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Incorporating high‑frequency 
information into edge convolution 
for link prediction in complex 
networks
Zhiwei Zhang *, Haifeng Xu  & Guangliang Zhu 

Link prediction in complex networks aims to mine hidden or to‑be‑generated links between network 
nodes, which plays a significant role in fields such as the cold start of recommendation systems, 
knowledge graph completion and biomedical experiments. The existing link prediction models 
based on graph neural networks, such as graph convolution neural networks, often only learn the 
low‑frequency information reflecting the common characteristics of nodes while ignoring the high‑
frequency information reflecting the differences between nodes when learning node representation, 
which makes the corresponding link prediction models show over smoothness and poor performance. 
Focusing on links in complex networks, this paper proposes an edge convolutional graph neural 
network EdgeConvHiF that fuses high‑frequency node information to achieve the representation 
learning of links so that link prediction can be realized by implementing the classification of 
links. EdgeConvHiF can also be employed as a baseline, and extensive experiments on real‑world 
benchmarks validate that EdgeConvHiF not only has high stability but also has more advantages than 
the existing representative baselines.

Numerous systems in nature and society can be characterized as complex  networks1–3, such as World Wide Web, 
social networks, and biological networks, in which nodes represent entities and the connections between them are 
represented as edges or links (In this article, complex networks are depicted as graphs, with the terms ‘edge’ and 
‘link’ being used interchangeably to signify the connections or relationships between nodes within the network. 
Furthermore, the terms ‘graph’ and ‘network’ both represent the same structural concept and are not differenti-
ated in the context of this paper). Unfortunately, due to noise disturbance during graph data collection, we often 
lose several links between some nodes. In addition, complex networks themselves often evolve dynamically over 
time, and new links are often connected between some nodes. Fortunately, the technique of link prediction in 
complex networks aims to discover hidden or future links between network nodes, including the prediction of 
unobserved links, i.e., links that actually exist in a network but have not yet been detected, and the prediction 
of future links , i.e., links that do not exist in the network at present but should exist or are likely to exist in the 
 future3–9. Link prediction, serving as an abstraction for numerous widespread issues, can be utilized in any sys-
tem that transforms entities and their relationships into a network representation. This approach can enhance 
the effectiveness of biomedical experiments and can also be employed for completing knowledge  graphs2,3,10.

In the biomedical field, whether there is a link between proteins needs to be inferred through a large number 
of expensive experiments. Taking the protein interaction network as an example, 80% of yeast protein interactions 
are still unknown, while only 0.3% of human interactions are known. However, if we design an accurate link 
prediction model based on the known network structure in advance, the predicted results can better improve the 
success rate of these experiments and reduce the experimental  cost10–13. Link prediction also has an important 
application value for social network reorganization and structure function optimization. For example, based on 
the idea and method of link prediction, the category of unlabeled user nodes is predicted in the network where 
some node categories are known to judge whether a mobile phone user will change the communication opera-
tor. Citation networks, which are variants of social networks, are composed of references and cited relationships 
between literatures, contain research achievements in multiple fields and represent a considerable knowledge 
treasure in academia. Through link prediction techniques, researchers can easily obtain academic achievements 
that are most relevant to their own research content and closely track the latest scientific development  trends13,14.
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Graph neural networks (GNNs) implement graph deep learning technology, effectively learning node repre-
sentations from complex networks and enhancing the performance of GNN-based link prediction models. Node 
representations in complex networks typically contain both low-frequency information, which represents shared 
node characteristics, and high-frequency information, which highlights node differences. However, existing 
GNNs tend to focus on low-frequency information, such as in the case of the representative graph convolutional 
network. By neglecting the high-frequency information in node representation, these GNNs produce similar or 
even indistinguishable node representations as the model’s depth increases, leading to a decrease in the perfor-
mance of corresponding graph mining tasks.

To address the aforementioned issues, Shi et al. proposed fusing high-frequency and low-frequency informa-
tion in node  representation15 and obtained good model performance. Inspired by Shi et al.15 and based on our 
previous  work3, this paper integrates the high-frequency information in the node representation of complex 
networks into the edge convolution graph neural network we have previously proposed, which focuses on the 
learning of link representation in complex networks rather than the learning of node representation, indirectly 
realizing link prediction through link binary classification.

Thus, two main contributions of this paper are as follows:

• We propose a complex network edge convolution operation by fusing high-frequency information in node 
representation, and construct an Edge Convolutional Network with High Frequency Information (EdgeCon‑
vHiF) for link prediction in complex networks.

• When building the EdgeConvHiF model, the normalization strategy of link representation is also introduced, 
which can better enhance the stability of the model.

