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Hypoxia drives shared and distinct 
transcriptomic changes in two 
invasive glioma stem cell lines
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Glioblastoma (GBM) is the most common primary malignant cancer of the central nervous system. 
Insufficient oxygenation (hypoxia) has been linked to GBM invasion and aggression, leading to 
poor patient outcomes. Hypoxia induces gene expression for cellular adaptations. However, GBM 
is characterized by high intertumoral (molecular subtypes) and intratumoral heterogeneity (cell 
states), and it is not well understood to what extent hypoxia triggers patient-specific gene responses 
and cellular diversity in GBM. Here, we surveyed eight patient-derived GBM stem cell lines for 
invasion phenotypes in 3D culture, which identified two GBM lines showing increased invasiveness in 
response to hypoxia. RNA-seq analysis of the two patient GBM lines revealed a set of shared hypoxia 
response genes concerning glucose metabolism, angiogenesis, and autophagy, but also a large set of 
patient-specific hypoxia-induced genes featuring cell migration and anti-inflammation, highlighting 
intertumoral diversity of hypoxia responses in GBM. We further applied the Shared GBM Hypoxia 
gene signature to single cell RNA-seq datasets of glioma patients, which showed that hypoxic cells 
displayed a shift towards mesenchymal-like (MES) and astrocyte-like (AC) states. Interestingly, in 
response to hypoxia, tumor cells in IDH-mutant gliomas displayed a strong shift to the AC state, 
whereas tumor cells in IDH-wildtype gliomas mainly shifted to the MES state. This distinct hypoxia 
response of IDH-mutant gliomas may contribute to its more favorable prognosis. Our transcriptomic 
studies provide a basis for future approaches to better understand the diversity of hypoxic niches in 
gliomas.
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Glioblastoma (GBM), the most common and malignant high-grade glioma, has been classified by bulk gene 
expression to exhibit four transcriptional  subtypes1,2. Single cell transcriptomics has further revealed intratu-
moral heterogeneity, with each GBM harboring tumor cells of four distinct differentiation  states3. Furthermore, 
mutant forms of the metabolic enzymes IDH1/2 have been identified as molecular drivers of a subset of gliomas 
previously known as IDH-mutant GBM, now classified as “Astrocytoma, IDH-mutant”4. Despite these advances 
in molecular characterization, GBM continues to carry poor prognosis, with no effective treatment available.

A key environmental factor that drives malignant potency of gliomas is hypoxia (insufficient oxygenation), 
which occurs in specific niches and has been associated with neovascularization, cell migration, metabolic 
reprogramming, and poor patient  survival5–7. Hypoxia leads to stabilization of hypoxia inducible factor 1α 
(HIF1α), a master transcription factor that controls gene programs for metabolic adaptations, as well as cell 
specific  responses8. Part of the hypoxia response is also carried out via a related transcription factor HIF2α, 
which induces overlapping, but also unique sets of target  genes9. HIF-independent transcriptional responses to 
hypoxia may also be driven by epigenetic  changes10.

The distinct hypoxia activated gene programs for the diverse glioma subtypes are not fully resolved, and 
a better understanding may help reveal new treatment targets for this devastating disease. In this study, we 
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therefore sought to better characterize the diversity of hypoxia responsive gene programs in gliomas. We first 
utilized a 3D in vitro invasion assay to identify patient-derived GBM stem cell lines of different subtypes that 
displayed an increased invasive phenotype in response to hypoxia. We then performed RNA sequencing (RNA-
seq) to elucidate shared and patient-specific GBM Hypoxia gene signatures, which featured cell migration and 
immune-suppression.

We next applied the shared GBM Hypoxia gene signature to recent single-cell RNA-seq (scRNA-seq) data of 
high-grade glioma patients that included 5 IDH-wildtype and 6 IDH-mutant  gliomas11. Interestingly, analysis 
revealed divergent hypoxia responses in IDH-wildtype and IDH-mutant gliomas, with hypoxic glioma cells 
shifting mainly to a mesenchymal differentiation state in IDH-wildtype, but to an astrocyte-like state in IDH-
mutant glioma.

In sum, we reveal patient-specific hypoxia responses in two GBM stem cell lines, and that the mutation status 
of IDH affects the hypoxia responses in glioma patients. Our findings open the door for further investigations 
of hypoxia-induced adaptations of glioma cells and of novel targets in the hypoxic subpopulations of gliomas.

