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Thermal fault diagnosis of complex 
electrical equipment based 
on infrared image recognition
Zongbu Tang 1* & Xuan Jian 2

This paper realizes infrared image denoising, recognition, and semantic segmentation for complex 
electrical equipment and proposes a thermal fault diagnosis method that incorporates temperature 
differences. We introduce a deformable convolution module into the Denoising Convolutional Neural 
Network (DeDn-CNN) and propose an image denoising algorithm based on this improved network. 
By replacing Gaussian wrap-around filtering with anisotropic diffusion filtering, we suggest an 
image enhancement algorithm that employs Weighted Guided Filtering (WGF) with an enhanced 
Single-Scale Retinex (Ani-SSR) technique to prevent strong edge halos. Furthermore, we propose 
a refined detection algorithm for electrical equipment that builds upon an improved RetinaNet. 
This algorithm incorporates a rotating rectangular frame and an attention module, addressing the 
challenge of precise detection in scenarios where electrical equipment is densely arranged or tilted. 
We also introduce a thermal fault diagnosis approach that combines temperature differences with 
DeeplabV3 + semantic segmentation. The improved RetinaNet’s recognition results are fed into the 
DeeplabV3 + model to further segment structures prone to thermal faults. The accuracy of component 
recognition in this paper achieved 87.23%, 86.54%, and 90.91%, with respective false alarm rates of 
7.50%, 8.20%, and 7.89%. We propose a comprehensive method spanning from preprocessing through 
target recognition to thermal fault diagnosis for infrared images of complex electrical equipment, 
providing practical insights and robust solutions for future automation of electrical equipment 
inspections.

Keywords Complex electrical equipment, Thermal fault diagnosis, Infrared image, Temperature difference, 
Semantic segmentation, Refined detection

Substations serve as fundamental units within the power system, primarily responsible for the reception, trans-
formation, and distribution of electric energy. They house critical electrical equipment, including potential trans-
formers, current transformers, circuit breakers, and  switches1. The collective functioning and stable operation of 
this equipment are pivotal for ensuring the safety and reliability of power transmission. Most electrical equipment 
in substations is exposed to the outdoor environment, which subjects it to long-term degradation from harsh 
weather conditions, foreign object intrusion, frequent operation, and other factors, leading to rust, blockages, 
insulation degradation, or even equipment  failure2,3. Statistically, failures in essential electrical equipment, such 
as transformers and switches, are frequently characterized by abnormal heating phenomenon, including the cor-
rosion of the switches, poor contact of the circuit breakers, deterioration, and moisture of potential transformers, 
etc.4. Prompt and accurate detection of abnormal temperatures is vital for assessing the operational status of 
electrical equipment, playing a crucial role in maintaining the safety and stability of  substations5.

The acquisition of temperature information for substation electrical equipment largely depends on infrared 
thermography (IRT). Thanks to its non-contact nature, extensive temperature measurement range, and high 
efficiency, IRT is extensively employed in routine inspections, particularly for detecting temperatures in electri-
cal  equipment6,7. IRT operates by using sensors to measure the target’s thermal radiation power, which, after 
photoelectric conversion and signal processing and other means of processing, results in outputting a thermal 
spectrum that maps the temperature distribution of the equipment. This allows for early detection of abnormal 
temperature distributions, enabling timely maintenance or replacement to prevent accident  escalation8. Presently, 
operators continue to use handheld infrared thermal imagers for manual temperature recording or install them 
near significant power equipment for continuous  monitoring9.
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The daily inspection of power equipment generates a massive amount of infrared images. It remains necessary 
to manually assess whether the equipment exhibits temperature  abnormalities10. This method, only suitable for 
analyzing and diagnosing a limited number of image tasks, cannot cope with the detection of a large volume of 
infrared images. Moreover, the reliance of the human eye judgment on the experience of professionals may lead 
to fatigue, potentially resulting in diagnostic  errors11. Additionally, the often low resolution of infrared images 
further complicates manual  analysis12. Consequently, it is essential to develop automatic analysis algorithms for 
infrared images to ensure the reliable diagnosis of thermal faults in electrical equipment and to enhance the 
intelligence level of the power system.

