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Computer programmers show 
distinct, expertise‑dependent brain 
responses to violations in form 
and meaning when reading code
Chu‑Hsuan Kuo 1* & Chantel S. Prat 1,2

As computer programming becomes more central to the workforce, the need for better models of how 
it is effectively learned has become more apparent. The current study addressed this gap by recording 
electrophysiological brain responses as 62 Python programmers with varying skill levels read lines of 
code with manipulations of form (syntax) and meaning (semantics). At the group level, results showed 
that manipulations of form resulted in P600 effects, with syntactically invalid code generating more 
positive deflections in the 500–800 ms range than syntactically valid code. Meaning manipulations 
resulted in N400 effects, with semantically implausible code generating more negative deflections in 
the 300–500 ms range than semantically plausible code. Greater Python expertise within the group 
was associated with greater sensitivity to violations in form. These results support the notion that 
skilled programming, like skilled natural language learning, is associated with the incorporation of 
rule‑based knowledge into online comprehension processes. Conversely, programmers at all skill 
levels showed neural sensitivity to meaning manipulations, suggesting that reliance on pre‑existing 
semantic relationships facilitates code comprehension across skill levels.

As computer programming, or coding, has moved from being a niche skill to one that is broadly valued in STEM 
fields and the workforce, the need for improved models of what underlies skilled programming has become more 
apparent. Fortunately, an increasing amount of research has been devoted to understanding the cognitive and 
neural bases of computer  literacy1–3. This body of work is critical and timely, as converging evidence points to 
a mismatch between the canonical ways that computer programming is taught, and the way it is best  learned4. 
In fact, statistics suggest that as many as 50% of students who enroll in Intro Programming courses worldwide 
drop them before  completion5.

In their formative paper “The language of programming: A cognitive perspective,” Fedorenko and  colleagues6 
outlined many theoretical parallels between the cognitive bases of programming languages and natural lan-
guages. In it, they argue that similarities in the cognitive underpinnings of code and language comprehension 
and production offer opportunities to “reconceptualize the way [computer science] is taught, especially in early 
childhood, when children are learning to read and write.” The use of reading and writing as educational com-
parisons for learning to code is particularly compelling. Unlike the spoken and signed aspects of native language 
acquisition, which occur largely implicitly through reinforcement learning mechanisms, reading and writing 
are skills that must interface with pre-existing linguistic knowledge, and they are typically explicitly taught in 
classroom environments. We believe that this is an important distinction to make when it comes to learning 
programming languages. In the current experiment, when considering natural language learning as a model 
for understanding how programming languages are learned, our focus is on the explicitly taught and learned 
aspects of natural language. Specifically, we argue that learning to code might resemble instructed (as opposed 
to immersed) second language (L2) learning.

Recent research investigating the neural and cognitive underpinnings of learning programming languages 
has adopted two main approaches: (1) investigating the predictors of facile code learning (e.g., those compar-
ing the predictive utility of numeracy and literacy)3,4,7; and (2) investigating the neural underpinnings of code 
 comprehension1,2,8. Evidence gleaned from both approaches suggests that explicit L2 learning environments may 
be useful models for understanding how programming languages are learned. For example, in their investiga-
tion of the predictors of learning to program in Python, Prat and  colleagues3 found that the Modern Language 
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Aptitude  Test9, developed to detect variability in the ability to learn an L2 in adulthood, explained approximately 
30% of the variance in both learning rate and ultimate programming skill obtained. In an fMRI experiment 
exploring the neural basis of code comprehension, Floyd and  collaborators1 found that the similarities in neural 
responses when native English speakers read either code or English were higher in expert coders than in novices. 
A similar pattern was observed in a series of meta-analyses of bilingual language representation conducted by 
Sebastian, Laird, and  Kiran10, with higher proficiency bilinguals showing greater similarity in patterns of activa-
tion between their L2 and native languages than did bilinguals with low or moderate proficiency levels.