Results
Distinct migratory responses of patient GBM lines to hypoxia in 3D invasion assay
We first set out to identify patient GBM lines that would respond to hypoxia by changing their invasive migratory 
behavior. We utilized a 3D invasion assay to screen eight different patient-derived GBM stem cell lines repre-
senting four different transcriptional subtypes from the Human Glioblastoma Cell Culture Resource (Uppsala, 
Sweden; hgcc.se)12 (Fig. 1A). Importantly, these GBM lines had been established in neural stem cell media, which 
maintains the pathophysiological characteristics of glioma cells, including  invasiveness13–15.

The 3D invasion assay was conducted by generating GBM cell aggregates in individual U-wells with 50% 
Matrigel matrix, cultured either under hypoxic (1%  O2) or normoxic conditions for up to 72 h (Fig. 1B). We 
also applied transient hypoxia by limiting the hypoxia exposure to the first 24 h, followed by 48 h in normoxia. 
Invasion rates were determined as the ratio of invasion area relative to the area of aggregates at the beginning 
of the experiment (Fig. 1B).

Out of the eight GBM lines tested, two lines (UCA and UNB) displayed increased invasion under hypoxia 
when compared to normoxic conditions (Fig. 1D). Interestingly, the patients from whom these two cell lines 
were derived had the shortest survival (Table S1), suggesting a link of hypoxia-induced invasiveness and GBM 
malignancy.

Hypoxia induces shared and distinct gene sets in patient-derived GBM lines
To investigate gene expression changes in the two hypoxia-responsive lines (UCA and UNB), we isolated cells 
from 3D aggregates cultured under normoxia or hypoxia for 72 h, and RNAs were extracted for Illumina RNA 
sequencing (Fig. 2A).

Principal component analysis (PCA) of the RNA-seq data revealed close clustering of three independent 
samples of each condition, confirming reproducibility. The transcriptomic profiles showed that the different 
GBM lines (UCA vs. UNB) were separated along principal component 1 (PC1), consistent with the intertumoral 
heterogeneity of GBM. For both lines, the hypoxia exposed cells were consistently distinguishable from their 
normoxic counterparts along PC2 (Fig. 2B).

Among the differentially expressed genes (DEGs) in response to hypoxia (cut offs: P < 0.01 and  log2FC > 1) 
(Table S2–S4), a majority was upregulated in both UCA and UNB lines, consistent with HIF functioning as an 
“on-switch” (Fig. 2C). Heatmap hierarchical clustering analysis of the DEGs illustrated that majority of the genes 
induced or suppressed in one cell line were not changed in the other line, underscoring intertumoral heterogene-
ity of GBM in response to hypoxia (Fig. 2D).

An overlap analysis revealed that among the hypoxia DEGs for UCA and UNB (n = 634 and 986, respectively), 
248 were shared, among which 193 were upregulated (Fig. 2E). For subsequent studies, we focused on the 193 
shared upregulated DEGs, designated as “Shared GBM Hypoxia DEGs”, which were enriched for gene pathways 
linked to canonical adaptions to hypoxia, e.g., glycolysis and HIF-1 signaling (Fig. 2F). Among them, four major 
common themes were discernable: angiogenesis, metabolism (glycolysis), autophagy, and HIF negative feedback 
loop, exemplified by upregulation of the representative genes VEGFA, SLC2A1, BNIP3, and EGLN3, respectively 
(Fig. 2G). We further performed qRT-PCR analysis of these four genes in an independent hypoxia assay in UCA 
and UNB cells, which confirmed their robust induction under hypoxia (Fig. S1).

Hypoxia activates patient-specific gene programs in different gliomas
To elucidate patient-specific transcriptional responses to hypoxia, we next analyzed hypoxia DEGs unique to 
UCA or UNB cells. For UCA, 389 of the 634 hypoxia DEGs (61%) were unique, among which 249 were upregu-
lated and 137 downregulated (Fig. 3A). For UNB, 738 of the 986 hypoxia DEGs were unique (75%), and among 
them, 438 were upregulated and 300 downregulated (Fig. 3A).