A novel infrared image denoising algorithm for electrical equipment based on DeDn-CNN is proposed. This 
algorithm introduces a deformable convolution module that autonomously learns the noise feature informa-
tion in infrared images. An image enhancement method utilizing Weighted Guided Filtering (WGF) with an 
Anisotropic Single-Scale Retinex (Ani-SSR) is also proposed, which replaces Gaussian wrap-around filtering 
with anisotropic diffusion filtering to mitigate the issue of strong edge halos. The RetinaNet is augmented by 
incorporating a rotating rectangular frame and an attention module, and further enhanced by appending the 
Path Aggregation Network (PAN) to the Feature Pyramid Network (FPN) for improved bottom-up feature fusion. 
A thermal fault diagnosis method for electrical equipment based on the DeeplabV3 + semantic segmentation 
model is introduced, which leverages temperature differences for fault determination. This study proposes a 
comprehensive method ranging from preprocessing to recognition to thermal fault diagnosis of infrared images, 
offering practical insights and robust solutions for automating the infrared inspection of electrical equipment.

Infrared image preprocessing
Image denoising
Image denoising involves processing degraded images that contain noise to estimate the original image. Tra-
ditional Denoising Convolutional Neural Networks (Dn-CNN) use a fixed 3 × 3 convolutional kernel for noise 
feature extraction in images. However, Dn-CNN mainly learns noise information from images containing noise, 
without accommodating shape rules, which limits the effectiveness of feature extraction with a fixed-shape convo-
lutional  kernel13. To overcome this, a deformable convolution module is introduced to enhance the DeDn-CNN, 
which employs a deformable 3 × 3 convolution in place of the original convolution operation. The network’s first 
layer is modified from Conv + ReLU to Deform Conv + ReLU, and the last layer is changed from Conv to Deform 
Conv, as depicted in Fig. 1.

The deformable convolution module introduces an offset to the sampling points, as illustrated in Fig. 2. The 
top part generates the index offset by processing the input feature map through a regular convolution layer, 
while the bottom part convolves the input feature map with the corresponding kernel to produce the output 
feature  map14. The deformable convolution kernels are capable of adapting to the extraction of complex noise 
patterns in images.
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Image enhancement
The original infrared image is decomposed into two layers—basic and detail—using Weighted Guided Filtering 
(WGF). These layers are processed individually and then combined to produce the enhanced image. For the basic 
layer, which suffers from low contrast and poor quality, an improved SSR algorithm integrated with anisotropic 
diffusion filtering is employed to adjust the grayscale, enhancing dark regions in the image and improving overall 
contrast. For the detail layer, which contains numerous edge and texture features, an arctan nonlinear function 
is applied to emphasize these details without introducing additional noise.

Image layering based on weighted guided filtering
Traditional guided filtering applies a fixed regularization factor ε to each region of the image, which does not 
take into account the textural differences among various regions. To address this limitation, WGF introduces an 
edge weighting factor ΓG, allowing ε to be adaptively adjusted based on the degree of image smoothing, thereby 
enhancing the algorithm’s capability to preserve image  edges15. The edge weighting factor ΓG and the modified 
linear factor ak are defined in the following equation.

where δ2G,i(i) is the variance within the window wk of the image centered on pixel i, ΓG(i) is the use of the current 
window variance divided by the variance of all the windows in the whole image and then take the mean, N is the 
number of all the pixels, and L is the distribution range of the image grayscale  level16.

If the pixel is situated in a region of the image with sharp variations, the variance within the window centered 
around the pixel will be larger, causing the ΓG(i) to be greater than 1. This increase leads to a higher value of ak, 
which in turn better preserves edge details. In contrast, in smoother regions of the image, the ΓG(i) will likely be 
less than 1, resulting in a decrease in ak and a smoother output in the filtered image.

