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Using machine learning techniques 
to predict the risk of osteoporosis 
based on nationwide chronic 
disease data
Jun‑Bo Tu 1,5, Wei‑Jie Liao 2,5, Wen‑Cai Liu 3* & Xing‑Hua Gao 4*

Osteoporosis is a major public health concern that significantly increases the risk of fractures. The 
aim of this study was to develop a Machine Learning based predictive model to screen individuals 
at high risk of osteoporosis based on chronic disease data, thus facilitating early detection and 
personalized management. A total of 10,000 complete patient records of primary healthcare data in 
the German Disease Analyzer database (IMS HEALTH) were included, of which 1293 diagnosed with 
osteoporosis and 8707 without the condition. The demographic characteristics and chronic disease 
data, including age, gender, lipid disorder, cancer, COPD, hypertension, heart failure, CHD, diabetes, 
chronic kidney disease, and stroke were collected from electronic health records. Ten different 
machine learning algorithms were employed to construct the predictive mode. The performance of the 
model was further validated and the relative importance of features in the model was analyzed. Out 
of the ten machine learning algorithms, the Stacker model based on Logistic Regression, AdaBoost 
Classifier, and Gradient Boosting Classifier demonstrated superior performance. The Stacker model 
demonstrated excellent performance through ten‑fold cross‑validation on the training set and ROC 
curve analysis on the test set. The confusion matrix, lift curve and calibration curves indicated that 
the Stacker model had optimal clinical utility. Further analysis on feature importance highlighted 
age, gender, lipid metabolism disorders, cancer, and COPD as the top five influential variables. In 
this study, a predictive model for osteoporosis based on chronic disease data was developed using 
machine learning. The model shows great potential in early detection and risk stratification of 
osteoporosis, ultimately facilitating personalized prevention and management strategies.
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Osteoporosis, a skeletal disorder characterized by compromised bone strength and increased risk of fractures, 
poses a significant public health challenge  worldwide1,2. The adverse outcomes of osteoporosis such as hip and 
vertebral fractures are associated with substantial morbidity, mortality, and economic  costs3. Unfortunately, 
osteoporosis often remains undiagnosed and untreated until the occurrence of a debilitating  fracture2, hence 
proactive identification of high-risk individuals is a critical step in mitigating the disease burden.

Many studies have recognized common risk factors for osteoporosis, including aging, female gender, 
family history, low body mass index, and certain lifestyle factors (smoking, excessive alcohol, lack of physical 
activity)1,2. Moreover, several chronic diseases such as rheumatoid arthritis, diabetes, and kidney diseases have 
been associated with an increased risk of  osteoporosis4. Nevertheless, the complexity of interactions between 
these risk factors makes it challenging to accurately predict osteoporosis risk in the individual patient using 
traditional statistical  methods5.

Recent advances in artificial intelligence (AI) and machine learning (ML) technologies offer promising 
opportunities for enhancing risk  prediction6–8. ML algorithms can handle high-dimensional data and capture 
complex, nonlinear relationships between predictors, making them particularly suited for developing prediction 
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models based on multifactorial disease  data9,10. Indeed, ML has shown potential in various healthcare applications, 
including disease diagnosis and prognosis, treatment response prediction, and patient  stratification11,12.

However, the development and validation of a ML predictive model for osteoporosis risk, particularly one that 
is based on chronic disease data, remains  unexplored13. In present study, we aim to develop a ML-based predictive 
model for estimating osteoporosis risk using a comprehensive set of chronic disease data. Our model is expected 
to assist community healthcare workers in screening individuals at high-risk of osteoporosis during health follow-
ups using simple indicators, thereby enabling early intervention and preventive measures in high-risk individuals. 
Ultimately, the results of this study have the potential to contribute to the reduction in fracture incidence, 
improvement in patient outcomes, and alleviation of the healthcare burden associated with osteoporosis.

Through this research, we aim to construct a predictive model in osteoporosis risk prediction, where machine 
learning and big data are leveraged to deliver personalized risk assessment and preventive  care6. This is expected 
to provide a reference for the adoption and integration of ML technologies in bone health management, and 
potentially, in the broader context of chronic disease prevention and management.