Pathway analysis of the patient-specific hypoxia DEGs revealed cell migration and anti-inflammation as 
main biological themes (described below). For instance, for UCA, specific upregulated hypoxia DEGs included 
MMP2 and STC1, both linked to invasion and progression of  gliomas16–18, while specific downregulated DEGs 
included NR1D2, the deficiency of which can promote cancer growth by activating  inflammasome19, FRY, which 
suppresses the growth promoting transcription factor  YAP20, and SOX21, which acts as a tumor suppressor of 
gliomas by inhibiting SOX2 expression and promoting differentiation of glioma  cells21. On the other hand, for 
UNB, specific upregulated DEGs included SMIM3, a leukemia promoter gene, WNT7A, a hypoxia induced EMT 
driver, PADI2, a tumorigenic breast cancer gene, and RAPGEF4, which modulates  gliomas22–25. Downregulated 
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Figure 1.  3D matrix invasion assay reveals divergent responses of GBM cells to hypoxia. (A) Eight patient-
derived GBM stem cell (GSC) lines (Uppsala resource; hgcc.se) with defined subtypes. (B) Experimental 
overview. GSCs were incubated in low-attachment U-well dishes for 3 days to form aggregates. Matrigel was 
then added to a concentration of 50% to form a 3D matrix around aggregates. Images were taken at 4 h after 
matrix formation (t = 0 h) and subsequently every 24 h. Culture conditions: normoxia for 72 h; hypoxia for 24 h, 
followed by normoxia; hypoxia for 72 h. Invasion rates were measured as area inside the outline of the furthest 
extent of invasion streams (red line in schematic), subtracted by area at t = 0 h (blue line). (C) Representative 
images of GSC aggregates at t = 0 h and t = 72 h in different normoxia/hypoxia conditions. (D) Quantification 
of matrix invasion rates. For each cell line and condition, n = 6–10 aggregates. One-way ANOVA with Tukey 
correction for comparison against normoxia for each time point; *P < 0.05, **P < 0.01, ***P < 0.001.
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DEGs in UNB included CXCL3 and FAS, which are related to pro-inflammatory action via chemotaxis of neu-
trophils and apoptotic pathways,  respectively26,27 (Fig. 3A).

Ingenuity Pathway Analysis (IPA) core enrichment investigation of the UCA-specific hypoxia DEGs also 
highlighted activation of Tissue Factor pathway, which plays a role in tumor progression and  angiogenesis28 and 
has been linked with remodeling of the extracellular matrix and microenvironment of GBM. Enriched pathways 
also included inhibitor of differentiation 1 (ID1) signaling, which is linked to glioma invasion and suppression of 
differentiation of GBM stem  cells29, CDK5 signaling, a well-established regulator of neural progenitor  migration30 
and associated with GBM  invasion31, and CXCR4 signaling, which emphasizes a migratory response of glioma 
cells to  hypoxia32 (Fig. 3B).
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Figure 2.  Hypoxia induces a set of shared genes in two GBM lines. (A) Experimental approach. Aggregates 
of GSC lines UCA (classical subtype) and UNB (neural subtype) were cultured for 72 h in 3D matrix under 
normoxia or hypoxia and then subjected to RNA-seq. (B) Principal component (PC) analysis demonstrates 
clustering of triplicate samples by subtype of neural versus classical (PC1), and hypoxia versus normoxia (PC2). 
Each RNA-seq sample was pooled from 30 aggregates. (C) Expressed genes in UCA and UNB were plotted 
by log-transformed expression levels in normoxia (x-axis) or hypoxia (y-axis) condition. Hypoxia-induced 
DEGs are marked in red (upregulated) or blue (downregulated). (D) Heatmap of relative gene expression 
levels showing shared and distinct hypoxia-induced DEGs (cutoff: P < 0.01 and  log2FC > 1) in UCA and UNB. 
Expression values were row-normalized to calculate z-score. (E) Venn diagram showing 248 overlapping 
hypoxia-induced DEGs in UCA and UNB. After excluding 5 DEGs with opposing directionality, 243 shared 
DEGs were plotted as heatmap, with 193 genes upregulated. (F) Pathway enrichment analysis of Shared 
GBM Hypoxia DEGs with ENRICHR platform, representative genes are in bold font. (G) RNA-seq tracks of 
representative Shared GBM Hypoxia DEGs in canonical hypoxia response pathways: angiogenesis, metabolism 
(glycolysis), autophagy, and negative feedback of HIF signaling.
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We further used the Graphical Summary platform of IPA for patient-specific hypoxia DEGs to construct 
an overview of predicted relationships among transcription factors, cytokines, and other functional pathways 
(Fig. 3C). Interestingly, the network of UCA-specific hypoxia DEGs featured the transcription factor JUN as one 
of its central nodes with links to the HIF1A and VEGFA nodes. JUN is known to drive malignant properties of 
glioma  cells33. Other nodes included WNT3A and the canonical WNT-signaling transcription factor β-catenin 
(CTNNB1). Interestingly, glioma derived WNT3A has been reported to trigger an anti-inflammatory program 
in microglia, resulting in a less robust and more suppressed immune cell  population34.