This paper is structured as follows: section “Related works” presents an overview of the literature related to the 
topic under consideration. Section “Edge convolution based link prediction framework” describes the edge 
convolution-based approach to link prediction, which includes the fundamental concepts, edge convolution, 
extraction and fusion of high- and low-frequency information, and the construction of the link prediction 
model. In section “Experiments and discussion”, the experiments conducted to validate the proposed approach 
are presented and analyzed. Finally, the concluding remarks and potential avenues for future research are dis-
cussed in the last section.

Related works
The core of GNN-based link prediction models lies in the construction and training of GNNs. Thus, in this sec-
tion we will cover graph representation learning and GNN construction related to the issue of link prediction.

Representation learning based link prediction
The primary objective of graph representation learning is to preserve the maximum amount of topological infor-
mation when converting network nodes into vector representations. Graph representation learning is mainly 
divided into structure-based representation learning and feature-based representation learning. Structure-based 
representation learning only comes from the graph topological structure, that is, the graph structure represented 
by a two-dimensional adjacency matrix. However, feature-based representation learning contains both the topo-
logical and the corresponding feature information, such as the category of nodes and clustering coefficients.

Structure-based graph representation learning defines two structurally similar nodes in a graph as proxim-
ity, and our goal is to expect the learned node representation vector to be near in the vector space when it is 
approaching the graph. The DeepWalk random walk algorithm, introduced by Bryan and his  team16, stands out 
as a key method in graph representation learning. The fundamental concept is to project the nodes’ relationships 
and structural characteristics into a new vector space, where nodes that are proximate in the graph also have 
closer proximity in the transformed vector space. Thus the graph data are converted into data in a vector space 
through such optimization goals, which lays a good foundation for the subsequent graph mining tasks, such as 
link prediction. Grover and his  colleagues17 developed node2vec by generalizing DeepWalk in a wider context. 
This approach emphasizes community structure and node importance information, respectively. However, the 
LINE proposed by Tang et al. intuitively does not employ the random walk  strategy18, but both LINE and Deep-
Walk apply the probability loss function, that is, minimization of the empirical probability of node connections 
and the node similarity distance after vectorization, and consider the first- and second-order similarity, which 
is similar to the internal motivation of the random walk strategy. Given that the aforementioned structure-
based graph representation learning solely derives node representations from the graph topology, neglecting the 
nodes’ inherent attributes, the link prediction performance in certain intricate networks, particularly in social 
networks, is poor.

Fortunately, because the feature matrix of nodes is added to feature-based graph representation learning, the 
GNNs can more accurately obtain the representation of nodes so as to providing better support for the down-
stream tasks of graph mining. Thomas Kipf et al. proposed a Graph Convolutional Neural Network(GCN), the 
most representative feature-based GNN, to perform the semisupervised classification task of nodes in graph 
structured  data19, which is modeled as a first-order approximation of spectral convolution and performs param-
eterized message passing operations in graphs. However, the GCN is essentially a low-pass filter so that it can-
not effectively learn the high-frequency information in the graph. Then, William et al. presented an inductive 
framework  GraphSAGE20 that leverages node attribute information to efficiently generate representations on 
previously unobserved data, which is characterized by a fixed sampling rate and different aggregation methods 
compared with the GCN, rather than a single hard aggregation neighbor node representation of the GCN. Better 
yet, Bengio et al. proposed GAT 21, which combines adjacent nodes using the attention mechanism to dynamically 
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assign varying weights to different neighbors, thereby significantly enhancing the representational capacity of the 
GNN model. In a nutshell, prevailing graph neural networks typically focus on learning low-frequency informa-
tion from network nodes, while the acquisition of high-frequency graph data still requires further reinforcement.

Graph neural network based methods
In contrast to conventional link prediction approaches, GNN-based link prediction initially utilizes a graph 
neural network to learn node representations, followed by performing relevant operations on the representations 
of a node pair, such as the Hadamard product, to yield specific outcomes. Subsequently, a classifier is applied to 
these results to ascertain the presence of a link between the given node pair. Kumar et al. have offered an extensive 
review of link prediction techniques, their applications, and performance, allowing readers to obtain more in-
depth information from the cited  literature22. Moreover, in our previous work on GNN-based link prediction for 
complex networks, we concentrated on link representation learning and developed an edge convolution operation 
to facilitate link representation  learning3. We have also incorporated a normalization strategy for the learned 
link representation in order to improve the model stability within the edge convolution-based link prediction 
model. This is achieved by constructing the link prediction graph neural network EdgeConvNorm using a series 
of stacked edge convolution operations. Regrettably, EdgeConvNorm also falls short in learning and utilizing 
high-frequency information in network node representation. To address this shortcoming, we aim to further 
enhance EdgeConvNorm  by incorporating both high-frequency and low-frequency data into the link prediction 
edge convolution operations, specifically, the EdgeConvHiF proposed in this paper.