WGF is employed to process the input image, yielding a smoother base layer, and the detail layer image is 
obtained by subtracting this base layer from the original image, as illustrated in the following  equations17.

where p is the original image to be enhanced, q is the output basic layer after weighted guided filtering, O is 
the decomposed detail layer, and WGF is the operation of weighted guided filtering. The basic layer image is 
subsequently augmented by the improved SSR algorithm for subsequent enhancement. The detail layer O is 
processed by a nonlinear function to suppress the noise information in the image, and the expression is shown:

Ani‑SSR algorithm
According to Retinex theory, the illumination component of an image is relatively uniform and changes gradually. 
Single-Scale Retinex (SSR) typically uses Gaussian wrap-around filtering to extract low-frequency information 
from the original image as an approximation of the illumination component L(x, y). However, Gaussian wrap-
around filtering tends to skew the estimate of the illumination component at the strong edges of the image, often 
resulting in a pronounced halo effect around object edges in the enhanced  image18. As a solution, anisotropic 
diffusion filtering is utilized in place of Gaussian wrap-around filtering. This alternative approach provides a 
more accurate estimation of the illumination at image boundaries and reduces halo artifacts at strong edges. The 
anisotropic diffusion equation is presented below.

where A is the input grayscale image; t is the diffusion time; div is the dispersion operator; ∇ is the partial deriva-
tive i.e. gradient operator; Δ is the Laplace operator; c is the diffusion function, which controls the diffusion.

where k is the thermal conductivity coefficient, which controls the filtering sensitivity, the larger the value of k the 
smoother the image obtained, but at the same time the image details will become  blurred19. � • � is the norm for 
calculating the difference between predicted noise and true noise. Anisotropic diffusion filtering is used instead 
of Gaussian wrap-around filtering, which makes the estimation of the light component at the image boundary 
more accurate, and attenuates the halo at the strong edge part of the enhanced image.

Preprocessing results
Infrared temperature measurements were conducted using a Testo 875-1i thermal imaging camera at various 
substations in Northwest China. A total of 508 infrared images of complex electrical equipment, each with a 
pixel size of 320 × 240, were collected. Out of these, 457 were randomly selected as the training set after artificial 
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noise was added, and the remaining 51 images formed the test set. The DeDn-CNN was benchmarked against 
the Dn-CNN, NL-means20, wavelet  transform21, and Lazy  Snapping22 for denoising purposes, as shown in Fig. 3.

An analysis of Fig. 3 reveals that the NL-means and wavelet transform denoising effects are somewhat infe-
rior compared to Dn-CNN, with more residual noise remaining after NL-means processing and more severe 
image distortion. The infrared image denoised with Dn-CNN has fewer residual noise spots because Dn-CNN 
autonomously extracts more abstract feature information from the noise by learning the difference between 
the noise map and the clean map, rather than relying on manually summarized statistical noise properties. This 
allows it to better fit the noise distribution of the image. The DeDn-CNN achieves superior denoising results 
as it is better adapted to noise with chaotic distributions and irregular shapes during feature extraction, leaving 
the least amount of noise in the image post-denoising and attaining higher image fidelity. The average PSNR for 
NL-means, wavelet transform, Dn-CNN, and DeDn-CNN are 33.47, 34.82, 38.25, and 40.33, respectively, which 
further demonstrates that DeDn-CNN is more effective at removing noise from infrared images.

The Ani-SSR algorithm is compared with histogram equalization, the original SSR, and the bilateral filter 
 layering23, as depicted in Fig. 4. The original infrared image exhibits a low overall gray level, low contrast, 
and a suboptimal visual effect. Histogram equalization enhances the brightness and contrast of the image but 
results in a diminished range of gray levels and more significant degradation of image details. The original SSR 
enhancement of the infrared image leads to a pronounced halo effect, and a serious loss of texture, which hinders 
subsequent equipment recognition. The results from the bilateral filter indicate an issue of over-enhancement, 
causing the image to be overexposed and visually unappealing. In contrast, Ani-SSR successfully improves image 
contrast while preserving rich edge information and texture details. It overcomes the problem of halo effects 
in the original SSR, particularly at strong edges with drastic gradient changes, and provides superior overall 
enhancement of the infrared image of electrical equipment.

The average gradient (AG) is also used as an evaluation index for assessment, as shown in equation.

where Gi,j is the gradient value of the pixel at (i, j) in the image. The larger the AG, the richer the information of 
edge texture is represented, and the comparison of AG of each algorithm is shown in Table 1. From Table 1, it 
is evident that the original SSR achieves a lower Average Gradient (AG) due to its inability to adapt to regions 
with drastic edge changes, as it utilizes a Gaussian function during the enhancement process, resulting in the 
loss of image edges and texture details. The Ani-SSR, by preserving more image details while enhancing con-
trast, exhibits an improvement in the average gradient score compared to the other three algorithms, objectively 
demonstrating the effectiveness of the proposed algorithm in this paper.