Materials and methods
Study design and data source
This study was designed to develop and validate a machine learning predictive model for the risk of osteoporosis 
based on a nationwide chronic disease data in Germany. The data used in this study were obtained from 10,000 
complete records of open-source primary healthcare data in the German Disease Analyzer database (IMS 
HEALTH)14. This open-source data considered ten different chronic diseases (CDs) based on primary healthcare 
diagnoses (ICD-10 codes): Hypertension (I10), Lipid metabolism disorders (E78), Diabetes (E10-E14), Coronary 
heart disease (I20-I25), Cancer (C00-97), Chronic obstructive pulmonary disease (J44), Heart failure (I50), Stroke 
(I63, I64, G45), Osteoporosis (M80, M81), and Chronic kidney disease (N18, N19).

Data preparation
Patient data were randomly split into a training set and a test set in a ratio of 7:3 using a stratified random 
sampling method implemented in Python (version 3.9). This approach ensured that the distribution of 
osteoporosis cases was similar in both datasets. Label encoding methods were applied to process categorical 
variables such as smoking and diabetes status.

To address the imbalance of data distribution, the random oversampling method was applied. This method 
involved duplicating the minority class instances to balance the dataset, improving the model’s ability to learn 
from the underrepresented  class15.

Feature selection
In the study, a comprehensive feature screening process was employed to identify the predictors for osteoporosis 
prediction. We harnessed the power of nine distinct machine learning algorithms to ensure a robust and 
exhaustive feature elimination process. The selected algorithms were: Logistic Regression (LR), Support Vector 
Machine (SVM), Decision Tree Classifier (DT), Extra Trees Classifier (ET), Random Forest Classifier (RF), 
Extreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LightGBM), Gradient Boosting 
Classifier (GBC), and Ada Boost Classifier (ADA). To systematically identify and retain the most informative 
variables, each of these algorithms was subjected to a recursive feature elimination (RFE) procedure. This method 
facilitates the optimization of model performance by iteratively removing the least important features based on 
their predictive  power16.

Model development
We employed ten different machine learning algorithms to build predictive models. These algorithms, 
implemented using scikit-learn, xgboost, and lightgbm modules in Python, included: Logistic Regression (LR), K 
Neighbors Classifier (KNN), Decision Tree Classifier (DT), Extra Trees Classifier (ET), Random Forest Classifier 
(RF), Extreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (Lightgbm), naïve Bayes (NB), 
Gradient Boosting Classifier (GBC), and Ada Boost Classifier (ADA)17.

These algorithms’ performance was initially evaluated without hyper-parameter optimization by calculating 
the area under the receiver operating characteristic curve (AUC-ROC). The top three algorithms were then 
selected for further refinement. Hyper-parameters of these algorithms were optimized using the randomized 
search method.

The optimal predictive model turned out to be a stacked ensemble model, utilizing the strengths of LR, ADA, 
and GBC algorithms. The stacker model was developed through a two-step process. In the first layer, individual 
models (LR, ADA, and GBC) were trained separately on the training dataset. The predictions from these models 
were then used as input for the second layer to generate a final prediction.

Model validation
The best-performing model was validated both internally and externally. For the determination of appropriate 
cut-off values, the Youden index was utilized, which maximizes the sum of sensitivity and specificity. The external 
validation was performed using cumulative lift measures, assessing the ratio of the model’s prediction capability 
compared to a random selection. A confusion matrix was used to intuitively represent prediction performance 
and the discrepancy between the model prediction result and the actual situation.

The performance metrics used for model evaluation included accuracy, sensitivity, specificity, and AUC-ROC. 
The calibration of the models was assessed by comparing the predicted probabilities with the actual outcomes.
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Statistical analysis
Statistical analyses were conducted using Python (version 3.9, Python Software Foundation). Categorical vari-
ables were represented as frequencies or proportions and compared using the chi-square test or Fisher’s exact 
test. The Kolmogorov–Smirnov-Lilliefors (K-S-L) test was utilized to check the normality of continuous data. 
Non-normally distributed variables were evaluated using the Wilcoxon rank-sum test and displayed as median, 
first quartile (Q1), and third quartile (Q3). Differences were deemed significant if P < 0.05.