Edge convolution based link prediction framework
In this section, we initially present the relevant background information on link prediction. Subsequently, we 
will derive the edge convolutional operations incorporating high-frequency graph information in a step-by-
step manner. Lastly, we provide an overview of the link prediction framework based on the edge convolution 
introduced in this paper.

Preliminaries
Notations and symbols
To describe and explain the link prediction-related issues more clearly, the notations and symbols employed in 
this paper are listed in Table 1.

Link prediction
Given a graph G = (V ,E ) with node set V , observed link set E and the corresponding universal link set 
U , link prediction predicts whether there is a link between two nodes vi and vj ( vi , vj ⊆ V ) according to the 
known structure and attributes of G . Formally, GNN-based link prediction can be illustrated by the following 
procedure. First, the observed link set E is divided into the training set E T and validation set E P , while E 
serve as test dataset (Intuitively, based on specific requirements, the test set can also be assembled by selecting a 
designated number of edges at random from U ) to evaluate the link prediction model performance. Obviously, 
E

T ∩ E
P = ∅ , E T ∪ E

P = E , and E = U − E . Then, a GNN model M learns on E T and validates on E P 
to accomplish the training task. Finally, the corresponding link prediction performance evaluation measures, 

Table 1.  Notations and symbols and their illustration employed in this paper.

Notations and symbols Illustration

G = (V ,E ) G indicates a graph, and V and E represent the node set and edge set of G , respectively

A A represents the adjacent matrix of G

n = |V | The amount of nodes in G

In An identity matrix with n elements

Dn×n The degree matrix of G with n× n elements, and Dij =
∑n−1

j=0 Aij

E = |E | The amount of edges in G

V = {v1, v2, . . . , vn} vi depicts the i-th node in G

E = {e1, e2, . . . , en} ⊆ V ×V ei represents the i-th edge in G

X = {x1, x2, . . . , xn} X indicates the representation matrix of G , while xi illustrates the representation of the i-th node in G

Xlo ,Xhi Xlo and Xhi represent the low-frequency and high-frequency information, respectively

eij The link between node vi and vj
N(i) The neighbors of node vi

U = V ×V
U represents the universal edge set consisting of n ∗ (n− 1)/2 in undirected graphs or n ∗ (n− 1) in 
directed graphs

E = U − E E represents the unobserved links in G

hi hi represents the embedding or representation of node i

hli hli represents the embedding or representation of node i in the l-th layer of a GNN

hhii , h
lo
i hhii  and hloi  represent the high- and low-frequency information of node i, respectively
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such as AUC (Area Under the Receiver Operating Characteristic Curve), are applied to the learned model M 
on the test dataset for performance evaluation.

Edge convolution with high frequency information
To our knowledge and based on prior research, the edge convolution model EdgeConv was initially introduced 
by Wang et al.23 and was used for point cloud learning, as depicted in Eq. 1.

where both � and � are linear layers in EdgeConv. Although EdgeConv has achieved excellent performance on 
the point cloud of dynamic graphs with relatively dense structures in Euler space, its performance is not ideal in 
networks with relatively sparse structures, especially in social networks with strong sparsity. As illustrated  in23, 
EdgeConv, in multi-layer systems, effectively captures semantic attributes across potentially extensive distances 
in the original embedding, while also accurately preserving the point cloud’s topological structure. Thus, inspired 
by Wang et al.23, we have made corresponding improvements to EdgeConv to make it better adapt to networks 
such as the citation network  in3. The corresponding improvements to the edge convolution of EdgeConv are 
shown in Eq. 2.

For computing manipulation and simple purposes, we further deduce Eq. 2 as Eq. 3.

where || represents the concatenate manipulation of node representation. Thus, the representation of edge eij 
can be learned from Eq. 4.

The explanation and deduction of Eqs. 2–4 were detailed in our previous  work3, and the complete EdgeConvNorm 
model for link prediction based on edge convolution is available for readers to acquire.

Regrettably, in the process of learning link representation, both EdgeConv and EdgeConvNorm exclusively 
focus on low-frequency information, which captures the shared attributes of nodes, while neglecting the high-
frequency information that highlights node differences. Consequently, it is a natural idea to incorporate both 
high- and low-frequency information in node representation, which can improve node representation learning 
and ultimately lead to better performance for the link prediction model.