Core IPA analysis of UNB-specific hypoxia DEGs showcased enrichment of the GABA receptor signaling, 
which has been associated with suppressed proliferation, tumor quiescence, and increased therapy  resistance35. 

Figure 3.  Unique hypoxia response genes of two different GBM cell lines. (A) Volcano plots show up- and 
downregulated DEGs in UCA and UNB under hypoxia. Top unique DEGs are labelled with gene symbol. (B,D) 
Ingenuity Pathway Enrichment analysis (IPA) of the DEGs specific for UCA or UNB under hypoxia. (C,E) IPA 
graphical summary highlights major biological themes and predicted pathway activation and inhibition for the 
DEGs specific for UCA or UNB.
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In addition, there was enrichment for pathways with predicted inhibition of the Neuroinflammation Signaling 
Pathway and Interferon Signaling, suggesting an immunosuppressive reaction of UNB under hypoxia (Fig. 3D).

The IPA Graphical Summary of UNB-specific hypoxia DEGs highlighted overall downregulation/inhibition 
of pathways (Fig. 3E), in contrast to the mainly activated pathways of UCA-specific DEGs (see Fig. 3C). This 
included predicted inhibition of Neuroinflammation Signaling Pathway, movement of phagocytes, and lympho-
cyte migration. This was paralleled by downregulation/inhibition of nodes for the cytokines and cytokine related 
proteins IRF7, TNF, MYD88, IL1A and IL1B, which are immune regulators of pro-inflammatory pathways related 
to interleukin-1 and Toll-like receptor  signaling36–39.

IDH mutation status influences the hypoxia response of GBM cells
To better understand the clinical relevance of the Shared Hypoxia DEGs of UCA and UNB (193 upregulated 
DEGs), we applied this hypoxia signature across glioma cells in 11 high-grade glioma patients, including 5 IDH-
wildtype and 6 IDH-mutant gliomas based on a single cell RNA-seq  dataset11. For each glioma cell, a signature 
score for the Shared GBM Hypoxia DEGs was calculated (Fig. 4A). By using the proportion of cells expressing 
VEGFA as a guide for hypoxia induction, we selected the Shared Hypoxia signature score of 0.25 as a threshold 
to separate cells into hypoxic versus non-hypoxic, with about 3.8% of GBM cells (1170 out of a total of 30,544) 
classified as hypoxic (Fig. 4B,C).

To determine the impact of hypoxia on cellular differentiation states (as defined by Neftel and  colleagues3), we 
first analyzed the different cell states in each glioma patient (Fig. S2) and then asked if the cell states would be dif-
ferently represented in hypoxic versus non-hypoxic glioma cells. Interestingly, we found a higher representation 
of astrocyte-like (AC) and mesenchymal-like (MES) states in hypoxic population, from 20.9 to 25.8% for AC and 
from 24.9 to 47.8% for MES state, suggesting that hypoxia drives a shift towards AC and MES states. In contrast, 
the proportion of oligodendrocyte precursor-like (OPC) and neural progenitor-like (NPC) states decreased in 
hypoxia, from 16.5 to 7.2% for OPC, and from 37.6 to 19.0% for NPC, respectively (Fig. 4D).

We next examined the shift of cell states on the level of individual glioma patients according to IDHstatus, as 
gliomas with IDH1/2 mutation have been defined as a separate entity, with better prognosis among high grade 
 gliomas40,41. The relative proportion of the hypoxic cell population was comparable among glioma patients, 
independent of IDH mutation status, ranging from 1.7 to 5.5% (Fig. 5A). Intriguingly, for IDH-wildtype glioma 
patients, we observed in all cases a distinct shift of hypoxic cells towards MES state (Fig. 5B), whereas among the 
IDH-mutant gliomas, the MES shift was largely absent; instead, we detected a strong shift towards an AC state in 
response to hypoxia (Fig. 5B). As the MES state is associated with higher malignancy and shorter  survival1, the 
divergent hypoxia response of IDH-mutant gliomas towards AC state may be part of the molecular underpin-
nings of their better prognosis.

Shared GBM Hypoxia DEGs signature is an alternative gene set for analysis of GBM hypoxia
For further confirmation of theShared GBM Hypoxia signature (193 upregulated DEGs), we performed a com-
parison to the Hallmark Hypoxia signature from the Molecular Signatures Database (MSigDB) (200 genes, 
compiled from multiple  studies42). Interestingly, only 20% of the genes from the two sets overlapped (Fig. S3A), 
indicating again divergent hypoxia gene responses in different cell types. We also applied the MSigDB Hallmark 
Hypoxia signature to the Johnson et al. patient dataset to separate glioma cells into non-hypoxic and hypoxic 
cells (Fig. S3B). Analysis of the cell states again confirmed that hypoxia was associated with an enrichment of 
AC or MES states, with a higher shift of IDH-mutant gliomas to the AC state (Fig. S3C,D).