Feature importance assessment
Shapley Additive Explanations (SHAP) values were used to assess the impact and importance of each input vari-
able on the model’s  output18. SHAP is a game-theoretic method to interpret the output of any machine learning 
model. It uses classical Shapley values from cooperative game theory, extending them to optimally attribute credit 
to local explanations. This approach provided insight into which factors were most influential in the prediction 
of osteoporosis risk.

Ethics approval
This study was approved by the Ethics Committee of Guangzhou First People’s Hospital.

Results
Baseline data assessment
Utilizing the open-source primary healthcare dataset provided by IMS HEALTH, this study encompassed a 
cohort of 10,000 patients. Of these, 8707 (87.07%) presented with osteoporosis, whereas 1293 (12.93%) did not. 
Comprehensive patient characteristics can be found in Table 1. The cohort was randomly stratified into a train-
ing set (n = 7000) and a test set (n = 3000), following a 7:3 distribution. The variable distributions between these 
two subsets exhibited no statistically significant disparities, as outlined in Table 2.

Candidate features and algorithms screening
A subset of 7000 samples was randomly delineated for the training of models. Within this subset, 6,095 (87.1%) 
were diagnosed with osteoporosis, contrasting with 905 (12.9%) that were not (Table 2). Referring to the 
Recursive Feature Elimination (RFE) outcomes across nine distinct algorithms, as visualized in Fig. 1, the data 
from eight algorithms indicated optimal predictive performance upon inclusion of all eleven predictor variables. 
Consequently, all features were employed in the construction of predictive models for the study. The initial 
performances of these ten models in terms of prediction are delineated in Fig. 2. At the preliminary stage of 
algorithmic assessment, the Area Under the Curve (AUC) was designated as the pivotal metric for performance 
evaluation. The three superior-performing algorithms earmarked for further exploration were LR (AUC: 0.753), 
ADA (AUC: 0.746), and GBC (AUC: 0.742), as depicted in Fig. 2.

Table 1.  Baseline characteristics of study population. First quartile (Q1), third quartile (Q3).

Variables Overall No Yes P-value

N 10,000 8707 1293

Male gender, n (%)
No 5817 (58.2) 4694 (53.9) 1123 (86.9)

 < 0.001
Yes 4183 (41.8) 4013 (46.1) 170 (13.1)

Age, median [Q1,Q3] 76.0 [71.0,82.0] 76.0 [71.0,81.0] 79.0 [74.0,85.0]  < 0.001

Hypertension, n (%)
No 3288 (32.9) 3010 (34.6) 278 (21.5)

 < 0.001
Yes 6712 (67.1) 5697 (65.4) 1015 (78.5)

CHD, n (%)
No 7426 (74.3) 6570 (75.5) 856 (66.2)

 < 0.001
Yes 2574 (25.7) 2137 (24.5) 437 (33.8)

Lipid disorder, n (%)
No 5880 (58.8) 5247 (60.3) 633 (49.0)

 < 0.001
Yes 4120 (41.2) 3460 (39.7) 660 (51.0)

Stroke, n (%)
No 9373 (93.7) 8187 (94.0) 1186 (91.7)

0.002
Yes 627 (6.3) 520 (6.0) 107 (8.3)

Heart failure, n (%)
No 8431 (84.3) 7464 (85.7) 967 (74.8)

 < 0.001
Yes 1569 (15.7) 1243 (14.3) 326 (25.2)

Cancer, n (%)
No 8287 (82.9) 7282 (83.6) 1005 (77.7)

 < 0.001
Yes 1713 (17.1) 1425 (16.4) 288 (22.3)

Diabetes, n (%)
No 6856 (68.6) 5987 (68.8) 869 (67.2)

0.276
Yes 3144 (31.4) 2720 (31.2) 424 (32.8)

COPD, n (%)
No 8711 (87.1) 7684 (88.3) 1027 (79.4)

 < 0.001
Yes 1289 (12.9) 1023 (11.7) 266 (20.6)

Chronic kidney disease, n (%)
No 8699 (87.0) 7629 (87.6) 1070 (82.8)

 < 0.001
Yes 1301 (13.0) 1078 (12.4) 223 (17.2)
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Model development and selection
Subsequent to preliminary assessment, the three superior-performing algorithms, namely LR, ADA, and GBC, 
were earmarked for in-depth refinement. Hyperparameters for these algorithms underwent optimization via the 
randomized search methodology in tandem with tenfold cross-validation. Then these optimal predictive models 
turned out to be a stacked ensemble (stacker) model, which synergistically leveraged the robustness of the LR, 
ADA, and GBC algorithms. This ensemble was constructed via a biphasic approach: the initial phase involved 
independent training of LR, ADA, and GBC models on the designated training dataset, with their resultant 
predictions feeding into the second phase to derive a consolidated forecast.