Motivated by the idea of beyond low-frequency information in GCNs presented by Shi et al.15, this paper 
builds upon and refines the approach for extracting and integrating high- and low-frequency information in 
node representation.

Extraction of high‑ and low‑frequency information
We simply employ the high-pass and low-pass filters proposed by Shi et al.15 to accomplish the extraction of high- 
and low-frequency information in node representation. Correspondingly, the low-pass filter Flo and high-pass 
filter Fhi

15 are shown in Eqs. 5 and 6, respectively.

where α is a hyperparameter. Consequently, the low-frequency information Xlo and high-frequency information 
Xhi of G15 can be obtained by Eqs. 7 and 8, respectively.

where U = {u1, u2, . . . , un} is a set of orthogonal eigenvectors, while � = diag([�1, �2, . . . , �n]) is the correspond-
ing eigenvalue. These are derived from A ’s standard Laplacian matrix, i.e., L = In − D−1/2AD−1/2 = U�UT . 
Thus, we can obtain the X i

lo and the X i
hi in xi , i.e., the i-th node representation.

Node representation aggregation combining high‑ and low‑frequency information
Different from the traditional graph neural network node representation aggregation scheme that directly aggre-
gates neighbor nodes, the aggregation of node representations that fuse high- and low-frequency information 
needs to consider the respective proportion of high- and low-frequency information in neighbor node represen-
tations. Intuitively, the attention mechanism that can adaptively perceive the weight of high- and low-frequency 
information in neighbor representation is employed in this paper. The weight wij

lo and wij
hi for nodes aggregating 

are shown in Eqs. 9 and 10, respectively.

(1)h
(l+1)
i = max

j∈N(i)
ReLU(� · (h

(l)
j − h

(l)
i )+� · h

(l)
i )

(2)h
(l+1)
i = mean

j∈N(i)
LeakyReLU(� · h

(l)
j +� · h

(l)
i )

(3)h
(l+1)
i = mean

j∈N(i)
LeakyReLU(� · (h

(l)
j || h

(l)
i ))

(4)h(l+1)
eij

= (h
(l+1)
i || h

(l+1)
j )

(5)Flo =αIn + D−1/2AD−1/2

(6)Fhi =αIn − D−1/2AD−1/2

(7)Xlo =(Flo ⋆X )G = U[(α + 1)In −�]UT
X

(8)Xhi =(Fhi ⋆X )G = U[(α − 1)In +�]UT
X
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thus, combing the situation of Eqs. 2 and 3, the representation h(l)i  of node vi can be manipulated by Eq. 11. And 
the intuitive and visual description of this process can refer to the illustrative example in Fig. 1.

Accordingly, we further obtain the representation of edge eij through Eqs. 3 and 4, as shown in Eq. 12.

Link representation normalization
We further investigate the impact of transformation manipulations in GNN layers on the performance of link 
prediction models. As highlighted by Zhou et al.24 and Zhang et al.3, the performance of GNNs deteriorates and 
experiences rapid fluctuations with increasing network depth, suggesting a growing problem of training instabil-
ity. Current regularization methods, such as Dropout, as mentioned in Zhou et al.24, cannot effectively address 
these issues. Drawing inspiration from Zhou et al.24 and our previous  work3, we propose an edge representation 
normalization technique named EdgeNorm. This method employs its own mean µ(l)

eij  and standard deviation σ (l)
eij  , 

as demonstrated in Eqs. 13 and 14, respectively.

where dl is the edge representation vector dimension; therefore, the strategy EdgeNorm is given in Eq. 15.

where µ(l)
eij  and σ (l)

eij  represent the elementwise mean and deviation of edge eij demonstrated in Eqs. 13 and 14, 
respectively. Consequently, an EdgeConvHiF layer, combined with EdgeNorm and a residual connection, results 
in Eq. 16.

(9)w
ij
lo =softmaxj(X

eij
lo ) =

exp(X
eij
lo )

∑
k∈N(i) exp(X

eik
lo )

(10)w
ij
hi =softmaxj(X

eij
hi ) =

exp(X
eij
hi )∑

k∈N(i) exp(X
eik
hi )

(11)h
(l)
i = w

ij
lo((Flo ⋆X )G )i + w

ij
hi((Fhi ⋆X )G )i + h

(l−1)
i

(12)
h(l)eij =((wim

lo ((Flo ⋆X )G )i + wim
hi ((Fhi ⋆X )G )i + h

(l−1)
i ) ||

(w
jk
lo ((Flo ⋆X )G )j + w

jk
hi((Fhi ⋆X )G )j + h

(l−1)
j ))