In the current experiment, we aim to extend and refine this research by exploring the online neural responses 
of programmers at varying levels of expertise as they comprehend lines of code incrementally, in real time. To 
do so, we employed two electrophysiological indices, the N400 and P600, which have been used extensively to 
study online language comprehension processes in both native language speakers and L2 learners. Though the 
precise neurocomputational nature of these components remains  debated11, the N400—a negative deflection 
in the event-related potential (ERP) that peaks approximately 400 ms after stimulus onset—has been shown to 
be sensitive to factors that influence the accessibility of a stimulus’s meaning, or semantics, from memory (e.g., 
word frequency, semantic congruity, and semantic predictability)12. Meanwhile, the P600—a positive deflection 
that peaks approximately 600 ms after stimulus onset—has been shown to be sensitive to structural violations, or 
syntax (e.g., subject-verb agreement violations or word order violations)13. Although prevalent in the neurolin-
guistics literature, these ERP components have also been observed when participants engage in meaning-making 
using other familiar symbolic systems, such as  mathematics14.

Critically for our questions of interest, these ERP components have been shown to index  expertise15,16 and 
individual differences more  broadly14,17 by measuring the real-time brain processes that reflect our ability to 
make sense of incremental stimuli at the local (e.g., word) and broader structural (e.g., sentence) levels. Specifi-
cally, converging evidence from both  longitudinal15 and cross-sectional16 studies of L2 learning suggest that as 
individuals progress from novice to advanced proficiency levels in their L2s, sensitivity to violations in form 
(or syntax) begin to look more like native language violations, increasingly evoking the P600 response. In their 
review of this work, McLaughlin and  colleagues15 describe these findings as evidence of “grammaticalization,” or 
“the instantiation of rule-based knowledge into the learner’s real-time language processing systems” (p. 126)15. 
With respect to skilled L2 comprehension, they propose that “learners must somehow separate the linguistic 
input into those aspects related to meaning and those related to form.”

In the current study, we explore the extent to which these real-time indicators of sensitivity to form and 
meaning might be applied to our understanding of how learners of different skill levels comprehend lines of 
code. We chose Python as the programming language of choice because it has quickly risen to be amongst the 
most popular programming languages, with a development philosophy centered on the idea of being “reader 
friendly.” Additionally, an increasing amount of contemporary research on code comprehension has focused on 
 Python2,3,18, though some research suggests that the central predictors of learning to code are common across 
programming  languages18.

To measure Python code comprehension, we recorded ERPs from 45 programmers of varying skill levels, 
assessed using an independent programming task (see "Methods"), as they read lines of code presented incre-
mentally (Fig. 1). Each trial began with the presentation of a global variable on the screen for 15 s. Afterward, 
a single line of code was presented incrementally, on an item-by-item basis. Items were defined as the parts of 
code that appeared between spaces. Participants were asked to read the code for comprehension and make a 
behavioral response about its “acceptability” (a term that was left intentionally vague to prevent biasing attention 
toward syntactic versus semantic aspects of the code) afterward. Participants read 160 lines of Python in total, 
consisting of 40 trials of each of the following conditions: (1) well-formed lines of code, (2) code with syntactic 
violations, (3) code with semantic implausibility, and (4) code with both semantic implausibility and syntactic 
violations. See the "Methods" section for a more detailed description of the stimuli.

Figure 1.  Schematic depiction of a single trial. Following the presentation of the relevant global variable (15 s) 
for the upcoming trial, the line of code appeared incrementally on an item-by-item basis (700 ms, 200 ms ISI), 
with “item” defined as the elements of code that appeared between spaces. Participants made their acceptability 
judgment by pressing a button corresponding to Yes/No after the line of code finished presenting (30 s).
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This research was designed to answer two questions: (1) Do the P600 and N400 ERP components index 
sensitivity to form and meaning when programmers comprehend lines of code incrementally? and (2) Does 
sensitivity to form change as a function of programming proficiency?

Using L2 comprehension as a model, we predicted that manipulations of semantic plausibility would elicit 
N400 responses, while violations of syntactic validity would result in P600 responses. If evidence for increas-
ing “grammaticalization” occurs when people learn a programming language, we would predict an interaction 
between Python expertise and the types of neural responses observed to our manipulations of well-formedness. 
Taken together, this study allows us to examine how coders of varying proficiency levels incrementally incorpo-
rate information about form and meaning into their mental representations of lines of code.