To ascertain the reliability of the devised machine learning constructs, their performance was benchmarked 
using tenfold cross-validation on the training set, with outcomes delineated in Fig. 3. It was discernible that the 
stacker model (AUC: 0.773, std: 0.027) showcased enhanced predictive prowess in comparison to standalone LR 
(AUC: 0.753, std: 0.026), ADA (AUC: 0.751, std: 0.027), and GBC (AUC: 0.753, std: 0.028) models during internal 
validation. The calibration curves, presented in Fig. 4, furnish insights into model calibration, epitomizing the 
congruence between predicted osteoporosis risks and the empirically observed outcomes. And the calibration 
curve associated with the stacker model evinced a good agreement between predictive and observational data.

Model performance and feature importance
As delineated in Fig. 5A, with the increasing probability threshold of osteoporosis, there is a decline in sensitivity 
and an enhancement in specificity. Utilizing the Youden index, an optimal threshold probability of 0.52 was 
ascertained for the stacker model, yielding sensitivity and specificity metrics of 0.722 and 0.664, respectively. The 
model’s predictive capacity is further illustrated by the cumulative lift in Fig. 5C. This metric reflects the stacker 
model’s ability to identify osteoporosis cases relative to a given sample size when compared to a random selection. 
In essence, it offered a comparative ratio of patients diagnosed with osteoporosis against those undiagnosed. 
This was instrumental in contrasting the stacker model’s performance against an idealized model (one that 
predicts osteoporosis flawlessly) and a model based on sheer randomness. With the threshold set at 0.52, the 
stacker model attained a lift value of 1.9. The ROC curve for the stacker model, applied to the test dataset, was 
illustrated in Fig. 5B, signaling robust predictive efficacy with an AUC of 0.76. The model’s predictive prowess is 
further underscored by the confusion matrix, as depicted in Fig. 5D. Delving into the feature importance within 
the stacker model, SHAP values were computed, as visualized in Fig. 6. As shown, age, gender, lipid metabolism 
disorders, cancer, and COPD as the top five important features for distinguishing the osteoporosis.

Table 2.  Baseline characteristics of training set and test set. First quartile (Q1), third quartile (Q3).

Variables Overall Train Test P-value

N 10,000 7000 3000

Osteoporosis, n (%)
No 8707 (87.1) 6095 (87.1) 2612 (87.1)

1.000
Yes 1293 (12.9) 905 (12.9) 388 (12.9)

Male gender, n (%)
No 5817 (58.2) 4071 (58.2) 1746 (58.2)

0.986
Yes 4183 (41.8) 2929 (41.8) 1254 (41.8)

Age, median [Q1,Q3] 76.0 [71.0,82.0] 76.0 [71.0,82.0] 76.0 [71.0,82.0] 0.326

Hypertension, n (%)
No 3288 (32.9) 2290 (32.7) 998 (33.3)

0.606
Yes 6712 (67.1) 4710 (67.3) 2002 (66.7)

CHD, n (%)
No 7426 (74.3) 5191 (74.2) 2235 (74.5)

0.738
Yes 2574 (25.7) 1809 (25.8) 765 (25.5)

Lipid disorder, n (%)
No 5880 (58.8) 4116 (58.8) 1764 (58.8)

1.000
Yes 4120 (41.2) 2884 (41.2) 1236 (41.2)

Stroke, n (%)
No 9373 (93.7) 6575 (93.9) 2798 (93.3)

0.228
Yes 627 (6.3) 425 (6.1) 202 (6.7)

Heart failure, n (%)
No 8431 (84.3) 5909 (84.4) 2522 (84.1)

0.683
Yes 1569 (15.7) 1091 (15.6) 478 (15.9)

Cancer, n (%)
No 8287 (82.9) 5783 (82.6) 2504 (83.5)

0.314
Yes 1713 (17.1) 1217 (17.4) 496 (16.5)

Diabetes, n (%)
No 6856 (68.6) 4819 (68.8) 2037 (67.9)

