using 7,855 cardiomyopathy cases and 60,706 reference samples.
Genet. Med. 19(2), 192-203 (2017).

Choi, S. H. et al. Association between titin loss-of-function variants and early-onset atrial fibrillation. Jama 320(22), 2354-2364
(2018).

Taylor, M. et al. Genetic variation in titin in arrhythmogenic right ventricular cardiomyopathy-overlap syndromes. Circulation
124(8), 876-885 (2011).

Ware, J. S. et al. Shared genetic predisposition in peripartum and dilated cardiomyopathies. N. Engl. J. Med. 374(3), 233-241
(2016).

Gigli, M. et al. Genetic risk of arrhythmic phenotypes in patients with dilated cardiomyopathy. J. Am. Coll. Cardiol. 74(11),
1480-1490 (2019).

Goli, R. et al. Genetic and phenotypic landscape of peripartum cardiomyopathy. Circulation 143(19), 1852-1862 (2021).

Sevy, A. et al. Improving molecular diagnosis of distal myopathies by targeted next-generation sequencing. J. Neurol. Neurosurg.
Psychiatry 87(3), 340-342 (2016).

Pfeffer, G. and P.E. Chinnery, Hereditary myopathy with early respiratory failure. GeneReviews®[Internet], 2020.

Augusto, J. B. et al. Dilated cardiomyopathy and arrhythmogenic left ventricular cardiomyopathy: A comprehensive genotype-
imaging phenotype study. Eur. Heart J. Cardiovasc. Imaging 21(3), 326-336 (2020).

van Waning, J. L et al. Genetics, clinical features, and long-term outcome of noncompaction cardiomyopathy. J. Am. Coll. Cardiol.
71(7), 711-722 (2018).

Norton, N. et al. Exome sequencing and genome-wide linkage analysis in 17 families illustrate the complex contribution of TTN
truncating variants to dilated cardiomyopathy. Circ. Cardiovasc. Genet. 6(2), 144-153 (2013).

Cowan, J. R. et al. SOS1 gain-of-function variants in dilated cardiomyopathy. Circ. Genom. Precis. Med. 13(4), €002892 (2020).
Kostareva, A. et al. Genetic spectrum of idiopathic restrictive cardiomyopathy uncovered by next-generation sequencing. PLoS
One 11(9), 0163362 (2016).

Song, J. S. et al. Identification of pathogenic variants in genes related to channelopathy and cardiomyopathy in Korean sudden
cardiac arrest survivors. J. Hum. Genet. 62(6), 615-620 (2017).

Gerull, B. et al. Identification of a novel frameshift mutation in the giant muscle filament titin in a large Australian family with
dilated cardiomyopathy. . Mol. Med. (Berl) 84(6), 478-483 (2006).

Verdonschot, J. A. J. et al. Implications of genetic testing in dilated cardiomyopathy. Circ. Genom. Precis. Med. 13(5), 476-487
(2020).

Herkert, J.C., Paediatric cardiomyopathies: an evolving landscape of genetic aetiology and diagnostic applications. 2019.

Vissing, C. R. et al. Dilated cardiomyopathy caused by truncating titin variants: Long-term outcomes, arrhythmias, response to
treatment and sex differences. J. Med. Genet. 58(12), 832-841 (2021).

Morales, A. et al. Variant interpretation for dilated cardiomyopathy: Refinement of the american college of medical genetics and
genomics/clingen guidelines for the DCM precision medicine study. Circ. Genom. Precis. Med. 13(2), €002480 (2020).
Akinrinade, O. et al. Genetics and genotype-phenotype correlations in Finnish patients with dilated cardiomyopathy. Eur. Heart
J. 36(34), 2327-2337 (2015).

Klauke, B. et al. High proportion of genetic cases in patients with advanced cardiomyopathy including a novel homozygous
Plakophilin 2-gene mutation. PLoS One 12(12), 0189489 (2017).

Franaszczyk, M. et al. Titin truncating variants in dilated cardiomyopathy-prevalence and genotype-phenotype correlations.
PLoS One 12(1), 0169007 (2017).

Kuhnisch, J. et al. Targeted panel sequencing in pediatric primary cardiomyopathy supports a critical role of TNNI3. Clin. Genet.
96(6), 549-559 (2019).

Hancks, D. C. & Kazazian, H. H. Jr. Active human retrotransposons: Variation and disease. Curr. Opin. Genet. Dev. 22(3), 191-203
(2012).

Chami, N. et al. Nonsense mutations in BAG3 are associated with early-onset dilated cardiomyopathy in French Canadians.
Can. J. Cardiol. 30(12), 16551661 (2014).

Al-Shamsi, A. et al. Whole exome sequencing diagnosis of inborn errors of metabolism and other disorders in United Arab
Emirates. Orphanet. ]. Rare Dis. 11(1), 94 (2016).

LaDuca, H. et al. Exome sequencing covers >98% of mutations identified on targeted next generation sequencing panels. PLoS
One 12(2), 0170843 (2017).