Results
Behavioral code acceptability judgments
The overall model predicting acceptability judgments has a total explanatory power of 73.70%, in which the 
fixed effects explain 66.30% of the variance. The model’s intercept is at 45.59 (SE = 1.96, 95% CI [41.75, 49.25], 
t(43) = 23.29, p < 0.001). Within this model, the effects of semantic plausibility and syntactic validity were 
both significant in predicting acceptability judgments. Specifically, participants judged well-formed code with 
higher acceptability rates than conditions where semantic implausibility (b = 11.66, SE = 2.69, 95% CI [6.39, 
16.92], t(130) = 4.34, p < 0.001) or syntactic violations (b = 50.67, SE = 2.69, 95% CI [45.51, 55.94], t(130) = 18.87, 
p < 0.001) occurred (Fig. 2). The effect of syntactic validity was modified by an interaction with Python expertise, 
with higher Python expertise being associated with lower acceptability judgments to code containing syntactic 
violations (b = 22.81, SE = 2.69, 95% CI [17.53, 28.09], t(130) = 8.47, p < 0.001). On the contrary, the interaction 
between semantic plausibility and Python expertise approached significance in the opposite direction, with higher 
Python expertise being associated with higher acceptability judgments to code containing semantic implausibility 
(b = -5.30, SE = 2.70, 95% CI [− 10.58, − 0.03], t(130) = − 1.97, p = 0.051). The other fixed effects included in the 
model did not reach significance. Full model results for all fixed effects and random components are reported 
in Supplementary Tables S1–S3.

Group‑level ERP analyses
Group-level ERP responses for semantic plausibility (Fig. 3A), syntactic validity (Fig. 3B), and double anomalies 
(Fig. 3C) are plotted separately in Fig. 3.

N400 (300–500 ms) time window
The overall model predicting ERP responses within the N400 time window has a total explanatory power of 
59.93%, in which the fixed effects explain 13.14% of the variance. The model’s intercept is at − 0.02 (SE = 0.39, 95% 
CI [− 0.78, 0.74], t(43) = − 0.05, p = 0.964). Within this model, the effect of semantic plausibility was significant 

Figure 2.  Acceptability judgments (%) for the four code conditions as a function of Python expertise (% on 
a Python knowledge test). The shaded region around the trend lines indicate the 95% confidence interval. The 
horizontal dashed lines indicate the mean code acceptability rate for each condition.
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in predicting the N400 response (b = − 1.71, SE = 0.20, 95% CI [− 2.11, − 1.32], t(488) = − 8.58, p < 0.001). Code 
containing semantic implausibility resulted in larger negative deflections than did code without semantic implau-
sibility. There was also a significant effect of syntactic validity, with syntactic anomalies resulting in larger posi-
tive deflections than well-formed code (b = 1.40, SE = 0.20, 95% CI [1.01, 1.70], t(488) = 7.01, p < 0.001). As is 
apparent in Fig. 3B, this effect was likely driven by the later P600 effect described in the next section. Specifically, 
positive deflections to syntactically invalid code in the P600 time window were large enough to be detectable 
within the earlier N400 time window. There was no significant interaction between semantic plausibility and 
syntactic validity. However, there was a significant effect of electrode, with the effect being driven by more nega-
tive deflections at the midline central electrode than at the midline parietal electrode (b = − 1.18, SE = 0.24, 95% 
CI [− 1.66, − 0.70], t(488) = − 4.81, p < 0.001). Full model results for all fixed effects and random components are 
reported in Supplementary Tables S4–S6.

P600 (500–800 ms) time window
The overall model predicting ERP responses within the P600 time window has a total explanatory power of 
56.76%, in which the fixed effects explain 31.87% of the variance. The model’s intercept is at 2.07 (SE = 0.28, 
95% CI [1.52, 2.62], t(43) = 7.35, p < 0.001). Within this model, the effect of syntactic validity was significant in 
predicting the P600 response (b = 2.97, SE = 0.20, 95% CI [2.58, 3.36], t(488) = 14.84, p < 0.001). Code containing 
syntactic anomalies resulted in larger positive deflections than code without syntactic anomalies. There was no 
significant effect of semantic plausibility or significant interaction between semantic plausibility and syntactic 
validity in the P600 window. However, there was a significant effect of electrode, with all three electrode sites 
differing in amplitudes from each other. There were more positive deflections recorded at the midline frontal 
electrode than at the midline central electrode (b = 0.62, SE = 0.25, 95% CI [0.14, 1.10], t(488) = 2.54, p = 0.011), 
which in turn recorded more positive deflections than the midline parietal electrode (b = 1.50, SE = 0.25, 95% CI 
[1.01, 1.98], t(488) = 1.71, p < 0.001). Full model results for all fixed effects and random components are reported 
in Supplementary Tables S7–S9.