0.364
Yes 3144 (31.4) 2181 (31.2) 963 (32.1)

COPD, n (%)
No 8711 (87.1) 6107 (87.2) 2604 (86.8)

0.567
Yes 1289 (12.9) 893 (12.8) 396 (13.2)

Chronic kidney disease, n (%)
No 8699 (87.0) 6110 (87.3) 2589 (86.3)

0.190
Yes 1301 (13.0) 890 (12.7) 411 (13.7)
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Discussion
Osteoporosis, often termed the "silent disease", is a prevalent condition that reduces bone density, predisposing 
individuals to increased fracture risk. Notably, the absence of overt symptoms until a fracture occurs underscores 
the urgency for early detection and preventive  strategies19. Fractures, particularly hip fractures, associated with 
osteoporosis, often result in substantial morbidity, increased mortality, and significant health-care  costs20. The 
societal and economic implications of osteoporosis-related fractures make predicting the disease an imperative 
not just from a clinical perspective but also from public health and economic  viewpoints21.

Early prediction and identification of osteoporosis can pave the way for timely interventions, potentially 
decelerating or even reversing bone loss. This not only diminishes fracture risk but also bolsters the quality of 
life for the elderly population, ensuring greater independence and reduced healthcare  expenditure22. Interven-
tions, which range from lifestyle modifications to pharmaceutical therapies, have shown to be considerably more 
effective when osteoporosis is identified at nascent  stages23.

Figure 1.  Results of nine different algorithms using recursive feature elimination (RFE) procedure for feature 
selection. Logistic Regression (LR), Support Vector Machine (SVM), Decision Tree Classifier (DT), Extra Trees 
Classifier (ET), Random Forest Classifier (RF), Extreme Gradient Boosting (XGBoost), Light Gradient Boosting 
Machine (LightGBM), Gradient Boosting Classifier (GBC), and Ada Boost Classifier (ADA).
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The current research serves as a testament to the potential of machine learning in advancing osteoporosis 
prediction, highlighting a novel approach that melds the power of various predictive  algorithms24. Existing meth-
odologies primarily depend on bone mineral density (BMD) tests using DXA  scans25. Although effective, these 
tests are not ubiquitously accessible, can be cost-prohibitive, and often are conducted when clinical symptoms 
manifest, potentially delaying timely intervention.

In many practical scenarios, especially in resource-limited settings like communities, it might be challenging 
or cost-prohibitive to obtain comprehensive lifestyle data, laboratory test, or advanced imaging results. Thus, 
building predictive models using data that can be extracted from primary healthcare records or community sur-
veys offers a promising approach for early screening and detection of osteoporosis in these settings. Cheng  Li26 
and colleagues successfully predicted the risk of rotator cuff tears in hospital outpatients using simple question-
naire data and physical examination findings with machine learning techniques. Similarly, Limin Wang et al.27 
used health questionnaire indicators and regression algorithms to make accurate predictions for symptomatic 
knee osteoarthritis. By identifying high-risk patients through simple indicators and recommending further 
precise medical examinations for them, this approach can help reduce unnecessary medical tests and save on 
healthcare costs.

This study, by capitalizing on nationwide primary healthcare data from Germany, offers a non-invasive 
and efficient means to predict osteoporosis risk based on health indicators and chronic conditions. The broad 

Figure 2.  Performance of ten different models in internal validation without initial parameters. Area under 
receiver operating characteristic curve (AUC); Logistic Regression (LR), K Neighbors Classifier (KNN), 
Decision Tree Classifier (DT), Extra Trees Classifier (ET), Random Forest Classifier (RF), Extreme Gradient 
Boosting (XGBoost), Light Gradient Boosting Machine (Lightgbm), naïve Bayes (NB), Gradient Boosting 
Classifier (GBC), and Ada Boost Classifier (ADA).
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inclusion of patients spanning diverse health backgrounds ensures the model’s generalizability and applicabil-
ity in real-world settings. Our aim is to develop a preclinical model that could contribute to early warning and 
early detection and diagnosis for high-risk populations. In this study, we did not include medical laboratory 
test indicators and omics data as predictive factors. While this may reduce the model’s performance, it also has 
the advantage of reducing the complexity of the model and enhancing its practicality. Innovation in the field of 
machine learning does not always mean using the most advanced algorithms or complex feature  engineering28. 
Sometimes, simplifying the development of models to improve their universality and usability represents a 
significant form of innovation. Simple models are easier for other researchers to replicate and validate and are 
more feasible to implement in real-world settings. Our study results show that the model we developed has an 
AUC of 0.76, indicating good predictive performance.