Refined detection of complex electrical equipment
The single-stage target detection network,  RetinaNet24,25, has been improved to better suit the detection of 
electrical equipment, which often has a large aspect ratio, a tilt angle, and is densely arranged. The horizontal 
rectangular frame of the original RetinaNet has been altered to a rotating rectangular frame to accommodate 
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Figure 3.  Comparison of image denoising.
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the prediction of the tilt angle of the electrical equipment. Additionally, the Path Aggregation Network (PAN) 
module and an Attention module have been incorporated into the feature fusion stage of the original RetinaNet.

Original RetinaNet
Contemporary mainstream target detection networks fall into two categories: two-stage target detection algo-
rithms exemplified by Faster-RCNN and one-stage target detection algorithms such as the YOLO algorithms. 
The former relies on a Region Proposal Network (RPN), which introduces additional computational complexity, 
while the latter directly predicts the target classification confidence and location parameters through regression 
computation, typically with lower accuracy. RetinaNet employs the Focal Loss function to balance the weights of 
difficult and easy samples within the loss calculation, merging the benefits of both detection accuracy and  speed26.

RetinaNet comprises three components: the backbone, neck, and head, as illustrated in Fig. 5. The backbone 
is primarily responsible for feature extraction, often utilizing ResNet-101; the neck uses Feature Pyramid Net-
works (FPN), which integrates features from different scales outputted by the backbone to adapt to objects of 
various sizes; the head, employing Fully Convolutional Networks (FCN), predicts the target location regression 
parameters and classification confidence for different scale feature  maps27.

Improving RetinaNet
Rotating rectangular frame
Given the dense arrangement and potential tilt of electrical equipment due to the angle of capture, the standard 
horizontal rectangular frame of RetinaNet may only provide an approximate equipment location and can lead 
to overlaps. When the tilt angle is significant, such as close to 45°, the horizontal frame includes more irrelevant 
background information. By incorporating the prediction of the equipment’s tilt angle and modifying the hori-
zontal rectangular frame to a rectangular frame with a rotation, the accuracy of localization and identification 
of electrical equipment can be considerably enhanced. The comparison results of the two detection frames are 
displayed in Fig. 6.

The rotational frame defined in this paper is illustrated in Fig. 7. Here, the side forming an acute angle with 
the positive direction of the x-axis is labeled as h, while the other side of the rectangle is identified as w. The angle 

Figure 4.  Comparison of image enhancement results.

Table 1.  Comparison of AG score.

AG

Histogram 1.42

Original SSR 1.33

Bilateral Filter 1.59

Ani-SSR 1.88
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is defined as the acute angle between h and the x-axis, with its value ranging from [−π / 2,0). To define a frame 
with a rotation, five parameters are necessary: (x, y, w, h, θ), which represent the coordinates, width, height, and 
inclination angle, respectively.

The pixel area at five different detection scales are  322,  642,  1282,  2562, and  5122,. Each pixel area includes three 
scale factors of  [20,  21/3,  22/3] and three aspect ratios of [0.5, 1, 2], resulting in the creation of nine frames. Since 
electrical equipment typically have elongated shapes with large aspect ratios, this paper extends the original three 
aspect ratio factors to seven scales: [1:1, 1:2, 2:1, 1:3, 3:1, 1:5, 5:1]. This modification improves adaptability to the 
elongated shapes of electrical equipment in infrared images. Regarding the rotation angle, six transformation 
factors of [− π / 2, − 5π / 12, − π / 3, − π / 4, − π / 6, − π / 12 ] are introduced, increasing the number of original 
horizontal rectangular frames from 9 to 126, as depicted in Fig. 8.

Figure 5.  RetinaNet structure.

Figure 6.  Comparison of the detection effect of two frames.

Figure 7.  Diagram of rotating rectangular frame.
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Attention mechanism
The Attention module enhances the network’s capability to discern prominent features in both the channel and 
spatial dimensions of the feature map by integrating average and maximum pooling. In this paper, the detection 
target is power equipment in substations, environments that are often cluttered and have complex backgrounds. 
Therefore, the network is improved with the Attention  module28. The addition of the Attention module to the 
shallow layer feature maps does not significantly enhance performance due to the limited number of channels 
and the minimal feature information extracted at these levels. Conversely, implementing it in the deeper network 
layers is less effective since the feature map’s information extraction and fusion operations are already complete; 
it would also unnecessarily complicate the network. Consequently, in this study, the Attention module is intro-
duced after the backbone and before the FPN module, as shown in Fig. 9.