Effects of expertise on ERP responses
Python expertise, along with its interaction with semantic plausibility and syntactic validity, were also included 
as fixed effects in the models predicting N400 and P600 responses. Within the P600 window, Python expertise 
significantly predicted ERP responses (b = 0.83, SE = 0.28, 95% CI [0.28, 1.38], t(43) = 2.94, p = 0.005). There was 
also a significant interaction between Python expertise and syntactic validity (b = 1.04, SE = 0.20, 95% CI [0.64, 
1.43], t(488) = 5.18, p < 0.001), but not semantic plausibility. With increasing expertise, programmers exhibited 
a stronger P600 effect to code containing syntactic anomalies than to code without syntactic anomalies (Fig. 4). 
There was also a significant interaction between Python expertise and syntactic validity within the N400 window 
(b = 0.45, SE = 0.20, 95% CI [0.06, 0.84], t(488) = 2.24, p = 0.025) that was likely driven by the same interaction 
within the P600 window. With increasing expertise, programmers exhibited more positive deflections to syn-
tactically invalid code in the P600 time window, causing these effects to be more detectable within the earlier 

Figure 3.  Grand mean ERP waveforms for all participants (N = 45). Well-formed code (black, solid) is 
compared to (a) semantically implausible code (pink, dashed), (b) syntactically invalid code (blue, dotted), 
and (c) doubly anomalous code (green, dash-dotted). The shaded region around the ERP waveforms indicate 
the 95% confidence interval. Onset of the target item of code in a given trial is indicated by the vertical bar. 
Calibration bar shows 3 μV of activity. Negative voltage is plotted up.
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N400 time window. Full details of the effect of Python expertise on ERP responses are reported in Supplementary 
Tables 4–5 (N400 window) and 7–8 (P600 window).

For visualization purposes, we also plotted the mean ERP responses of Python experts (N = 27) and Python 
novices (N = 18) at the midline central electrode in Fig. 5. Python knowledge test accuracies (see "Methods") were 
used to determine the two groups of Python expertise. Participants who scored 75% or higher on the Python 
knowledge test were considered experts, whereas participants who scored less than 75% were considered novices. 
75% corresponds to a 2.0 on a standard 4.0 GPA scale, which is the lowest passing grade allowed for some courses 
with more stringent grading policies at the University of Washington, where this experiment was conducted.

Discussion
To the best of our knowledge, this is the first empirical data supporting the cognitive comparisons between read-
ing and code comprehension first outlined by Fedorenko et al.6. Specifically, our data suggest that when skilled 
programmers read lines of code, they use information about both statement-level form and token-level meaning 
to incrementally update their mental representation of what the code is trying to accomplish, much like readers 
of a natural language use information about grammatical structure and word-level semantics to understand 
what a sentence means. In our experiment, this was reflected by the distinct N400 and P600 effects exhibited by 
programmers to semantic and syntactic manipulations of code, respectively.

Furthermore, results from this study suggest that as programmers gain expertise in a particular program-
ming language, their brain responses increasingly reflect sensitivity to rule-based knowledge in their online 
comprehension processes. This progression, termed “grammaticalization” in natural language learning, is also 
observed with increasing proficiency in second natural language  acquisition15. Although our analysis of expertise 

Figure 4.  Amplitude of P600 responses (μV) to code with (blue) and without (black) syntactic anomalies, 
collapsed across semantic plausibility and electrodes, as a function of Python expertise (% on a Python 
knowledge test). Negative voltage is plotted up to mirror the traditional ERP plotting method. The shaded 
region around the trend lines indicate the 95% confidence interval.

