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AMENet is a monocular depth 
estimation network designed 
for automatic stereoscopic display
Tianzhao Wu 1,2, Zhongyi Xia 1,2, Man Zhou 1,2, Ling Bing Kong 1 & Zengyuan Chen 1*

Monocular depth estimation has a wide range of applications in the field of autostereoscopic 
displays, while accuracy and robustness in complex scenes are still a challenge. In this paper, we 
propose a depth estimation network for autostereoscopic displays, which aims at improving the 
accuracy of monocular depth estimation by fusing Vision Transformer (ViT) and Convolutional Neural 
Network (CNN). Our approach feeds the input image as a sequence of visual features into the ViT 
module and utilizes its global perception capability to extract high-level semantic features of the 
image. The relationship between the losses is quantified by adding a weight correction module to 
improve robustness of the model. Experimental evaluation results on several public datasets show 
that AMENet exhibits higher accuracy and robustness than existing methods in different scenarios 
and complex conditions. In addition, a detailed experimental analysis was conducted to verify the 
effectiveness and stability of our method. The accuracy improvement on the KITTI dataset compared 
to the baseline method is 4.4%. In summary, AMENet is a promising depth estimation method with 
sufficient high robustness and accuracy for monocular depth estimation tasks.
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Acquiring depth information is a crucial task for machines to perceive the objective reality of a scene from 
2D images1. Depth estimation can be achieved by utilizing two input images of the same scene captured from 
distinct viewpoints2, a technique referred to as binocular depth estimation. Recent studies have demonstrated 
that humans in the real world rely on images obtained from their eyes to estimate the depth of surrounding 
objects. Thus, depth estimation stands as a classical task in the realm of computer vision, finding wide-ranging 
applications in domains, such as object tracking and autonomous driving3–5. From cost perspective, high-
quality monocular depth estimation holds appeal, as it can substitute for laser radar sensors, thus offering 
greater flexibility and affordability. Traditional approaches often involve manual crafting6 and rely on visual 
cues (shadows, textures, etc.) or employ supplementary information7. For multi-view auto-stereoscopic displays, 
the conventional approach involves capturing the same scene from multiple viewpoints at varying angles to 
obtain left and right images with depth information8,9. Evidently, this dependency on additional sensors diverges 
from the original intent of monocular depth estimation. In depth estimation tasks, providing the depth value 
corresponding to each pixel is essential. Within dense prediction tasks, depth learning-based methods primarily 
fall into two categories. One is based on image patch tasks, utilizing small neighborhoods around pixels or 
superpixel blocks for independent classification (using fully connected layers, hence requiring fixed image patch 
sizes). The other relies on fully convolutional networks for pixel-to-pixel prediction, enabling segmentation of 
images of arbitrary sizes without the need for classifying each image patch.

With the advancement of deep learning techniques, training CNN using well-designed loss functions and 
extensive annotated datasets has shown effectiveness in predicting depth maps from single images10. However, in 
practical applications, the actual performance of monocular depth estimation often falls short of expectations. It 
demands substantial datasets for training, making it challenging for real-time auto-stereoscopic display devices. 
To address this concern, we explore existing deep learning models, specifically those based on CNN and ViT11. 
We propose a novel architecture based on Vision Transformers to tackle this task, with modifications leading 
to the development of AMENet model. Throughout our training process, we introduce a segmentation lens 
and leverage a custom dataset for a novel multi-task learning approach. Typical monocular depth estimation 
algorithms can be roughly categorized into three groups: supervised algorithms, unsupervised algorithms, and 
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video-based depth estimation methods. Supervised algorithms address known problems, training models using 
labeled data to perform specific tasks and predicting known outcomes from input two-dimensional images to 
output depth maps. Given the difficulty in obtaining depth data, many algorithms resort to unsupervised models 
that jointly train on binocular image data captured by using two cameras. These binocular images can predict 
each other, thereby obtaining corresponding disparity data, which can then be translated into depth information 
based on the disparity-depth relationship. Alternatively, the correspondence problem between pixels in binocular 
images is treated as a stereo matching task for training. The third category involves video-based depth estimation, 
encompassing both single-frame monocular depth estimation and pixel-wise stereo matching in multi-frame 
videos to acquire multi-view images and estimate camera poses. Due to the need for labeled training material, 
adjusting weights, and quantifying depth map losses, we will employ a "supervised training" approach. Our 
network is based on CNN and ViT. The choice of models does not require downloading the original ones, 
referencing them to be sufficient. We will provide a qualitative comparison against alternative methods. Figure 1 
shows the predictions of our model.