(13)µ(l)
eij

=
1

dl

dl−1∑

k=0

h
(l)
eijk

(14)σ (l)
eij

=

√
√
√
√ 1

dl

dl−1∑

k=0

(h
(l)
eijk

− µ
(l)
eij )

(15)EdgeNorm(h(l)eij ) =
h
(l)
eij − µ

(l)
eij

σ
(l)
eij

(16)h(l+1)
eij

= LeakyReLU(EdgeNorm(h(l)eij ))+ h(l)eij

Figure 1.  A GNN framework based on edge convolution, designed for link prediction in complex networks 
and named EdgeConvHiF, combines both high- and low-frequency information. It should be noted that this 
article only uses the representation aggregation and transformation process of node v1 to illustrate how to fuse 
the high- and low-frequency graph information of nodes for node representation learning, and this process 
corresponds to Eq. 11, as illustrated in red box. Other nodes follow the same aggregation and transformation 
process.
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Thankfully, incorporating the EdgeConvHiF layer into a widely-used deep graph learning framework is straight-
forward (In this paper, we utilize pytorch_geometric to implement EdgeConvHiF for link prediction within 
complex networks). Components like binary_cross_entropy_with_logits are employed to estimate the model 
performance.

Link prediction framework
In this section, we outline the construction of a comprehensive framework for link prediction in complex net-
works, which incorporates the EdgeConvHiF and a binary classifier called sigmoid, as depicted in Fig. 1. We 
start by developing the EdgeConvHiF for link representation learning by stacking the edge convolutional lay-
ers, as indicated in Eq. 16. Following this, we employ a binary classifier, sigmoid, on the Hadamard product 
of two node representations acquired from the learned link representation through Eq. 17, resulting in a link 
predictor as expressed in Eq. 18. Lastly, to improve and optimize the EdgeConvHiF’s performance, we apply the 
binary_cross_entropy_with_logits loss function from the pytorch_geometric. The complete procedure described 
above can be observed in Fig. 1.

where Extractor can extract the representations of vi and vj from the eij , while ⊗ denotes the Hadamard product 
manipulation. Moreover, f (vi , vj) is a binary classifier sigmoid, which can decide whether there is a connection 
between vi and vj.

Experiments and discussion
To thoroughly assess the performance of  EdgeConvHiF, we adhere to the experimental framework outlined in 
our prior  research3. We conduct extensive experiments across various datasets and compare the results to dif-
ferent baseline methods. We first present the experimental settings, benchmark datasets, baseline techniques, 
and performance evaluation metrics relevant to the experiment. Subsequently, we examine the experimental 
outcomes to scrutinize the stability and reliability of EdgeConvHiF.

Settings
The experimental settings in this article are as follows. Workstation Server: Dell T640, Operating System: Cen-
tOS-7-x86_64-DVD-1611, GPU: Tesla V100s, CUDA: 10.2, Python 3.7, PyTorch 1.11, and torch_geometric 2.1.

Datasets
Three distinct and popular benchmark datasets are utilized as described by Zhang et al.3, namely Cora, CiteSeer, 
and  PubMed25–27. These datasets pertain to academic citation networks where nodes symbolize documents and 
edges signify citation relationships. Besides, each document is associated with a label and possesses a specific set 
of features. Without loss of generality, we employ a ratio of 0.7, 0.2 and 0.1 to split each benchmark dataset for 
model training, validation and testing, respectively. The fundamental statistics for these datasets can be found 
in Table 2.

Baselines
We assess the performance of EdgeConvHiF by comparing it to cutting-edge GNNs, such as  GCN19, GAT 28, 
 EdgeConv29 and  EdgeConvNorm3. It is worth noting that the GNNs used are solely for learning network node 
representations, and link prediction in complex networks can only be accomplished after adding the same sigmoid 
classifier employed for EdgeConvHiF. A concise overview of these GNNs is provided below.

• GCN19. As one of the most representative GNNs, the GCN’s core idea is that the central node learns its new 
representation by ‘hard’ aggregating the representations of its neighbors without considering the differences 
between nodes. While GCN has demonstrated outstanding performance in a variety of graph mining tasks, 
including node classification and link prediction.

• GAT 28. Fortunately, compared with the GCN, GAT employs a ’soft’ aggregation approach for neighbor node 
representations in order to learn the central node representation, meaning that each neighboring node is 
assigned a weight based on its importance. Therefore, GAT can be regarded as a variant of GCN.

(17)hi , hj =Extractor(heij )

(18)f (vi , vj) =sigmod(hi ⊗ hj)

Table 2.  Benchmark dataset statistics. In accordance with the experimental configurations described  in25–27, 
we solely consider the largest connected components for our experiments.