Figure 5.  Summary of the ERP waveforms for Python experts (N = 27) versus Python novices (N = 18) for all 
four conditions at the midline central electrode. Onset of the target item of code in a given trial is indicated by 
the vertical bar. Calibration bar shows 3 μV of activity. Negative voltage is plotted up.
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was cross-sectional, it is notable that this pattern of increased P600 effects with higher expertise has been dem-
onstrated in both cross-sectional16 and  longitudinal15 studies of learners of a second natural language. As such, 
we would expect to see a similar trend in which stronger P600 effects would emerge over time with increasing 
exposure to programming languages. We see this as an interesting area for future research.

It is worth noting that programming expertise may not have influenced neural sensitivity to semantic manipu-
lations, but the manner in which we manipulated semantic plausibility reflected pre-existing semantic relations 
(e.g., categorical relations among variable names) rather than code-specific relations (e.g., substituting functions 
that are related to, but not the intended, operation in a line of code). Though our semantic manipulations are 
far from a complete exploration, similar categorical manipulations have been used to understand the cognitive 
underpinnings of mathematical  comprehension14 both at the group and individual levels. Additionally, these 
findings suggest that programmers of varying expertise levels show neural sensitivity to pre-existing semantic 
relations in lines of code, even when they have little to no relevance for what the code does (e.g., in variable 
names). This additional neural activation has been proposed to reflect increased difficulty in either retrieving the 
meaning of the target  item12,19,20 or integrating that meaning into the overall representation of the structure at 
 hand21. The behavioral trend we observed also suggests that less skilled programmers, whose rule-based processes 
have not fully come online yet, are marginally more likely to judge a well-formed line of code as unacceptable 
when the semantic relations among items are implausible. Taken together, these data support the notion that 
using pre-existing meaning associations can facilitate code comprehension for some individuals. This is consistent 
with previous work demonstrating that meaningful and efficient identifiers promote faster and more accurate 
code  comprehension22–24.

When interpreting these results, we note that the observation of language-like responses to violations in lines 
of code does not, in and of itself, provide evidence that code comprehension relies on the same neural substrates 
as language comprehension. Such an inference would require a tool with better spatial resolution, such as fMRI, 
and the results from such studies have been  mixed1,2,8. Instead, these results contribute to the growing body of 
work indicating that the N400 and P600 components are not specific to natural language  processing12–14,25,26. 
Findings from research employing diverse stimuli including mathematical word  problems14, natural  language12,13, 
 music25,26, and now Python code converge to demonstrate common neurocomputations that lie at the heart of 
integrating sequential information incrementally into a larger meaning structure. In light of these similarities, 
we propose that the current debate about whether code is more “language-like” or “mathematics-like” might be 
better framed by questioning the types of information programmers use to understand what a line of code does, 
and how this evolves as they become more proficient.

In summary, we present the first study showcasing that programmers exhibit neural sensitivity to informa-
tion about form and meaning as they engage in real-time incremental building of mental representations during 
code comprehension. When doing so, expert programmers are more sensitive to the structural relations among 
items, characterized by prominent brain responses to syntactic violations within 600 ms of seeing an item. In 
contrast, programmers of varying skill levels exhibit similar neural sensitivity to the pre-existing semantic rela-
tions among items in the code, with more novice programmers showing marginally greater reliance on such 
information when making offline behavioral “acceptability” judgments. Taken together, these results suggest that 
the processes that support code comprehension resemble those of other learned symbolic, rule-based systems 
such as reading, algebra, and classroom-based L2 learning.

Methods
Participants
Sixty-two right-handed individuals aged 18–33 years with normal or corrected-to normal vision and no his-
tory of significant head injury or epilepsy were recruited for participation in this study. All participants had a 
minimum of the equivalent of one academic quarter’s worth of Python instruction, either through a live course 
taught by an instructor or self-taught via an online course. One individual did not return for the ERP session 
and was removed from all analyses. Of the remaining 61 individuals, 16 exceeded the maximum 25% rejection 
rate threshold for their averaged ERPs and were removed from all analyses (see Data analysis). The final sample 
consisted of 45 English-speaking participants (23 female, 21 male, 1 other) from various natural language back-
grounds. One participant wore hearing aids during EEG recording. For additional participant demographics, 
see Supplementary Table S10. All experimental procedures were approved by the University of Washington 
Institutional Review Board and performed in accordance with relevant guidelines and regulations. Participants 
gave informed consent prior to the start of the experiment and were monetarily compensated for their time.