Related works
CNN have found widespread applications in computer vision12,13. The layout of convolutional operations 
significantly enhances the effectiveness of neural networks by incorporating contextual information, weight 
sharing, and translation invariance. CNN have become a predominant approach in the research field of intelligent 
visual systems. However, many CNN employ 3 × 3 convolutions, which limit the network’s receptive field14. 
In dense prediction tasks, such as semantic segmentation, object detection, and depth estimation, a larger 
receptive field is crucial for establishing contextual consistency. In the case of monocular depth estimation, global 
contextual information can smooth the disparities in input feature maps, resulting in accurate depth information. 
Presently, most approaches expand the receptive field of convolutions by stacking multiple convolutional layers15. 
For downstream tasks, CNN backbone networks with extensive receptive fields are also gradually emerging16. 
Within stacked network architectures, the encoder-decoder configuration is the most commonly employed for 
monocular depth estimation tasks.

Transformers were originally designed to capture long-range correlations in textual information, which is 
why they quickly found applications in the field of computer vision17. The self-attention mechanism employed 
in transformers is a special form of attention, which works effectively in capturing distant dependencies between 
two pixels. As a result, transformers are playing an increasingly important role in the realm of visual tasks. For 
certain visual tasks, various self-attention networks demonstrate superior performance over mainstream CNN. 
For instance, in the case of DETR, transformers are used for dense prediction, dividing the input image into 
multiple patches that are then merged18. Solely relying on self-attention mechanisms could cause the network 
to overlook correlations between feature map channels, while this globally designed pattern could struggle 
with detecting small objects. Building upon this, LocalViT introduces locality to the vision transformer by 
incorporating deep convolutions in the feedforward network19. However, due to the addition of extra modules, 
the inference speed is consequently reduced. The emergence of ViT allows us to treat image data similarly to 
natural language processing, yet ViT does not fully leverage the spatial structural information within images. 
Solely utilizing ViT for image processing can result in the loss of valuable information to a certain degree.

To address this issue, we propose combining CNN with ViT. One straightforward approach is to use a hybrid 
model. In this hybrid model, the input image is initially processed using CNN to extract low-level features. These 
features are then passed to the ViT model to extract high-level features. The advantage of this approach is that 

Figure 1.   AMENet’s predictions for indoor and outdoor scenes.
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it can leverage CNN’s ability to preserve spatial structural information when processing image data, while also 
utilizing ViT’s self-attention mechanism to extract higher-level features. Another approach is to employ the 
Vision Transformer with Convolutional Pooling (ViT-CP). In ViT-CP, we similarly use convolutional layers to 
preprocess the input image before passing it to the ViT model for further processing. This method reduces the 
computational cost of ViT. Since the convolutional layers preprocess the input data, it decreases the sequence 
length that the ViT model needs to handle. Additionally, this approach allows for feature extraction using ViT 
without sacrificing spatial structural information. The primary contributions of this paper are as follows.

(a)	 Introducing the Vision Transformer into monocular depth estimation, we incorporate a random dropout 
in the encoder to enhance the model’s robustness and generalization performance.