We also made comparison to a recently defined cancer wide hypoxia signature (HIF metagene) based on 
genome-wide HIF binding and transcriptome profiling of several cancer cell lines (representing lung, colorectal, 
liver, prostate, kidney, and breast cancer) under  hypoxia43. We found that more than half of the HIF metagene 
signature (26/48) overlapped with our GBM Shared Hypoxia signature (Fig. S4A). We applied the HIF metagene 
signature to the glioma patient dataset, using a threshold that yielded ~ 3.6% of hypoxic GBM cells, a similar 
proportion as our Shared GBM Hypoxia signature (Fig. S4B). Analysis of the cell states showed consistent results 
as above: an overrepresentation of the MES state among hypoxic glioma cells (Fig. S4C). However, an increase 
in AC state using the HIF metagene was not observed, illustrating our hypoxia signatures unique to glioma 
(Fig. S4C). When analyzing glioma patients stratified  by IDH status, analysis with the HIF metagene consist-
ently identified a significant increase towards the MES state among hypoxic cells of IDH-wildtype patients, and 
a trend of AC shift among IDH-mutant patients (Fig. S4D). Together, these comparative analyses confirmed that 
the Shared GBM Hypoxia DEGs signature identified in our study is a valuable alternative for the identification 
and analysis of hypoxic cells in gliomas.

Discussion
Glioblastoma is an aggressive brain cancer with high inter-and intratumoral heterogeneity. In this study, we inves-
tigated the role of hypoxia as an environmental factor promoting invasiveness and cellular diversity of gliomas. 
We showed that hypoxia induced both shared and patient-specific gene programs in patient-derived GBM stem 
cells. While the shared gene set mainly concerned canonical adaptations to hypoxia such as angiogenesis and 
glycolysis, patient-specific hypoxia genes featured cell migration or immunosuppressive pathways. By apply-
ing the Shared GBM Hypoxia signature to a larger single cell RNA-seq patient dataset, we revealed that IDH 
mutation status influences the responses of glioma cells to hypoxia, with IDH-wildtype glioma mainly shifting 
to a mesenchymal-like cell state, whereas IDH-mutant gliomas shifting more towards to an astrocyte-like state.

The 3D invasion assay with patient-derived GBM stem cell lines demonstrated that only two out of eight lines, 
UCA and UNB, displayed a hypoxia-induced increased migratory response. Interestingly, the two patients from 
whom UCA and UNB were derived had the shortest survival times among the eight patients. Thus, increased 
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migration may not be a general hypoxia response in all glioma patients, but restricted to certain subtypes with 
more aggressive features. Our bulk RNA-seq analysis showed a clear induction of migration-related genes for the 
UCA GBM line in response to hypoxia, while immune suppressive pathways were prominent for UNB. Further 
investigations are needed to reveal the functional significance of these distinct hypoxia-induced gene programs 
for invasion and the GBM immune landscape.

Our study applied severe hypoxia (1%) to the GBM cells, which triggers a response in which the master 
transcription factor HIF-1α plays a major role. It should be noted that mild chronic hypoxia (1–5%  O2) can lead 
to a switch of the hypoxia responses to one carried out by HIF-2α with potentially divergent  functions44. Future 
studies with the 3D aggregate system under mild hypoxia conditions will be informative to investigate a potential 
HIF1/2 switch in invasive GBM cells.

The shift of hypoxic cells in IDH-wildtype gliomas to a more MES-like state is in alignment with the study 
by Neftel et al. that characterized the MES-like states of glioma cells as hypoxia  dependent3. Interestingly, the 