Dataset #Nodes #Links #Classes #Features

Cora 2708 5429 7 1433

CiteSeer 3327 4732 6 3703

PubMed 19,717 44,338 3 500
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• EdgeConv29. What makes EdgeConv unique, compared to the GCN and its variants, is that it learns the 
representation of edge-associated nodes at the same time and has a better performance in the field of dense 
point cloud data.

• EdgeConvNorm3. To enable EdgeConv to achieve better performance in sparse and complex networks, 
EdgeConvNorm improves the edge convolution strategy, introduces the edge representation normalization 
strategy and obtains better link prediction performance than EdgConv. However, since the high-frequency 
representation information is not taken into account, there is still much room for improvement in its link 
prediction performance.

Evaluation indicator
The AUC is a widely recognized metric for evaluating the performance of link prediction models. It is employed 
by various traditional models like Jaccard30 and HPI31, as well as GNN-based methods such as EdgeConvNorm3 
and SEAL32. It is important to highlight that the AUC demonstrates the balance between the true positive rate 
( TPR = TP/(TP + FN) ) and the false positive rate ( FPR = FP/(FP + TN) ). Thankfully, the AUPR (Area Under 
the Precision-Recall Curve) acts as a complement to AUC. This is particularly relevant because AUC might not 
be optimal when there is a significant imbalance between the positive and negative classes, and AUPR adjusts 
for this issue. Moreover, AUPR is valuable when our focus leans more toward the positive class over the negative 
class. The PR curve illustrates precision ( TP/(TP + FP) ) against recall ( FP/(TP + FN) ), and therefore, AUPR 
represents the area under this PR curve. In this research, the evaluation of performance for EdgeConvHiF relies 
on AUC and AUPR as metrics, while other metrics will be explored in future investigations. We run each model 
10 times and present the mean value and associated standard error of AUC and AUPR as the final results, as 
demonstrated in Eqs. 19 and 20 for AUC, respectively. And AUPR follows the same strategy as mentioned above.

where n = 10 , and AUCi indicates the best result of the i-th run of the corresponding model listed in section 
“Baselines”.

Experimental results and discussion
The experimental configurations are described as follows: a learning rate of 0.001, 256 hidden channels, 256 
output channels, 5000 epochs, and 10 runs. The models, including GCN, GAT , EdgeConv, EdgeConvNorm and 
EdgeConvHiF, are implemented using torch_geometric in an identical hardware and software environment. Addi-
tionally, a Dropout layer is incorporated into each model, with a probability p of 0.6 for both Cora and CiteSeer, 
and 0.7 for PubMed. The amount of heads for GAT is set to 1. The best comparative experimental results for all 
models are presented in Tables 3 and 4. Moreover, for the purpose of better assisting readers in observing and 
understanding the experimental results, the graphical representations corresponding to the experimental results 
in Tables 3 and 4 are shown in Figures 2 and 3, respectively.

From the information presented in Tables 3 and 4, as well as the visual representations in Figs. 2 and 3, we 
can make the subsequent observations. 

(1) In this paper, the proposed EdgeConvHiF model surpasses its predecessors, EdgeConv and EdgeConvNorm, 
in performance on benchmark datasets such as Cora, CiteSeer, and PubMed. This improvement is attributed 
to the edge convolutional manipulations that merge high- and low-frequency graph information. Taking 
into account the findings from  reference3 and the varied performance of different Dropout probabilities 
depicted in Fig. 4, it can be stated that incorporating high- and low-frequency information in edge convo-

(19)AUC =
1

n

n∑

i=1

AUCi

(20)σAUC =

√∑n
i=1(AUCi − AUC)2

n

Table 3.  The experimental outcomes are obtained from various baseline methods on distinct benchmarks, 
based on the metric of AUC. It is important to mention that we reference the results from  Reference3 for all 
models, with the exception of EdgeConvHiF. Significant values are in [bold].

Dataset

Model

GCN GAT EdgeConv EdgeConvNorm EdgeConvHiF

Cora
Val. 0.9089 ± 0.0022 0.9043 ± 0.0047 0.8759 ± 0.0069 0.9231 ± 0.0119 0.9371 ± 0.0028

Test 0.9050 ± 0.0026 0.8979 ± 0.0019 0.8528 ± 0.0082 0.9178 ± 0.0088 0.9298 ± 0.0016

Citeseer
Val. 0.8816 ± 0.0045 0.8808 ± 0.0052 0.8174 ± 0.0060 0.8896 ± 0.0080 0.9027 ± 0.0008