Materials
Python knowledge test
Participants completed a 72-question multiple-choice test as a quantitative measurement of their Python 
 proficiency3. Half of the questions measured semantic knowledge, such as the purpose of functions and opera-
tors (e.g., “What does the print() function do?”). The other half measured knowledge about syntax, or structural 
rules of Python (e.g., “Why won’t the following code compile?”). This measure was developed as part of another 
study that assessed learners’ Python knowledge following weekly lessons in the Python 2 course on  Codecademy7. 
As such, the questions were created according to the material covered, including, but not limited to strings, con-
ditionals, functions, lists, dictionaries, and loops. Python proficiency was quantified as a percentage accuracy 
score by dividing the total number of questions correct by 72 total possible questions. For Python knowledge 
test results, see Supplementary Table S10.
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ERP stimuli
Lines of Python code were created by crossing semantic plausibility and syntactic validity in a two by two design. 
A unique global variable preceded every line of code, which provided thematic context for an individual trial. 
Global variables could be strings, integers, floats, lists, or dictionaries. Each line of code contained a single item 
that was either semantically plausible or semantically implausible given the global variable, as well as either 
syntactically valid or syntactically invalid according to the syntax rules of Python 3.0. This resulted in four dif-
ferent code conditions: (1) well-formed, (2) semantically implausible, (3) syntactically invalid, and (4) doubly 
anomalous (semantically implausible and syntactically invalid). All lines of code spanned five to nine item lengths 
with the violation position occurring at two, three, or four.

To provide variability in stimuli, two code structures were used in this experiment: for loops and list com-
prehensions (Table 1). Violations were created by manipulating one of two code types: variables or keywords. 
Variables are placeholder words (i.e., iterators) that parse through each item of an iterable, such as a list or a dic-
tionary. Although variables can be named using any combination of letters and numbers, it is common practice 
to give them an identifier that is thematically consistent with the object being iterated through. For example, 
if referencing the list pets = [“dog”, “cat”, “hamster”], a variable named animal (e.g., for every animal in the list 
pets…) rather than fruit (e.g., for every fruit in the list pets…) would be more semantically appropriate for iterating 
through each list item. However, variables cannot be attached to operators or symbols, such as quotations that are 
used to signify a string. Therefore, a variable written as animal rather than “animal” (e.g., for every “animal” in the 
list pets…) would be the syntactically appropriate form. As such, variables can be manipulated to be semantically 
implausible, syntactically invalid, or doubly anomalous (e.g., for every “fruit” in the list pets…). On the contrary, 
keywords are reserved words that have specific roles, and they cannot be used as variable names, function 
names, or other identifiers. The present study manipulated two keywords, if and in, by replacing them with other 
English words that were either approximate synonyms or semantically dissimilar. For example, the keyword in 
could be replaced with within (an approximate synonym) or under (semantically dissimilar). However, because 
keywords are built-in, they cannot be manipulated to be semantically implausible while remaining syntactically 
valid according to Python syntax rules. As such, keywords can only be manipulated to be syntactically invalid 
(e.g., for every animal within the list pets…) or doubly anomalous (e.g., for every animal under the list pets…). In 
order to accommodate for this imbalance, additional lines of code that manipulated the variable were written to 
allow for a balanced, fully crossed two by two design.

For the lines of code in which it was possible, the four versions corresponding to each condition were dis-
tributed across four experimental lists, such that each list only had one version of each line of code. Participants 
saw 160 lines of code, with 40 lines from each condition. In the well-formed, syntactically invalid, and doubly 
anomalous conditions, the 40 lines of code were split between 20 manipulations of variables and 20 manipulations 
of keywords. In the semantically implausible condition, all 40 lines of code were manipulations of variables. Each 
list was divided into 4 blocks of 40 sentences each, and each block contained 10 lines of code from each condition. 
The 20 additional lines of code written to round out the semantically implausible condition were included in each 
list. Lines of code were pseudo-randomized within each list, and list assignment was pseudo-randomized across 
participants. Complete stimulus lists can be found on OpenNeuro in the Stimulus folder (see Data availability).