Anderson, J. L. et al. Discovery of TITIN Gene truncating variant mutations and 5-Year outcomes in patients with nonischemic
dilated cardiomyopathy. Am. J. Cardiol. 137, 97-102 (2020).

Cuenca, S. et al. Genetic basis of familial dilated cardiomyopathy patients undergoing heart transplantation. J. Heart Lung
Transplant 35(5), 625-635 (2016).

Kolokotronis, K. et al. New insights on genetic diagnostics in cardiomyopathy and arrhythmia patients gained by stepwise exome
data analysis. J. Clin. Med. 9(7), 2168 (2020).

Minoche, A. E. et al. Genome sequencing as a first-line genetic test in familial dilated cardiomyopathy. Genet. Med. 21(3),
650-662 (2019).

Fokstuen, S. et al. Experience of a multidisciplinary task force with exome sequencing for Mendelian disorders. Hum. Genomics
10(1), 24 (2016).

Campuzano Larrea, O. et al. Post-mortem genetic analysis in juvenile cases of sudden cardiac death. Forensic Sci. Int. 245, 30-37
(2014).

van Lint, F. H. M. et al. Large next-generation sequencing gene panels in genetic heart disease: Yield of pathogenic variants and
variants of unknown significance. Neth. Heart J. 27(6), 304-309 (2019).

Yang, Y. et al. Molecular findings among patients referred for clinical whole-exome sequencing. Jama 312(18), 1870-1879 (2014).

Scientific Reports |

(2024) 14:5313 |

https://doi.org/10.1038/s41598-024-56154-7 nature portfolio



www.nature.com/scientificreports/

259. Mazzarotto, E et al. Reevaluating the genetic contribution of monogenic dilated cardiomyopathy. Circulation 141(5), 387-398
(2020).

260. Cowan, J. R. et al. Multigenic disease and bilineal inheritance in dilated cardiomyopathy is illustrated in nonsegregating LMNA
pedigrees. Circ. Genomic Precis. Med. 11(7), €002038 (2018).

261. Brown, E. E. et al. Genetic dilated cardiomyopathy due to TTN variants without known familial disease. Circ. Genomic Precis.
Med. 13(6), 003082 (2020).

262. Ceyhan-Birsoy, O. et al. Next generation sequencing-based copy number analysis reveals low prevalence of deletions and
duplications in 46 genes associated with genetic cardiomyopathies. Mol. Genet. Genomic Med. 4(2), 143-151 (2016).

263. Peat, R. A. et al. Diagnosis and etiology of congenital muscular dystrophy. Neurology 71(5), 312-321 (2008).

264. Lu, C. et al. Molecular analysis of inherited cardiomyopathy using next generation semiconductor sequencing technologies. J.
Transl. Med. 16(1), 241 (2018).

265. Bryen, S.J. et al. Recurrent TTN metatranscript-only ¢.39974-11T>G splice variant associated with autosomal recessive arthro-
gryposis multiplex congenita and myopathy. Hum. Mutat. 41(2), 403-411 (2020).

266. Cummings, B. B. et al. Improving genetic diagnosis in Mendelian disease with transcriptome sequencing. Sci. Transl. Med.
9(386), eaal5209 (2017).

267. Hershberger, R.E., Exome Sequencing and Genome-Wide Linkage Analysis in 17 Families Illustrates the Complex Contribution of
TTN Truncating Variants to Dilated Cardiomyopathy.

268. Hazebroek, M. R. et al. Prevalence of pathogenic gene mutations and prognosis do not differ in isolated left ventricular dysfunc-
tion compared with dilated cardiomyopathy. Circ. Heart Fail. 11(3), €004682 (2018).

269. Hoorntje, E. T. et al. The first titin (¢.59926 + 1G > A) founder mutation associated with dilated cardiomyopathy. Eur. J. Heart
Fail. 20(4), 803-806 (2018).

270. Miszalski-Jamka, K. et al. Novel genetic triggers and genotype-phenotype correlations in patients with left ventricular noncom-
paction. Circ. Cardiovasc. Genet. 10(4), e001763 (2017).

271. Fan, L. L. et al. Whole-exome sequencing reveals doubly novel heterozygous Myosin Binding Protein C and Titin mutations in
a Chinese patient with severe dilated cardiomyopathy. Cardiol. Young 28(12), 1410-1414 (2018).

272. TJansweijer, J. A. et al. Truncating titin mutations are associated with a mild and treatable form of dilated cardiomyopathy. Eur.
J. Heart Fail. 19(4), 512-521 (2017).

273. Wu, L. et al. Next-generation sequencing to diagnose muscular dystrophy, rhabdomyolysis, and HyperCKemia. Can. J. Neurol.
Sci. 45(3), 262-268 (2018).

274. Yavarna, T. et al. High diagnostic yield of clinical exome sequencing in Middle Eastern patients with Mendelian disorders. Hurm.
Genet. 134(9), 967-980 (2015).