Test 0.8701 ± 0.0039 0.8731 ± 0.0037 0.8294 ± 0.0084 0.8754 ± 0.0066 0.8978 ± 0.0018

Pubmed
Val. 0.9708 ± 0.0006 0.9436 ± 0.0012 0.8675 ± 0.0026 0.8930 ± 0.0066 0.9104 ± 0.0026

Test 0.9694 ± 0.0004 0.9436 ± 0.0006 0.8665 ± 0.0018 0.8911 ± 0.0025 0.9328 ± 0.0013



8

Vol:.(1234567890)

Scientific Reports |         (2024) 14:5437  | https://doi.org/10.1038/s41598-024-56144-9

www.nature.com/scientificreports/

Figure 2.  The mean AUC obtained from various baseline methods on distinct benchmarks, where val. 
represents the validation dataset and Test indicates the dataset for test.

Table 4.  The experimental consequences are obtained from various baseline methods on distinct benchmarks, 
based on the metric of AUPR. Significant values are in [bold].

Dataset

Model

GCN GAT EdgeConv EdgeConvNorm EdgeConvHiF

Cora
Val. 0.8905 ±0.0102 0.8893 ± 0.0016 0.8402 ± 0.0117 0.8547 ± 0.0079 0.8479 ± 0.0012

Test 0.8863 ± 0.0106 0.8725 ± 0.0027 0.8613 ± 0.0049 0.8401 ± 0.0104 0.8315 ± 0.0027

Citeseer
Val. 0.8103 ± 0.0106 0.8464 ± 0.0031 0.8107 ± 0.0046 0.8352 ± 0.0117 0.8537 ± 0.0015

Test 0.8021 ± 0.0026 0.8371 ± 0.0025 0.8035 ± 0.0109 0.8147 ± 0.0037 0.8491 ±  0.0038

Pubmed
Val. 0.8764 ± 0.0043 0.8907 ± 0.0039 0.8320 ± 0.0019 0.8571 ± 0.0021 0.8635 ± 0.0048

Test 0.8429 ± 0.0037 0.8526 ± 0.0074 0.8173 ± 0.0047 0.8362 ± 0.0011 0.8593 ± 0.0071

Figure 3.  The mean AUPR obtained from various baseline methods on distinct benchmarks, where val. 
represents the validation dataset and Test indicates the dataset for test.
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lution along with the normalization strategy results in a more stable link prediction model performance. 
This, in turn, enhances the learning and smoothing of link representations.

(2) Although the performance of EdgeConvHiF is not significantly improved compared with these of the classic 
GCN and even GAT, as a benchmark, it has higher performance and stronger stability than its predeces-
sors, EdgeConv and EdgeConvNorm, especially on Cora and CiteSeer. In addition, the performance of 
EdgeConvHiF is only slightly lower than that of GCN. The main explanations for the aforementioned issues 
are summarized as follows.

• Large-scale networks, such as PubMed, typically exhibit lower community modularity and network 
density, as outlined in  Reference3. The network density of PubMed is 0.00023, which is considerably 
lower than that of Cora, which has a network density of 0.00148. Even though the EdgeConvHiF method 
effectively integrates both low-frequency and high-frequency information from neighboring node rep-
resentations using specific weights for learning link representations, it struggles to fully and efficiently 
learn the corresponding link representations due to PubMed’s high sparsity and scale-free nature.

• Moreover, as indicated in Table 2, PubMed has only 500 features, in contrast to Cora and CiteSeer. Fur-
thermore, while PubMed is substantially larger in size compared to both Cora and CiteSeer, the limited 
number of features hinders the EdgeConvHiF method’s ability to effectively learn link representations 
from the PubMed dataset.

• Additionally, the low AUPR values presented in Table 4 once again confirm the sparsity of PubMed and 
the imbalance between positive and negative classes. It is worth noting that although the AUPR values 
presented in Table 4 are generally lower than the corresponding AUC values in Table 3, the test results 
of different baselines on different datasets have little fluctuation and are relatively stable, thus once again 
demonstrating the stability of the EdgeConvHiF proposed in this article.

(3) Thankfully, the performance of EdgeConvHiF is stable, the AUC values are all above 89% and the AUPR val-
ues are all above 85%, and no any instability phenomenon occurs. Although the GCN and GAT have good 
link prediction performance on medium-scale networks, they are more suitable for large-scale networks 
such as PubMed. However, EdgeConvHiF performs well in networks with different scales and features.

Model stability
To our knowledge, Dropout can randomly deactivate certain neurons within the graph neural network during the 
EdgeConvHiF training process. Naturally, the associated weights will not be updated during this time, but they 
will be temporarily stored and used for subsequent training. This approach enhances the model’s generalization 
capabilities while mitigating the issue of overfitting.