Path aggregation network (PAN)
The Path Aggregation Network (PAN) is incorporated subsequent to the FPN module, as indicated in Fig. 10. 
The original FPN module conveys the deep feature map’s strong semantic information to the shallow feature map 
via a "top-down" approach but does not carry the detailed target location and texture information from the shal-
low feature map to the deep feature  map29. The PAN structure enables a "bottom-up" feature fusion mechanism 
by downsampling the shallow feature map with Conv + BN + ReLU and then superimposing it onto the deeper 
feature map. This approach enriches the target texture and position information conveyed from the shallow to 
the deeper feature map. The integration of the FPN and PAN modules optimizes the use of features extracted by 
the backbone, fuses feature parameters across different layers, and addresses the limitation of single-scale feature 
maps in one-stage methods, which may not effectively represent object location and semantic information across 
multiple scales simultaneously.

Head structure and loss function
The original head predicts the classification confidence parameter and the location regression parameter using 
the Fully Convolutional Networks (FCN)30. due to the increase in the number of frames in this paper, it is neces-
sary to change the FCN appropriately, as presented in Fig. 11. The original RetinaNet only needs to predict the 4 
parameters (tx ′, ty ′, tw ′, th′) of the horizontal rectangular frame, so the last layer outputs the tensor of W × H × 4A. 

Figure 8.  Improved mechanism.
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The rotating rectangular frame adds the prediction of the angular, such that it is imperative to adjust the network 
to predict the 5 parameters of (tx ′, ty ′, tw ′, th′, tθ ′) , outputting the tensor of W × H × 5A, as illustrated in Fig. 11.

The loss function of the original RetinaNet is divided into two parts: classification loss and position regression 
loss. The electrical equipment with tilt angle is detected accurately, so the angular offset of the target should be 
added to the loss function of position regression, as shown in the following equation.

where (x, y, w, h, θ) and (xa, ya, wa, ha, θa) are the position coordinates and tilt angle of the real frame and pre-
dicted frame, respectively, and (tx, ty, tw, th, tθ) represents the offset of the predicted frame relative to the real 
frame. The loss value of position regression is calculated based on Smooth L1 function.

where the value range of ti is (tx, ty, tw, th, tθ) and the value range of ti’ is (tx ′, ty ′, tw ′, th′, tθ ′) . The calculation of the 
total loss value of target classification and position regression is:
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where N denotes the number of frames; tn′ takes 1 when the frame is foreground, and 0 when the frame is 
background; tni′ represents the coordinate offset of the predicted position corresponding to the n-th frame; and 
tni expresses the coordinate offset of the n-th frame with respect to the real frame; pn denotes the value of the 
multicategory confidence distribution of the n-th frame predicted by the sub-network after the Sigmoid function 
is computed, and tn expresses the belonging category label of the n-th frame corresponding to the real target. Lcls 
denotes the category loss, calculated using the Focal Loss function of the original RetinaNet; the parameters λ1 
and λ2 are taken as 1 by default.

Performance comparison
Infrared images of six types of substation equipment—insulator strings, potential transformers (PTs), current 
transformers (CTs), switches, circuit breakers, and transformer bushings—were selected for recognition. The 
detection accuracy of the improved RetinaNet is evaluated using Average Precision (AP) and mean Average 
Precision (mAP). AP assesses the detection accuracy for a specific type of electrical equipment, while mAP 
is the mean of the APs across all equipment types, indicating the overall detection accuracy. AP and mAP are 
defined as follows.

mAP =

6
∑

n=1
AP(n)

6
where TP represents the number of positive samples classified correctly, FP represents the number of nega-

tive samples incorrectly classified as positive samples, FN is the number of positive samples incorrectly labeled 
as negative samples, and P and R are the detection rate and accuracy rate, respectively.