(b)	 The convergence phase is divided into "coarse convergence" and "fine convergence." During the fine 
convergence phase, the loss is defined as the sum of segmentation loss (loss_seg), inner consistency loss 
(loss_in), and outer consistency loss (loss_out). This formulation quantifies the segmentation loss while 
considering three aspects: segmentation accuracy, internal consistency, and external consistency. By 
incorporating these factors into the training process, the accuracy and stability of depth estimation are 
further improved.

(c)	 We conducted experiments on multiple datasets and compared our approach with other methods for 
monocular depth estimation. The experimental results indicate significant improvements in both speed 
and accuracy with our method. Particularly, our approach demonstrates enhanced stability in scenarios 
with natural variations, showcasing its robustness.

Method
In the context of this study, we use a self-supervised monocular depth estimation approach based on a 
combination of convolutional neural networks and vision converters. In this section, the method we used in 
detail will be described, including model structure, loss function, and training process.

Model structure
The majority of early research predominantly employed singular convolutional modules or transformer modules 
for constructing network architectures. However, the latent potential of harnessing these two categories remained 
relatively unexplored. Thus, in our approach, we amalgamated CNN and ViT to collectively tackle the task of 
monocular depth estimation. Figure 2 delineates the structure of the AMENet model proposed in this study.

The input layer receives fixed-size image data. The CNN employs a sequence of convolution and pooling 
operations to extract image features and maps these features to a set of low-dimensional feature vectors. In 
this context, we utilize a pre-trained CNN model, specifically ResNet50. The ViT component involves feeding 
the feature vectors extracted by the CNN into the Vision Transformer. The Vision Transformer comprises a 
set of Transformer encoders, each consisting of multi-head self-attention mechanisms and feedforward neural 
networks. Through the attention mechanism, the model dynamically attends to different segments of input 
vectors, extracting the most information-rich feature vectors. The encoders progressively heighten the abstraction 
level of features, thereby generating high-dimensional representations for final classification or regression 
purposes. The fully connected layer concludes the architecture, mapping the features generated by the ViT to 

Figure 2.   Overall architecture of AMENet.
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categories or regression values. This layer typically involves several hundred neurons, performing nonlinear 
transformations on the feature vectors to suit the requirements of various tasks.

Loss and convergence
Due to the discrete nature of depth maps compared with their "continuous" counterparts, the loss function must 
account for the "uncertainty." Conversely, in the case of segmentation maps, which are also more "discrete" than 
"continuous", the loss function necessitates classification rather than quantification. Consequently, Mean Squared 
Error (MSE) loss is employed to quantify the loss for depth maps, whereas "cross-entropy" is used to classify the 
loss function. For given ground truth depth map and predicted depth map, the cross-entropy loss measures their 
similarity by quantifying the difference between them. Its formula is as follows:

In the formula, �N
i=1 represents the total number of pixels in the depth map, �M

j=1 indicates the total number 
of depth value classes, yij signifies the actual depth value at position (i,j), taking values of 0 or 1, and ŷij stands 
for the depth prediction by the model at position (i,j). In the equation, 1− yij signifies the error when pixels with 
a depth value of 0 are predicted as 0.

In the early stages, convergence often tends to be rapid but unstable. To ensure proper convergence, it is 
necessary to:

(a)	 Apply a sufficiently large weight to the loss_seg term, ensuring that the predicted segmentation must be of 
high quality and devoid of noise;

(b)	 Apply normalized weights to loss_in and loss_out, achieved through the utilization of "scale and shift 
invariant loss," to ensure their proper normalization.

To quantify the weights among the three values, an additional correction unit is introduced, as illustrated 
in Fig. 3.

The magnitude of fx impacts the depth and details of the depth map. Increasing the value reduces noise, 
while decreasing it enhances depth details. This unit aids AMENet in producing favorable predictions even 
when encountering "corrupted" data.