275. Tester, D. . et al. Cardiac genetic predisposition in sudden infant death syndrome. J. Am. Coll. Cardiol. 71(11), 1217-1227 (2018).

276. Carnevale, A. et al. Genomic study of dilated cardiomyopathy in a group of Mexican patients using site-directed next generation
sequencing. Mol. Genet. Genomic. Med. 8(11), 1504 (2020).

277. Cambon-Viala, M. et al. Phenotype/genotype relationship in left ventricular noncompaction: Ion channel gene mutations are
associated with preserved left ventricular systolic function and biventricular noncompaction: Phenotype/genotype of noncom-
paction. J. Card. Fail. 27(6), 677-681 (2021).

278. Bell, C.]. et al. Carrier testing for severe childhood recessive diseases by next-generation sequencing. Sci. Transl. Med. 3(65),
65ra4 (2011).

279. Willsey, A.J. et al. De Novo coding variants are strongly associated with tourette disorder. Neuron 94(3), 486-499 9 (2017).

280. Arimura, T. et al. Cardiac ankyrin repeat protein gene (ANKRD1) mutations in hypertrophic cardiomyopathy. J. Am. College
Cardiol. 54(4), 334-342 (2009).

281. Liu,J. S. et al. Whole-exome sequencing identifies two novel TTN mutations in Chinese families with dilated cardiomyopathy.
Cardiology 136(1), 10-14 (2017).

282. Posey, ]. E. et al. Resolution of disease phenotypes resulting from multilocus genomic variation. N. Engl. J. Med. 376(1), 21-31
(2017).

283. Golbus, J. R. et al. Targeted analysis of whole genome sequence data to diagnose genetic cardiomyopathy. Circ. Cardiovasc. Genet.
7(6), 751-759 (2014).

284. Campuzano, O. et al. Post-mortem genetic analysis in juvenile cases of sudden cardiac death. Forensic Sci. Int. 245, 30-37 (2014).

285. Gerull, B. et al. Mutations of TTN, encoding the giant muscle filament titin, cause familial dilated cardiomyopathy. Nat. Genet.
30(2), 201-204 (2002).

286. Hastings, R. et al. Combination of whole genome sequencing, linkage, and functional studies implicates a missense mutation
in titin as a cause of autosomal dominant cardiomyopathy with features of left ventricular noncompaction. Circ. Cardiovasc.
Genet. 9(5), 426-435 (2016).

Acknowledgements

We appreciate the support from Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research
Center, Iran University of Medical Sciences, Tehran, Iran.

Author contributions

AG,

E.K. and S.K. wrote the initial manuscript. S.K., M.M., A.F,, and M.H. contributed to the research design.

S.K. made a comprehensive revise. S.G.H., M.H., M.H.M., and N.N. contributed to the collection of data. All
the authors read and approved the final manuscript.

Funding

This research received no specific grant from any funding agency, commercial or not-for-profit sectors.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to S.K.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Scientific Reports |

(2024) 14:5313 |

https://doi.org/10.1038/s41598-024-56154-7 nature portfolio


www.nature.com/reprints

www.nature.com/scientificreports/

Open Access This article is licensed under a Creative Commons Attribution 4.0 International

License, which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

Scientific Reports|  (2024) 14:5313 | https://doi.org/10.1038/s41598-024-56154-7 nature portfolio


http://creativecommons.org/licenses/by/4.0/

	Exploring TTN variants as genetic insights into cardiomyopathy pathogenesis and potential emerging clues to molecular mechanisms in cardiomyopathies
	Method and materials
	Systematic search, selection criteria and data collection
	Variant annotation and pathogenicity assessment
	ACMG score
	CADD score
	MutationTaster
	GERP

	Data integration
	Statistical analysis
	Ethical considerations

	Results
	The molecular structure of titin
	Z-disk
	I-band
	A-band
	M-band

	The molecular function of titin
	Comparative analysis of TTN variants
	The biogenesis pathways of TTN
	Role of alternative splicing
	I-band and its isoforms in cardiac compliance and DCM
	Novex variants and tiny titin results alternative splicing
	Splicing regulation of alternative splicing

	The role of TTN variants in cardiomyopathies
	Dilated cardiomyopathy
	Hypertrophic cardiomyopathy
	Restrictive cardiomyopathy
	Arrhythmogenic right ventricular cardiomyopathy (ARVC)

	Other muscle disorders
	Frequent TTN-related molecules in cardiomyopathies
	Calpain
	MuRF12
	ERK
	NFAT
	FHL12
	MARP
	Nbr1
	SRF
	MLP
	MyBP-C
	Myomesin
	Sh2 domain
	Ras
	Raf
	Alpha actinin
	Filamin C
	Nebulin

	Mechanosensory signaling mechanism of titin
	Z disk region
	N2-B region
	M-band region

	The hotspot region for TTN variants

	Discussion
	References
	Acknowledgements