Table 2 presents the APs and mAPs for different models detecting six types of electrical equipment, including 
Faster R-CNN, YOLOv3, the original RetinaNet, and the improved RetinaNet. The improved RetinaNet’s AP 
values surpass those of the other three models for all six equipment types. The model’s mAP is 1.9 percentage 
points higher than that of the original RetinaNet, indicating improved detection accuracy. Additionally, in sce-
narios where electrical equipment is densely arranged at various angles, the rotating rectangular frame achieves 
more precise detection than the horizontal frame, as illustrated in Fig. 12. A tilted electrical equipment’s rotating 
rectangular frame introduces less background information than the horizontal rectangular frame, and there is 
less overlap in the detection results of the densely arranged electrical equipment,, aiding in the separation of the 
equipment for fault diagnosis based on thermal information.

Analyzing Fig. 12, we see that the two rows display the detection effects of the original RetinaNet and the 
improved RetinaNet, respectively. Figures 12a,b show that insulator strings and CTs, which have large tilt angles, 
are poorly served by algorithms using horizontal rectangular frames as these introduce a significant amount of 
irrelevant background images unrelated to the electrical equipment. In contrast, the improved RetinaNet more 
accurately contours the edges of the equipment, reducing the inclusion of extraneous background information. 
Figures 12c,d demonstrate that, due to the camera angle, the equipment appears not only tilted but also densely 
arranged, which challenges the traditional horizontal rectangular frame-based detection networks in separat-
ing individual equipment. The improved RetinaNet utilizes rotating frames to locate and identify equipment, 
circumventing the limitations of conventional framing and reducing overlap, thereby achieving more precise 
detection outcomes.

Thermal fault diagnosis of complex electrical equipment
Semantic segmentation of electrical equipment
Semantic segmentation involves the pixel-wise classification according to different semantics based on pixel 
features, as exemplified in Fig. 13. DeeplabV3 + utilizes a classic encoder-decoder  structure32. Its encoder elimi-
nates pooling operations to preserve more detail and positional information. Additionally, by incorporating 
a channel-separable convolution module, the encoder decouples spatial from channel information, reducing 
parameter count during network  training33. The decoder produces prediction maps that match the original 
image’s resolution—for instance, Fig. 13 classifies pixels on the top of the transformer bushing and the bushing 

{

P = TP
TP+FP

R = TP
TP+FN

AP =

∫ 1

0
P(R)dR

Table 2.  Comparison of detection results of different models.

Model

AP

PT CT Transformer Bushings mAPCircuit Breakers Insulator Strings Switches

Faster-RCNN31 95.3 89.8 87.7 97.4 96.3 94.6 93.5

YOLOv331 92.5 87.3 83.0 92.5 91.5 91.2 89.7

Original  RetinaNet24 95.8 90.8 89.2 96.9 95.4 92.2 93.4

Improved RetinaNet 96.4 93.8 90.9 98.8 97.0 95.0 95.3
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 itself34. Our focus is directed toward segmenting three vulnerable structures: the cap of the transformer bushing 
(Cap), the disconnecting link of switches (Disconnecting Link), and the potential transformer bushing (Bushing).

Fault diagnosis of of thermal fault-prone structures
The relative temperature-difference method employs the temperature-difference information of the correspond-
ing positional temperature values of two equipment with the same or similar basic states, such as category, load, 
and environment, to identify faults. Firstly, the temperature difference between the corresponding temperature 
points of two equipment is measured, then the temperature-rise value of the higher temperature point among 
the two points is calculated. Lastly, the relative temperature difference δt is computed using the ratio of the two, 
which is formulated in the following function:

where δt is the relative temperature difference between the two equipment under test, τ1 is the temperature-rise 
of the hot spot under test (unit: K), T1 is the temperature of the hot spot (unit: K), τ2 and T2 are the temperature-
rise and temperature of the normal temperature point, and T0 is the ambient temperature.

δt =
τ1 − τ2

τ1
× 100% =

(T1 − T0)− (T2 − T0)

T1 − T0
× 100% =

T1 − T2

T1 − T0
× 100%

Figure 12.  Comparison of detection results (original RetinaNet and improved RetinaNet).
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Figure 13.  DeeplabV3 + structure.
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Relative temperature-difference method is primarily applicable to the current-heating faults judgment, espe-
cially for the abnormal heating caused by the small load current, the relative temperature-difference method can 
reduce the probability of leakage judgment of the small current load defect.