Encoder
At lower levels, features are both spatially accurate and of high-resolution, while at higher levels, features are 
spatially inaccurate yet semantically enriched. In many existing depth estimation methods2, ResNet is utilized 
as an encoder. This allows the extraction of low-resolution feature maps from high-resolution input images, 
capturing both semantic and spatial information correspondences. Full-dimensional dynamic convolutions3 
address the issue of encoders’ inability to model relationships between distant pixels. ACDNet4, on the other 
hand, achieves 3D reconstruction of panoramic images through an adaptive channel fusion module.

In this study, a methodology similar to ShuffleNet is employed. Feature extraction tasks are accomplished 
by stacking four random blocks alongside four feature extraction stages. Following each stage, the feature map’s 
dimensions are halved, while the channel count remains consistent. The Vision Transformer is incorporated as 
the backbone, specifically in the encoder portion of the encoder-decoder architecture. Images with a size of N*N 
are divided into patches of size p*p, where each patch is sized as (N/p)2.

For each image, segmentation is performed, followed by positional embeddings and classification embeddings 
operations, resulting in a matrix of size (N/p)2 ∗ 3p2 , which is then fed into the ViT encoder. Additionally, to 
facilitate the classification task, an extra learnable special token is introduced,xclass : 1 ∗ 3p2 , as summarized by 
the following formula:

where xclass is the trainable label, X(N , p) represents N patches of resolution p ∗ p , E denotes the trainable linear 
projection, and EPos signifies positional embeddings. It is important to note that the positional encoding is 
summed instead of concatenated. Hence, after the inclusion of positional information encoding, the input 
dimensions remain (N/p)2 ∗ 3p2 + 1) ∗ 3p2.

(1)Ldepth = −
1

N

∑N

i=1

∑M

j=1
yij log(ŷij)+ (1− yij) log(1− ŷij)

(2)z0 = [xclass; x
1
pE; x

2
pE; · · ·; x

N
p E; ] + Epos , E ∈ R

(P2·C)×D , EPos ∈ R
(N+1)×D

Loss_in

Loss_out

Loss_seg

Loss

Loss_depthAdd

fx

Figure 3.   Weight correction module.
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In the multi-head attention module, where n denotes the number of attention heads representing the count 
of self-attentions and W represents the weight parameter matrix for the multi-head attention operation, which 
can be represented as:

where the attention heads are defined by the following formula:

Q ∈ R
n×HW×dk ,K ∈ R

n×HW×dk ,V ∈ R
n×HW×dk,dk and d represent the matrix multiplication and d stands 

for the hidden channels. In this work, we employ the Linear + Tanh activation function and introduces a dropout 
layer. In the experimental section, it is demonstrated that the addition of dropout enhances robustness.

Like ViT, the AMENet model is available in two variants: Base and Large, comprising 12 and 24 Transformer 
layers, respectively.

Decoder
In practical applications, the purpose of monocular depth estimation is to predict distances for specific objects 
(such as vehicles, pedestrians, occlusions). Thus, it is of vital research significance to effectively recognize the 
edge texture information and localization cues of these predetermined targets. In the decoding phase, AMENet 
incorporates an additional class token used for classification. This is achieved by introducing a mechanism that 
reads out information from the token and transmits it to all other tokens:

To reduce costs, as a comparative measure, we introduced the Shift Windows method from SwimTransformer 
during the decoding phase. Specifically, this was implemented between two consecutive Transformer Blocks, 
as illustrated in Fig. 4:

•	 The first module employs a standard Windows partition strategy, starting from the top-left corner of the 
feature map. An 8 × 8 feature map is segmented into 2 × 2 windows, with each window having a size of M = 4.

•	 The subsequent second module adopts the strategy of the moving window, where the window initiates from 
the position ([M2 ,

M
2  ]) of the feature map. Subsequently, window partition operations are conducted.