To further investigate the stability of EdgeConvHiF, we adopted the same scenario described in  References3,33, 
wherein the probability p of Dropout varies from 0.1 to 0.9 in increments of 0.1. As AUPR is a supplement to 
AUC, this article only uses the metric of AUC to evaluate the stability of the model EdgeConvHiF. Subsequently, 
the corresponding AUCs were analyzed to assess the stability of EdgeConvHiF. As seen in Fig. 4c,d and Table 5, 
excluding the case of p = 0.9 , the mean AUC of different baselines for the three benchmark datasets in Table 2 
changes gradually, with a gap of nearly 0.04. This indicates that under the influence of varying neuron dropout 
rates, changes in p have minimal impact on EdgeConvHiF’s performance, demonstrating the model’s stability 
and robustness.

Additionally, by examining the experimental results of EdgeConvHiF presented in Fig. 4a,b and the mean 
AUC with standard error shown in Table 5, the model achieves an AUC greater than 0.89, which is 0.03 higher 
than that of EdgeConvNorm, with small standard errors. The AUC change trend of EdgeConvHiF is smoother 
compared to EdgeConvNorm.

Table 5.  An AUC comparison was carried out on both validation and test datasets with varying Dropout 
probabilities. The terms Val. and Test refer to the validation and test dataset, respectively. Significant values are 
in [bold].

Dataset Cora CiteSeer PubMed

 P Val. Test Val. Test Val. Test

0.1 0.8956 ± 0.0032 0.8901 ± 0.0103 0.8623 ± 0.0127 0.8703 ± 0.0124 0.9048± 0.0005 0.8962 ± 0.0016

0.2 0.8964 ± 0.0003 0.8847± 0.0015 0.8714 ± 0.0089 0.8698 ± 0.0071 0.8996± 0.0011 0.8956 ± 0.0024

0.3 0.9025 ± 0.0073 0.9101 ± 0.0031 0.8729 ± 0.0074 0.8788 ± 0.0042 0.8932± 0.0023 0.8947 ± 0.0006

0.4 0.9171± 0.0059 0.9084± 0.0012 0.8814±0.0015 0.8803±0.0027 0.8977±0.0006 0.8995±0.0015

0.5 0.9238± 0.0038 0.9192± 0.0037 0.8931±0.0131 0.8874±0.0081 0.8962±0.0033 0.8968±0.0012

0.6 0.9371± 0.0028 0.9298± 0.0016 0.9027±0.0008 0.8978±0.0018 0.9097±0.0021 0.8994±0.0070

0.7 0.9184± 0.0107 0.8103±0.0107 0.9001±0.0094 0.8852±0.0047 0.9104±0.0026 0.9328± 0.0013

0.8 0.8941±0.0123 0.8874±0.0102 0.8524±0.0122 0.8493±0.0055 0.9024±0.0003 0.9120±0.0032

0.9 0.8362±0.0079 0.8247±0.0139 0.8101±0.0161 0.8092±0.0093 0.8518±0.0027 0.8633±0.0012
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However, in the case of p = 0.9 , both the average AUC and the corresponding standard error are reduced. This 
can be mainly attributed to the increased value of p resulting in fewer neurons being retained in EdgeConvHiF for 
learning link representations, leading to suboptimal link prediction performance and unsatisfactory outcomes.

Conclusions
In this study, we introduce a link prediction framework called EdgeConvHiF, which is based on edge convolution 
and combines both high- and low-frequency information. Additionally, the framework incorporates a link rep-
resentation normalization strategy to optimize EdgeConvHiF’s performance. The process begins with extracting 
high- and low-frequency information from node representations, followed by using an attention mechanism to 
merge this information for learning link representations. Following that, representations of nodes are obtained 
from the link representation, and a binary classifier, sigmoid, is employed on the Hadamard products of these 
representations to assess the existence of a link between nodes. Comprehensive experiments conducted on 
benchmarks demonstrate that EdgeConvHiF exhibits strong performance and holds benefits over current base-
line approaches.

Nonetheless, there are at least two areas that warrant further enhancement. Firstly, although AUC and AUPR 
are widely-employed metric , as exemplified by those  in30,32, it is crucial to investigate alternative metrics, such 
as accuracy and F-value. Secondly, to thoroughly assess EdgeConvHiF’s stability and applicability, it is necessary 
to test the method on large-scale, dynamic, and heterogeneous networks. Our future work will be dedicated to 
addressing these concerns and refining the approach accordingly.

Data availability
Data will be made available on request, and Z. Zhang can be contacted to obtain the data.
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