Similar comparison method refers to the same working condition, the same external environment of the 
same type of equipment temperature comparison to determine the equipment thermal defects, can be used for 
fault diagnosis of potential-heating faults.

Diagnostic criteria are set for Cap, Disconnecting Link, and Bushing. Cap and Disconnecting Link are prone 
to current-heating faults, are shown in Table 3. For Bushing, it is easy to have potential-heating faults. If the 
temperature difference is less than 2 K, it is determined that there is no faults, and if the temperature difference 
is greater than this threshold, it is determined that there is a potential-heating fault.

Thermal fault diagnosis of the cap
The Cap is prone to current-heating faults, often due to internal bolt loosening or wiring aging corrosion and 
other reasons that increase the resistance, resulting in an increase in the amount of heat generated. Figure 14 
illustrates the fault diagnosis process of the Cap. Initial detection of Cap is carried out using improved RetinaNet, 
and the results are input into DeeplabV3 + model for segmentation, thus separating n regions of the Cap. The local 
temperature maximum T1, T2, T3…Tn are yielded, the maximum value is selected as the hot spot temperature 
Tmax and the minimum value is selected as the normal temperature Tmin, and the relative temperature difference 
δt is obtained. If the Tmax and δt satisfy the discriminating conditions, it is determined as the corresponding fault 
level, and if they do not satisfy the conditions, it is judged that the equipment is normal.

Thermal fault diagnosis of the disconnecting link
The Disconnecting Link is prone to current-heating faults. Frequent reversing operations of the Disconnecting 
Link often result in insufficient spring clamping force of the contact fingers and abrasion of the contact fingers. 
Figure 15 illustrates the fault diagnosis process of the Disconnecting Link. The local temperature maximum T1, 
T2, T3…Tn are obtained, the maximum value is selected as the hot spot temperature Tmax and the minimum value 

Table 3.  Diagnostic criteria for faults.

Components General faults Severe faults Critical faults

Disconnecting link δt ≥ 35%; hot spot temperature < 90 ℃ δt ≥ 80%; Hot spot temperature 90 ℃ ~ 130 ℃ Hot spot temperature > 130 ℃; δt ≥ 95% and hot spot temperature > 90 
℃

Cap δt ≥ 35%; hot spot temperature < 55 ℃ δt ≥ 80%; Hot spot temperature 55 ℃ ~ 80 ℃ Hot spot temperature > 80 ℃; δt ≥ 95% and hot spot temperature > 55 
℃

Extracting Power Devices 
with Improved RetinaNet

Structure Segmentation 
with DeeplabV3+

Temperature Extraction 
at the Top of the Casing

Getting the Maximum 
Temperature Tmax

Tmax > 80°C

δt ≥ 95%

Tmax > 55°C

δt ≥ 80% δt ≥ 35%

General DefectsSevere DefectsCritical Defects

Severe Defects

Critical Defects Y

N

Y

N

Y N

Y Y

Normal

N

Figure 14.  Diagnostic process of the cap.
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is selected as the normal temperature Tmin, and the relative temperature difference δt is obtained. The Tmax and 
δt are adopted to determine whether the equipment is faulty.

Thermal fault diagnosis of the bushing
The Bushing is prone to abnormal heating due to the failure of the internal capacitance unit, and is a potential-
heating fault. Capacitor unit fault primarily arises from moisture, capacitive components aging and other factors, 
usually in the wet season is more frequent. Fault diagnosis process of the Bushing is shown in Fig. 16. Since the 
Bushing belongs to the potential-heating fault, the basis for judgment differs from the current-heating fault. Initial 
detection of potential transformers was performed using improved RetinaNet, and the results were input into 
the DeeplabV3 + model for segmentation. The maximum temperatures T1, T2, T3…Tn were extracted for each 
region, and the hotspot temperature max(T1, T2, T3…Tn) and the normal temperature min(T1, T2, T3…Tn) were 
selected. If the temperature difference exceeds 2 K, it is determined that the Bushing has occurred a potential-
heating fault; otherwise it is determined to be normal.

Experimental analysis
A selection of 282 infrared images containing bushings, disconnecting links, and PTs was chosen for fault diag-
nosis. The test set includes 47 infrared images of thermal faults on bushings and 52 images showing abnormal 
heating at disconnecting links, as shown in Table 4. The images of PTs comprise 44 with faults and 38 without 
faults. The fault diagnosis results for the three types of equipment are displayed in Tables 5, 6, and 7, respectively.