Figure 4.  Shared GBM Hypoxia signature suggests hypoxia-induced MES/AC shifts in tumor cells in GBM 
patients. (A) Uniform Manifold Approximation and Projections (UMAP) dimensionality reduction of a 
scRNA-seq dataset from 11 high-grade glioma patients (Johnson et al.) overlayed with the module score for 
the gene signature Shared GBM Hypoxia DEGs. (B) Left, distribution of signature scores for Shared GBM 
Hypoxia DEGs for all glioma cells. The selected cut-off threshold for hypoxic glioma cells is indicated by the 
red dashed line. Right, UMAP of hypoxic glioma cells with signature score > 0.25. (C) The proportions of cells 
expressing VEGFA were plotted as a guide to compare threshold values of gene signature score for Shared GBM 
Hypoxia DEGs when applied to glioma scRNA-seq dataset from Johnson et al. The threshold value of 0.25, 
which identified ~ 3.8% of glioma cells as hypoxic, was selected as a cut-off value for subsequent studies. (D) 
Left, two-dimensional representation of the cell states (Neftel et al.) for glioma cells with signature score <  = 0.25 
(non-hypoxic) and > 0.25 (hypoxic). Right, stacked bar chart comparing the composition of cell states between 
non-hypoxic and hypoxic glioma cells show hypoxia-induced shifts towards MES or AC state. AC, astrocyte-
like; MES, mesenchymal-like; NPC, neural progenitor cell-like; OPC, oligodendrocyte precursor cell-like state.
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preferential shift of hypoxic cells to an AC-like state in IDH-mutant gliomas may partly account for the more 
favorable prognosis of this glioma subtype, and investigations are warranted to elucidate the molecular under-
pinnings of this difference.

One limitation of the current study is that only two patient-derived GBM lines were sequenced, and additional 
sequencing of patient samples of diverse GBM molecular subtypes, in particular, sequencing of the six remain-
ing GBM cells lines that did not show increased invasiveness in response to hypoxia would help to compare 
hypoxia-invasive versus non-invasive glioma transcriptome signatures. Additional information could also be 
gained by applying 3D tomographic imaging to the GBM  aggregates45 and application of proliferations  markers46, 
which could help to determine if increased GBM invasiveness would go along with reduced proliferation, as 
has been proposed in the “go or growth”  theory47. In this context, it is noteworthy that glioblastoma cells do not 
necessarily follow such dichotomy, as recent studies have demonstrated that invasive GBM cells are often highly 
 proliferative48. A further limitation of our study is that invasion assays were conducted in Matrigel, a laminin-
rich matrix that does not fully represent the brain extracellular matrix, which is rich in glycosaminoglycans like 
hyaluronic acid (HA)49. Future studies in HA-based 3D matrices (see for example ref.50) will present a closer 
match with the actual matrix conditions of the brain.

Furthermore, the interactions of hypoxic glioma cells with the immune cell environment will need further 
exploration. This is particularly important in light of the fact that tumor-associated microglia and macrophages 
(TAMs) can comprise > 30% of the tumor bulk in GBM and contribute to tumor progression and treatment 
 resistance51. The distribution of TAMs varies between molecular subtypes of GBM, with the highest TAM con-
tent found in GBM of mesenchymal subtype (associated with worst prognosis), and medium and low content in 
classical and proneural subtypes,  respectively52. Thus, immune interactions, as suggested by the transcriptomic 
response of UNB GBM cells to hypoxia, may be a key factor in how hypoxia relates to GBM malignancy. In this 
context it is noteworthy that our teams have recently characterized the in vivo hypoxia response in a murine GBM 
model, which featured attraction and sequestration of immune cells inside of hypoxic zones with immunosup-
pressive gene  signatures53, a mechanism potentially applicable in human GBM patients.

In sum, our study provides new insights into the molecular strategies that glioma cells exploit to adapt to 
hypoxia, a key factor of the tumor microenvironment and a driving force of cellular diversity in glioma. Targeting 
the hypoxia-driven pathways may improve therapies for GBM patients.

Figure 5.  Shifts in glioma cell state are influenced by IDH mutation status. (A) The high-grade glioma patients 
of the study Johnson et al. were stratified into IDH-wildtype and IDH-mutant groups and analyzed for the 
proportions of hypoxic cells, defined by signature score > 0.25 for the Shared GBM Hypoxia DEGs. Left, absolute 
cell counts; right, relative proportions. (B) Line graphs illustrating shifts of the proportions of cell state between 
non-hypoxic and hypoxic glioma cells in each of the IDH-WT (5 patients) and IDH-MUT glioma (6 patients).
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Methods
GBM stem cell lines
The human GBM stem cell lines UPA (U3047), UPB (U3082), UNA (U3021), UNB (U3085), UMA (U3035), 
UMB (U3065), UCA (U3056), and UCB (U3086) (all IDH-wildtype) were obtained from the Human Glioblas-
toma Cell Culture Resource (hgcc.se) of Uppsala University, Sweden, where the cell lines had been established 
from resected grade 4  GBMs12. See Table S1 for additional HGCC cell line information on subtype, gender, age, 
and survival time. The cell lines were de-identified and no protected patient data was transmitted by HGCC 
to investigator team. Of note, transcriptional classification of GBM has been updated in 2020 to 3 molecu-
lar  subtypes1, but at the time that the lines were characterized at HGCC four transcriptional subtypes were 
 recognized2.