The choice of algorithms in the present study was pivotal in ensuring robust prediction performance. The 
preliminary selection included a range of algorithms, out of which LR, ADA, and GBC emerged as the front-
runners in terms of the AUC metric. Previous research in medical diagnostics has emphasized the importance 
of the AUC as an indicative measure of the model’s capability to discriminate between positive and negative 
 instances29. Although the research by Meng, Y., et al.30 suggests that sequential models, such as GRU or LSTM, 
may outperform non-sequential models like LR or XGB, the advantages of these models may not be fully lev-
eraged in the context of cross-sectional data alone. In this study, considering the characteristics of the dataset 
used for modeling, non-sequential models were adopted as the final predictive models, which also achieved 
good predictive performance. Our findings are congruent with recent literature suggesting the promise of these 
algorithms in health-related prediction  tasks31–33.

Ensemble methods have consistently demonstrated their mettle in improving prediction accuracy by com-
bining the strengths of multiple models and ameliorating individual model  limitations34. The use of a stacked 
ensemble in our study—a model synergizing the robustness of LR, ADA, and GBC—substantially augmented 
the AUC during internal validation. This approach capitalizes on the distinct decision boundaries offered by each 

Figure 3.  Ten-fold cross-validation results of different machine learning models.

Figure 4.  (A) The calibration curves of the three models. (B) The calibration curves of the stacker model. The 
diagonal dotted line represents an ideal model and the solid line represents the performance of the model, while 
the model closer fit to the diagonal dotted line represents a better calibration.
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algorithm, thus providing a holistic, comprehensive prediction. This approach offers higher predictive accuracy 
over individual models, a finding in alignment with contemporary studies on ensemble  methods35.

The optimal threshold probability of 0.52 derived from the Youden index underscores the balanced consid-
eration of both sensitivity (true positive rate) and specificity (true negative rate) in the study. This ensures not 
only the correct identification of actual osteoporosis cases but also minimizes false alarms, which can be critical 

Figure 5.  (A) Sensitivity and specificity versus cut-off probability plot of the stacker model. Decreasing 
sensitivity and increasing specificity are shown for increasing probability thresholds for osteoporosis. (B) The 
ROC curves of the stacker model in test set. (C) The cumulative lift curve of the stacker model in test set. (D) 
The confusion matrix of the stacker model in the test set.

Figure 6.  (A) Ranking of feature importance of the stacker model based on SHAP values. (B) Distribution of 
the impact of each feature on the output of the stacker model estimated using the SHAP values. The plot sorts 
features by the sum of SHAP value magnitudes over all samples and shows the order of feature importance. 
This figure described data from the test cohort, with each point representing one patient. The color represents 
the feature value (red high, blue low). The x axis measures the impact on the model output (right positive, left 
negative). A positive value indicate a Osteoporosis risk and a negative value indicate a good outcome.
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in clinical applications to avoid overdiagnosis and unnecessary interventions. The achieved lift value of 1.9 for 
the stacker model accentuates its ability to effectively identify osteoporosis cases compared to random selection, 
validating its clinical utility.

Furthermore, the comprehensive feature selection process and rigorous validation reaffirm the model’s robust-
ness and reliability. The application of SHAP values for feature importance not only fosters transparency in 
machine learning predictions but also offers clinical insights, helping healthcare practitioners understand and 
prioritize risk  factors36.

The SHAP values, an advanced tool for model interpretability, were instrumental in determining the sali-
ence of each feature within our predictive framework. Age and gender emerged as the most paramount factors, 
a finding that resonates with the broader osteoporosis literature. The long-established relationship between 
advancing age and decreased bone density makes age a pivotal predictor for osteoporosis  risk37. Gender-specific 
differences, especially post-menopausal changes in women, exacerbate the risk of osteoporosis, emphasizing its 
importance in our  model38.