As a result, there is an opportunity for interaction between different windows across two consecutive modules. 
Based on the moving window strategy, the computational process between two consecutive SwimTransformer 
Blocks is as follows:

(3)MLP(Q, K,V) = Concat(head1, · · ·, headn)W

(4)headi = Attention(QW
Q
i ,KW

K
i ,VW

V
i )

(5)Readconfusion(t) = {t1 + t0, · · ·, tN + t0}

(6)ẑl = W −MSA(LN(zl−1))+ zl−1, l = 1 · · · L

(7)zl = MLP(LN(ẑl))+ ẑl , l = 1 · · · L

Figure 4.   Swim windows block.
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Due to the computation of Self-Attention within local windows, each image is uniformly divided into several 
windows, and these windows do not overlap. Assuming each image has dimensions hw and each window contains 
MM patches, the computational complexity for MSA (Multi-Head Self-Attention) and window-based local Self-
Attention is as follows:

The time complexity has been reduced from O(n2) to O(n).
After the reading process is completed, the generated Np is reshaped into a feature map by placing each token 

according to the initial position of the image. By employing spatial concatenation operations, a Hp × W
p  feature 

map of size with D channels is generated.

To achieve spatial downsampling and upsampling, a 1 × 1 convolution is employed to project the input to D̂ , 
followed by a 3 × 3 convolution. For the two models in this study, Base and Large, the operations are conducted 
at l = {2, 5, 8, 11} and l = {5, 11, 17, 23} layers, while D̂ = 256 represents the convolution stride and s denotes 
the stride.

The final fusion module utilizes a residual convolution unit similar to RefineNet5, combining features to 
accomplish upsampling of the feature map.

Declaration of ethics
All images containing people used in this paper are from the publicly available datasets INRIA, PoseTrack, KITTI, 
NYU V2 and do not involve human experimentation.

Identifiable information/image statements
All personally identifiable information/images used in this article are sourced from publicly available datasets, 
namely, INRIA, PoseTrack KITTI and NYU V2. The relevant statements have already been included in “Alahari, 
K., et al. Pose Estimation and Segmentation of People in 3D Movies. in 2013 IEEE International Conference on 
Computer Vision. 2013” and “Andriluka, M., et al. PoseTrack: A Benchmark for Human Pose Estimation and 
Tracking. in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018”.

Experiment
Datadets
NYU Depth V2
The NYU Depth V2 dataset6 comprises video sequences of various indoor scenes recorded using RGB and 
depth camera lenses from the Microsoft Kinect device. This dataset is extensively used in depth estimation 
and segmentation tasks. It encompasses 464 scenes from three cities, totaling 1449 labeled RGB images and 
corresponding depth maps, along with 407,024 unlabeled images.

INRIA
The INRIA dataset7 consists of labeled images capturing pedestrians either running or walking. The training 
set comprises 614 positive samples (including 1237 pedestrians) and 1218 negative samples, while the test set 
contains 288 positive samples (with 589 pedestrians) and 453 negative samples. In these images, most of the 
human subjects are standing and are taller than 100 pixels in height. The images are primarily sourced from 
GRAZ-01, personal photos and Google, resulting in high clarity.

POSETRACK
The Posetrack dataset8 is derived from raw video data of the MPII dataset. It selects video segments consisting 
of frames 41 to 298, focusing on crowded scenes that involve multiple individuals and complex interactions 
between them. This selection is made with the following purpose.

(a)	 To ensure that the videos encompass a significant amount of limb movement, poses, and appearance 
variations.

(b)	 The dataset includes high levels of occlusions and truncations, with targets occasionally appearing partially 
or completely hidden and reappearing.

(8)ẑl+1 = SW−MSA(LN(zl))+ zl , l = 1 · · · L

(9)zl+1 = MLP(LN(ẑl+1))+ ẑl+1, l = 1 · · · L

(10)�(MSA) = 4hwC2 + 2(hw)2C

(11)�(W −MSA) = 4hwC2 + 2M2hwc

(12)Concatenate : RNp×D → R
H
p ×

W
p ×D

(13)Resamples = R
H
p ×

W
p ×D

→ R
H
s ×

W
s ×D̂

(14)ReassemblesD̂s (t) = (Resamples ⊗ Concatenate)(t)
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(c)	 Changes in human size occur within the videos due to human movement or scene scaling.
(d)	 The number of visible individuals is within the same video sequence varies.