Of the 143 fault images, faults were identified in 41 images of caps, 45 images of disconnecting links, and 
40 images of PT bushings. The recognition accuracies reached 87.23%, 86.54%, and 90.91%, with false alarm 
rates of 7.50%, 8.20%, and 7.89%, respectively. The recognition results for some of the thermal fault images are 
presented in Fig. 17. The cap shown in Fig. 17 exhibits a current-induced heating fault due to corrosion. The 
maximum temperature of the cap was 59.5 °C, the normal temperature was 25.9 °C, and the relative temperature 
difference δt was 85.06%. The algorithm in this paper identifies this as a severe fault, which is consistent with the 
actual sample’s fault level. The disconnecting link underwent oxidation due to long-term operational switching, 
causing an abnormal temperature rise. The maximum temperature recorded for the structure was 103.3℃, the 
normal temperature was 41.4℃, and the δt was 70%. The diagnostic model in this paper classified this as a severe 
fault. The temperature difference between the faulty and non-faulty states of the bushing was 3.2 K, exceeding 
the judgment threshold, indicating a potential heating fault.

Conclusion
This paper presents a fault diagnosis method for electrical equipment based on deep learning, which effec-
tively handles denoising, detection, recognition, and semantic segmentation of infrared images, combined with 
temperature difference information. A comprehensive approach is proposed, ranging from preprocessing to 
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Temperature Extraction
of the Blade

Getting the Maximum
Temperature Tmax

Tmax > 130°C

δt ≥ 95%
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δt ≥ 80% δt ≥ 35%

General DefectsSevere DefectsCritical Defects

Severe Defects

Critical Defects Y

N

Y

N

Y N

Y Y

Normal

N

Figure 15.  Diagnostic process of the disconnecting link.
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Figure 16.  Diagnostic process of the bushing.

Table 4.  Fault diagnosis data set.

Type

Fault level

Normal General fault Severe fault Critical fault

Bushing 40 19 15 13

Disconnecting link 61 22 19 11

Table 5.  Fault diagnosis results of the cap.

Sample

Diagnostic results

Normal General fault Severe fault Critical fault

Normal sample 37 2 1 0

General fault 2 16 1 0

Severe fault 0 1 14 0

Critical fault 0 1 1 11

Table 6.  Fault diagnosis results of the disconnecting link.

Sample

Diagnostic results

Normal General fault Severe fault Critical fault

Normal sample 56 2 3 0

General fault 2 19 1 0

Severe fault 1 2 16 0

Critical fault 0 1 0 10
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recognition, for diagnosing thermal faults in infrared images of electrical equipment. This contributes valuable 
experience and viable solutions for future automation of electrical equipment inspection.

(1) A denoising algorithm for infrared images, DeDn-CNN, is introduced. It incorporates a deformable con-
volution module into the Dn-CNN to autonomously learn noise features in infrared images. Additionally, 

Table 7.  Fault Diagnosis Results of the Bushing.

Sample

Diagnostic 
results

Normal Fault

Normal sample 36 2

Fault sample 3 41

Figure 17.  Diagnostic effect of some images.
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an image enhancement algorithm based on WGF and Ani-SSR is proposed, which employs anisotropic 
diffusion filtering instead of Gaussian wrap-around filtering, thus avoiding the issue of strong edge halos 
during image enhancement.

(2) An improved electrical equipment detection algorithm based on RetinaNet is proposed. It utilizes rotating 
rectangular frames to enable refined detection in cases where electrical equipment is densely arranged or 
at an angle. An attention module is integrated to deal with the complex backgrounds typical of substations, 
and a PAN is appended after the FPN to achieve bottom-up feature map fusion.

(3) A thermal fault diagnosis method is proposed that combines temperature difference information with 
DeeplabV3 + semantic segmentation. The enhanced RetinaNet recognition results are fed into the Deep-
labV3 + model for further segmentation of thermal fault-prone structures, and fault diagnosis is performed 
by leveraging the temperature difference data.

Data availability
All data used in the paper can be obtained from the Zongbu Tang (corresponding author).
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