The GBM lines were maintained in neural stem cell media as adherent cultures on laminin-coated dishes, 
which preserves main physiological characteristics GBM tumor  biology13–15. Tissue culture dishes were coated 
with laminin (Invitrogen, 10 µg/ml in PBS) for 1 h at 37 °C. Plates were washed 3 times with PBS before adding 
human neural stem cell (HNS) media, containing Neurocult NS-A basal medium, Neurocult human NS-A pro-
liferation supplement (Stemcell Technologies), 0.0002% heparin, 10 ng/ml bFGF (Peprotech), and 20 ng/ml EGF 
(Peprotech). Cells were passaged by dissociation with Accutase (Gibco), incubated for 3 min in 37 °C incubator 
before dissociation with a micropipette. Two volumes of basal NS-A media were added to dilute Accutase, and 
cells were pelleted by centrifugation at 1200 rpm in a tabletop centrifuge (Eppendorf Centrifuge 5702) for 3 min, 
and then resuspended in HNS media before plating.

3D invasion assay
We followed the protocol for 3D invasion assay of tumor aggregates as  described54,55. Briefly, GBM cells were 
seeded in 96 well low attachment U-shaped bottom plates (Corning) at 2000 cells/well in 100 µl of HNS media. 
Cells were incubated for 3 days in a cell culture incubator at 37 °C to let them form spheres at the bottom of wells. 
Next, 50 µl of HNS media was replaced in each well with ice-cold Matrigel (Corning) or the equivalent product 
Cultrex basement membrane extract (R&D Systems), and after further incubation for 4 h, the gel had solidified 
(defined as t = 0 h). Photos were taken with a cell culture microscope (Olympus CKX53) at t = 0 h, as well as at 
t = 24, 48, and 72 h. The perimeter of aggregates at each time point was measured as a ratio to the perimeter of 
the aggregate in the same well at t = 0 h.

RNA bulk sequencing
To isolate RNA from cultured GBM aggregates, the solid Matrigel was dissolved by addition of Cultrex Organoid 
Harvesting Solution (OHS; R&D systems). For each condition, 30 GBM aggregates were collected into a 6-well 
dish with a 1 ml micropipette with cut off tip from the 96-well U-wells. A volume of 5 ml Cultrex OHS was 
added and plates were placed for 30 min on a shaker in a 4 °C cold room. Aggregates were collected in a 15 ml 
tube and pelleted by centrifugation at 1000 rpm for 5 min, then 350 µl RLT buffer of the RNAeasy kit (Qiagen) 
was added to lyse aggregates by grinding them up with a Dounce homogenizer. The lysed RNA in RLT buffer 
was stored at − 80 °C until processing.

To prepare cDNA libraries for Illumina sequencing from lysed RNA of GBM aggregates, total RNA was 
isolated with the RNeasy Micro kit. The cDNA libraries were synthesized with the NEBNext Ultra II Direc-
tional RNA Library Prep Kit for Illumina by using 100 ng RNA as input for each replicate sample. Libraries 
were sequenced at John Wayne Cancer Institute, Santa Monica, on an Illumina HiSeq2500 device with 75 bases 
single-end reads for a coverage of about 30 million reads per sample.

Bulk RNA-seq bioinformatic analysis
Raw sequencing reads from UCA and UNB cell lines were mapped to hg38 human genome using  HISAT256. 
Counts of reads mapping to genes were obtained using featureCounts software of Subread package against 
Ensembl v90  annotation57. Differential expression analysis was done using the DESeq2 R  package58. Differentially 
expressed genes (DEGs) were defined as genes with log2 fold-change (FC) > 1 between conditions and adjusted P 
value < 0.01. Enrichment analysis of gene sets for biological pathways was performed with the Enrichr platform 
(https:// maaya nlab. cloud/ Enric hr/)59 and the Ingenuity Pathway Analysis (IPA) tool (Qiagen)60. The combined 
score chosen to rank pathways is the multiplication of the odds ratio by the negative natural log of the P value 
of enrichment.