Evaluation metrics
The adopted evaluation metrics are as follows.

(1)	 Absolute relative error:

(2)	 Square relative error:

(3)	 Root mean squared error:

(4)	 Error in logarithmic space:

(5)	 Accuracy with a threshold T(δ1, δ2, δ3):

Comparative experiments
This study’s code implementation was conducted using Python 3.7 with VS Code 2019. The input image 
dataset was I ∈ R

640×480×3 . The training parameters were set as epoch = 100 , utilizing the Adam optimizer, 
patch_size = 16 . When epoch = 0 , loss_depth was set to be 0 and depth map convergence began from the 
segmentation map as the initial guess. Each epoch involved sampling several examples greater than or equal to 
30, rather than using the entire dataset. This research was performed on Ubuntu 20.04.6 LTS, equipped with a 
12th Gen Intel(R) Core(TM) i9-12900K 3.2GHz CPU and an NVIDIA GeForce RTX3090Ti 24GB graphics card, 
along with 2 × 32GB DDR5 memory.

In this study, a comparison was made between AMENet and several classic depth estimation networks1,9–11, 
as well as networks with improved performance in accuracy and error aspects12–16. Shimada et al.13 utilized 
optical flow-assisted depth estimation, DPNet16 leveraged pixel relationships in the spatial domain to enhance 
depth detail inference. AdaDepth17 employed adversarial learning and imposed content consistency explicitly 
on adapted target representations for unsupervised network training. DPT18 replaced convolutional networks 
with visual transformers as the backbone for dense prediction tasks.

The model evaluation and accuracy assessment were conducted on the KITTI dataset19 and the NYU Depth 
V2 dataset. The results indicated a certain enhancement in prediction accuracy using the proposed method. 
Additionally, the results were visualized to demonstrate the superiority of the proposed model.

Figure 5 presents the experimental results of different models on the KITTI dataset. The results indicate a 
comparative advantage of our model over others, with clearer outlines of pedestrians in the left image and vehicle 
contours in the right image. The delta map illustrates the disparity between our results and the ground truth. To 
accentuate these differences, we have amplified the depth of the delta map from [0,50] to [0,255]. The color scale 
represents error magnitude, with increasing redness indicating larger discrepancies. Our model places greater 
emphasis on training parameters related to pedestrians, resulting in enhanced clarity but also contributing to 
larger errors in pedestrian-related aspects compared to other objects. Additionally, our model exhibits a less 
smooth handling of road distances.

As evident from Tables 1 and 2, AMENet exhibits a noticeable precision advantage, in terms of absolute 
relative error and root mean square error. Moreover, its accuracy aligns with the state-of-the-art models in terms 
of thresholds δ1 < 1.25, δ2 < 1.252 , δ3 < 1.253.

Figure 6 displays the experimental results of different models on the NYU V2 dataset. The delta map reveals 
that our model more accurately identifies the depth information of the cup within the green box in the left 
image. In the middle image, our model effectively reconstructs the depth information of the person. However, 
for non-personal objects in the right image, the recognition of the foreground and background positions of the 
bookshelf and the adjacent bookshelf is not optimal.

In general, the depth measurement error of LiDAR is typically small, usually at the millimeter level. The errors 
associated with stereo cameras are also typically within the range of a few millimeters to centimeters. Considering 
the depth estimation range from 5 to 80 m, the impact on model accuracy assessment is relatively minimal. We 
form a new validation set by combining images and depth maps captured by LiDAR and evaluate the model loss 
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1

N

∑N
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i |
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based on this dataset. The introduced discrepancy in depth values compared to LiDAR measurements is subtly 
elevated. As indicated in Table 3 and Fig. 7, it is evident that the proposed method remains competitive when 
compared to similar approaches within the same category.