The significance of lipid metabolism disorders in predicting osteoporosis in our model presented intriguing 
insights. Recent studies have begun to identify a potential association between dyslipidemia and bone mineral 
density (BMD)  alterations39,40. Lipids play a role in bone metabolism, and aberrations in lipid profiles may 
adversely affect bone health. Our model’s emphasis on cancer as a risk factor underscores the multifaceted 
relationship between cancer and osteoporosis. Some treatments for cancer, especially those involving hormone 
therapies, can accelerate bone loss, making patients more susceptible to  osteoporosis41,42. COPD has also been 
linked to low bone mineral density and a higher risk of fractures. Pulmonary dysfunction and decreased BMD 
share underlying inflammatory pathways. The chronic inflammatory state in COPD can disrupt bone metabolism, 
leading to increased osteoporosis  risk43. Hypertension has been associated with an increased risk of osteoporosis, 
potentially due to alterations in calcium homeostasis, as well as the effects of antihypertensive  medications44. 
Stroke patients also face an increased risk of osteoporosis and fractures, likely due to immobilization and neu-
ronal damage affecting bone metabolism. Similarly, heart failure, CHD, and chronic kidney disease have all been 
associated with an increased risk of osteoporosis and  fractures45–47.

The imperative of early osteoporosis prediction has never been clearer. As populations age globally, the public 
health burden of osteoporotic fractures is poised to rise. Against this backdrop, our study stands as a meaning-
ful stride towards enhancing osteoporosis predictive modalities. Utilizing the open-source primary healthcare 
dataset from IMS HEALTH, which included records from a large number of patients, we endeavored to develop 
a machine learning-based predictive model. With further research and validation, we hope the model will assist 
community healthcare workers in screening patients at high risk of osteoporosis during health follow-ups using 
simple indicators. Personalized health advice is given to these high-risk patients, and further medical tests such 
as laboratory tests or radiology are recommended to clarify the diagnosis. This may help to reduce unnecessary 
medical tests and save healthcare costs while ensuring that the benefits to osteoporosis patients.

Several algorithms were assessed in our endeavor, with the stacked ensemble approach of combining Logistic 
Regression (LR), Ada Boost Classifier (ADA), and Gradient Boosted Classifier (GBC) emerging as particularly 
promising. The superiority of this ensemble model underscores the inherent complexities of osteoporosis pre-
diction. It emphasizes that the disease’s multifaceted nature may be best captured by drawing from the strengths 
of multiple algorithms.

Limitations
However, it is important to acknowledge the limitations of our study. Our reliance on the IMS HEALTH dataset 
confines our findings to its demographic and geographic specifications. Consequently, the external validity and 
generalizability to other populations or regions might be limited. The ensemble model, for all its predictive 
prowess, also adds an element of complexity. Its seamless integration into clinical settings, especially ones with 
limited resources, could be a challenge. The cross-sectional nature of our dataset provides just a snapshot, whereas 
osteoporosis’s progression warrants a more longitudinal analysis. And for this reason, we did not apply sequential 
model in our study. In addition, due to the limitations of the information contained in the database, our model 
did not incorporate factors such as diet, lifestyle, physical activity and genetic predisposition, which reduces the 
complexity of the model but at the same time has an impact on the performance of the model. In the future, we 
hope to collect more dimensions of data to conduct more in-depth and robust studies in further research and 
validation. Moreover, while our model identified several chronic conditions as key predictors of osteoporosis 
risk, it is important to note that these conditions do not operate in isolation. They often interact with each other 
and with other factors such as lifestyle and genetics in ways that can either exacerbate or mitigate the risk of 
osteoporosis. Therefore, a thorough understanding of these interactions and their implications for osteoporosis 
risk is necessary for the accurate interpretation and application of our model’s predictions.

Conclusion
In conclusion, the study highlighted the potential of using ML techniques for predicting osteoporosis risk based 
on chronic disease data. The stacker model, incorporating a diverse set of variables related to age, gender, and 
chronic diseases, demonstrates good predictive performance and offered a tool for individualized osteoporosis 
risk management and early warning and detection, which could facilitate early interventions and improve patient 
outcomes.

Data availability
The raw data for this paper is all open access and can be accessed from the following link: https:// doi. org/https:// 
doi. org/ 10. 5061/ dryad. qh0h1.
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