Procedure
Main experiment
Participants took part in two sessions, each lasting no more than two hours. With the exception of one indi-
vidual, all participants completed the experiment in the same session order. Session 1 was administered over 
videoconference, during which participants completed all questionnaires and tasks related to demographics, 
natural language background, and programming experience. During Session 2 on a separate day, participants 
judged individual lines of Python code for acceptability while electroencephalogram recordings were obtained. 
After being seated in a desk chair in front of a CRT monitor, participants were instructed to relax and minimize 
movements and eye blinks while silently reading the stimuli in their minds. Each trial consisted of the following 
events: Participants were given 15 s to read the global variable to be referenced in the upcoming line of code, 
or they could proceed earlier by clicking a mouse button. Following a 1000 ms fixation cross and 200 ISI, the 
line of code appeared incrementally in the center of the screen one item at a time, as defined by blank space, at 
a presentation rate of 700 ms and 200 ms ISI. These slower presentation rates are standard for ERP studies of a 
second language, for both native speakers and  learners16,17,26–28 (see Supplementary Methods for details of the 
behavioral pilot study that was conducted to determine optimal presentation rate). After the line of code was 
finished displaying, a “Yes/No” screen followed, during which participants had 30 s to give their acceptability 

Table 1.  Stimulus examples. The critical piece of code for ERP averaging is underlined. The second row 
indicates the global variable that is shown prior to that given example stimulus.

Condition Example For Loop Example List Comprehension

Global variable pets = [“dog”, “cat”, “hamster”] felines = [“lion”, “tiger”, “leopard”]

Well-formed for animal in pets: print(animal) [“purr” for cat in felines if cat =  = “tiger”]

Semantically implausible for fruit in pets: print(fruit) [“purr” for wheel in felines if cat =  = “tiger”]

Syntactically invalid for “animal” in pets: print(animal) [“purr” for “cat” in felines if cat =  = “tiger”]

Doubly anomalous for “fruit” in pets: print(fruit) [“purr” for “wheel” in felines if cat =  = “tiger”]
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judgment by pressing one of two mouse buttons. “Yes” corresponded to lines of code that were acceptable, and 
“No” corresponded to lines of code that were unacceptable. Participants were asked to use their own criteria for 
what they considered to be “acceptable” and to keep this criteria consistent throughout the session. The order 
of the “Yes/No” response buttons (left/right) was pseudo-randomized across participants. Once a response was 
given, a “READY?” prompt appeared, and participants would click either mouse button to begin the next trial.

Data analysis
Behavioral code acceptability judgment task
Behavioral performance on the ERP task was assessed via acceptability judgment rates, which were calculated 
as the percentage of trials that participants considered to be “acceptable,” i.e., responded with “Yes” during the 
end-of-code judgment task. We ran a linear mixed model fit by restricted maximum likelihood (REML) using 
the GAMLj module in  Jamovi29–31. Acceptability rates (“Acceptability”) were predicted from fixed effects of 
semantic plausibility (“Semantics”), syntactic validity (“Syntax”), and Python expertise (“Expertise”). Two levels 
of semantic plausibility (semantically plausible, semantically implausible) and two levels of syntactic validity 
(syntactically valid, syntactically invalid) accounted for the four code conditions. Python expertise was entered 
as a participant’s z-transformed Python knowledge test score. Interactions between semantic plausibility and 
syntactic validity, semantic plausibility and Python expertise, and syntactic validity and Python expertise were 
also included in the model as fixed effects. Participants (“Subject”) were included as a random effect in which the 
intercept was permitted to vary. Altogether, the model specification was as follows: Acceptability ~ 1 + Seman-
tics + Syntax + Expertise + Semantics:Syntax + Semantics:Expertise + Syntax:Expertise + (1 | Subject). The Sat-
terthwaite method was used to estimate degrees of freedom and generate p-values.