Ablation study
To visually demonstrate the impact of the proposed innovations on the co-linearity of depth estimation networks, 
we conducted ablation experiments based on the innovations in each module. The specific results are shown in 
Table 3. The original network is built on the encoder network of Vision Transformer, where the encoder part 
consists of ResNet50, and the decoder part transforms the up-sampled output into depth values. From Table 4, 
it can be observed that the Weight Correction module significantly contributes to the model’s accuracy, with an 
improvement of 0.02 in δ1 and 0.042 in δ3 . In contrast, the Window-Attention module does not show a substantial 
improvement in model accuracy. However, the introduction of the second attention mechanism did not result 
in a twofold increase in computational complexity. Instead, it allows for the same linear complexity as CNN (see 
Sect. 3.4 for details).

Input

Vit-tuning

ViT

DPT

AMENet

Delta_Map

Figure 5.   The test results on KITTI.

Table 1.   Performance comparison on the KITTI Dataset. Significant values are in bold.

Method

AbsRel SqRel RMSE LogRMSE δ1 δ2 δ3

(Lower is better) (Higher is better)

Godard20 0.115 0.902 4.863 0.193 0.877 0.975 0.981

Kundu21 0.136 0.603 3.908 0.157 0.805 0.948 0.982

Pilzer22 0.144 1.007 4.66 0.24 0.793 0.923 0.968

Zhao23 0.308 4.995 9.614 0.437 0.684 0.795 0.897

Shu24 0.349 1.908 8.271 0.322 0.792 0.877 0.909

Guizilini25 0.112 1.082 4.124 0.165 0.867 0.927 0.968

Chen26 0.116 1.039 3.556 0.119 0.879 0.947 0.974

Bhat27 0.11 0.901 4.658 0.221 0.847 0.947 0.987

Zhang28 0.173 1.152 4.987 0.249 0.751 0.915 0.968

ViT11 0.141 1.310 6.334 0.152 0.831 0.933 0.946

Ours 0.112 1.121 4.561 0.115 0.851 0.977 0.988
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Table 2.   Performance comparison on the NYU DepthV2 dataset. Significant values are in bold.

Method

REL RMSE log10 δ1 δ2 δ3

(Lower is better) (Higher is better)

Karsch29 0.374 1.12 0.134 – – –

Li30 0.232 0.821 0.094 0.621 0.886 0.968

Liu31 0.230 0.824 0.095 0.614 0.883 0.971

Wang32 0.220 0.745 0.094 0.605 0.890 0.970

Eigen1 0.215 0.907 – 0.611 0.887 0.971

DORN33 0.115 0.509 0.051 0.828 0.965 0.992

Yin34 0.108 0.416 0.048 0.875 0.976 0.994

BTS35 0.110 0.392 0.047 0.885 0.978 0.994

DAV36 0.108 0.412 – 0.882 0.980 0.996

DPT37 0.110 0.357 0.045 0.904 0.988 0.998

ViT 0.214 0.602 – 0.762 0.851 0.902

Ours 0.103 0.433 – 0.906 0.981 0.999

Input

Vit-tuning

ViT

DPT

AMENet

Delta_Map

Figure 6.   The test results on NYU V2.
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Conclusions
In this study, we proposed a single-monocular-depth estimation method that combines visual transformers with 
CNNs. We employed visual transformers as encoders to capture global receptive fields and fine-grained features. 
The addition of a dropout layer in the MLP and the introduction of corrective factors when handling the weights 
between losses contributed to enhancing the robustness of the network. Experimental results revealed that 
the AMENet not only minimized the loss of feature information, providing more effective information to the 
decoder, but also demonstrated reliable prediction performance in complex scenes and during the dealing with 
"corrupted" data. Although our work has demonstrated promising results, there are areas for improvement. The 
impact of varying sample sizes on model training at each epoch and the accuracy of added details to the depth 
map as the number of epochs increases require further investigation in future works.

Data availability
Data will be made available on request, please contact the corresponding author.
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