qRT-PCR of hypoxia induced genes in GBM stem cell lines
UCA and UNB GBM stem cell lines, maintained on laminin-coated dishes, were exposed for 16 h to hypoxic (1% 
 O2, hypoxic chamber) or normoxic control (standard cell culture incubator) conditions. Total RNA was isolated 
from cells using the RNeasy Plus Mini Kit (Qiagen) and quantified using a Nanodrop device (Thermo Scientific). 
cDNA was prepared using a Superscript III cDNA synthesis kit (Invitrogen) according to manufacturer’s protocol. 
Finally, the cDNAs were analyzed for expression levels of hypoxia-induced genes by qRT-PCR on an ABI Prism 
7900HT Sequence Detection instrument using PerfeCTa SYBR Green FastMix (Quantabio). Expression of the 
house keeping gene HPRT1 was used for normalization of expression levels in each sample.

qRT-PCR primers:
HPRT1-F2: AGA TGG TCA AGG TCG CAA G
HPRT1-R2: GTA TTC ATT ATA GTC AAG GGC ATA TCC 
VEGFA-F1: AGT CCA ACA TCA CCA TGC AG
VEGFA-R1: TTC CCT TTC CTC GAA CTG ATTT 
SLC2A1-F1: AAA GTG ACA AGA CAC CCG AG

https://maayanlab.cloud/Enrichr/)
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SLC2A1-R1: TGT CAG GTT TGG AAG TCT CATC 
BNIP3-F1: GTT CCA GCC TCG GTT TCT ATT 
BNIP3-R1: AGC CCT GTT GGT ATC TTG TG
EGLN3-F1: ATT CAT AGC AGA TGT GGA GCC 
EGLN3-R1: TCA GCA TCA AAG TAC CAG ACAG 

Bioinformatic analysis of glioma patient data
The glioma patient single cell data of the Johnson et al.  study11 was analyzed using the Seurat package (v4.3.0) 
as previously  described61. Briefly, we loaded the Johnson et al.  study11 count matrix using the read10x function, 
subset on the glioma cells, and removed low quality cells with fewer than 1000 unique molecular identifiers 
(UMIs), fewer than 400 detected genes or greater than 25% mitochondrial genes from downstream analysis. 
Remaining cells were ‘LogNormalized’ using NormalizeData function, and 2000 variable genes were identified 
using the default ‘vst’ method in the ‘FindVariableFeatures’ function. The normalized data was scaled using the 
ScaleData function, which was then used to perform principal component (PCA) analysis on the variable gene 
expression space. Following data integration, Uniform Manifold Approximation and Projection (UMAP) on the 
first 20 PCAs was performed for visualization of the glioma scRNA-seq data. We then used the AddModuleScore 
function with default parameters to calculate the enrichment of different hypoxia gene signatures in individual 
glioma cells.

VEGFA+ cells were defined as cells with 2 or more VEGFA unique molecular identifier (UMI) counts. We 
applied a threshold score of 0.25 for the signature Shared GBM Hypoxia DEGs module (defined in this study; 
see Table S2 and S5) to separate cells into hypoxic (> 0.25) and non-hypoxic (≤ 0.25) classes. The Lombardi et al. 
study pan cancer hypoxia gene signature was similarly analyzed on the Johnson et al. scRNA-seq data for com-
parative analysis. We applied a threshold score of 0.55 for the cancer wide hypoxia signature (HIF metagene) as 
defined by Lombardi et al. (Table S5) to separate cells into hypoxic (> 0.55) and non-hypoxic (≤ 0.55) classes in 
similar proportions as classified using the Shared GBM Hypoxia DEGs signature.

Comparative analysis for cell states were visualized by quadrant graphs calculated as described in Neftel et al.3. 
Briefly, scores for each state were calculated using the Seurat AddModuleScore function on gene signatures for 
MES1/2, AC, OPC, and NPC1/2 states, as defined by Neftel et al.3 (Table S5). The cell state with the highest score 
determined the categorization of the cell (cells in MES1 or MES2 state were summarized as MES, and cells in 
NPC1 or NPC2 state as NPC).

Statistical analysis
Statistical analysis of GBM aggregate invasion was performed with GraphPad Prism 9. One-way ANOVA with 
Tukey correction was applied for comparison of aggregate growth for each time point. Wilcoxon rank-sum 
test was used for analysis of cell state proportions between patient groups. The GraphPad Prism setting NEJM 
(New England Journal of Medicine) for reporting of P values was applied. P ≤ 0.05 was considered as statistically 
significant (*); P ≤ 0.01, **; P ≤ 0.001, ***.

Data availability
The RNA-Seq data has been deposited at the NCBI Gene Expression Omnibus (GEO) database under accession 
number GSE232725.
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