EEG acquisition
Continuous EEG was recorded from 32 scalp electrodes placed in International 10–20 system locations attached 
to a Biosemi elastic  cap32. Eye movements and blinks were monitored by two electrodes placed beneath the left 
eye and to the right of the right eye. Electrodes were referenced to an electrode placed over the left mastoid 
during recording, then subsequently re-referenced to the average of two electrodes placed over the left mastoid 
and right mastoid during pre-processing. EEG signals were amplified with a bandpass filter of 0.01 to 30 Hz by 
a Biosemi bioamplifier system. Impedances at scalp electrodes were held below 50 Hz. Continuous analog-to-
digital conversion of the EEG and stimulus trigger codes was performed at a sampling frequency of 200 Hz.

EEG cleaning
For each participant, epochs of EEG signal were segmented around the critical item of code from − 100 ms to 
1205 ms. Epochs were removed from ERP averaging if they contained changes within a sliding 200 ms window 
that were greater than 100 µV in the midline central electrode. Trials characterized by excessive eye movement, 
muscle artifact, and alpha were further removed prior to averaging; these were epochs that showed voltage steps 
more extreme than − 65 µV or 65 µV within any electrode. Participants who had a > 25% artifact rejection rate 
were removed from analysis altogether, resulting in the final sample of 45 individuals. The average rejection rate 
for participants who were included in the final analyses was 6.8% (by condition: well-formed: 7.5%, semantically 
implausible: 6.4%, syntactically invalid: 6.9%, doubly anomalous: 6.4%). Due to a malfunction in the recording 
equipment, two participants in the final analyses had fewer than 160 trials (159 and 158 trials); both individuals 
averaged rejection rates of 3.8%.

EEG analysis
ERPs time-locked to the onset of the critical item of code in each line of code were averaged offline at each elec-
trode site in each condition. The epochs that went into ERP averaging were base-line corrected from − 100 ms to 
0 ms. As is standard, the following time windows were chosen for analysis: 300–500 ms (N400) and 500–800 ms 
(P600), with separate analyses conducted for each window. All trials (both acceptable and not acceptable judg-
ment responses) were included in the final analysis. This decision was made for two reasons: First, previous 
research has shown that neural sensitivity to anomalies sometimes precedes behavioral sensitivity in L2  learners33, 
and second, the definition of “acceptable” was intentionally made ambiguous so that learners could decide how 
to treat semantically anomalous trials. This made deciding whether trials were correct or incorrect difficult in 
some conditions.

We ran linear mixed models fit by restricted maximum likelihood (REML) using the GAMLj module in 
 Jamovi29–31. ERP responses (“Amplitude”) were predicted from fixed effects of semantic plausibility (“Seman-
tics”), syntactic validity (“Syntax”), Python expertise (“Expertise”), and electrode (“Electrode”) for each time 
window. As in the model predicting acceptability judgments, two levels of semantic plausibility (semantically 
plausible, semantically implausible) and two levels of syntactic validity (syntactically valid, syntactically inva-
lid) accounted for the four code conditions. Python expertise was entered as a participant’s z-transformed 
Python knowledge test score. We had no hypotheses that were centered on scalp topography; therefore, we 
included data from the midline frontal, central, and parietal electrodes as three levels of electrode. Interac-
tions between semantic plausibility and syntactic validity, semantic plausibility and Python expertise, and 
syntactic validity and Python expertise were also included in the model as fixed effects. Participants (“Sub-
ject”) were included as a random effect in which the intercept was permitted to vary. Altogether, the model 
specification for both time windows was as follows: Amplitude ~ 1 + Semantics + Syntax + Expertise + Elec-
trode + Semantics:Syntax + Semantics:Expertise + Syntax:Expertise + (1 | Subject). The Satterthwaite method 
was used to estimate degrees of freedom and generate p-values.
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We also conducted another set of linear mixed models that added the fixed effect of English proficiency (“Eng-
lish”), as well as its interactions with semantic plausibility and syntactic validity, to see if we could better predict 
code acceptability judgments and ERP responses. English proficiency was determined via a participant’s score on 
the Nelson-Denny Reading Comprehension  test34 and was entered into the models after z-transformation. The 
full results of the models that added English proficiency are reported in Supplementary Tables S11–S13 (code 
acceptability judgments), S14–S16 (N400 window), and S17–S19 (P600 window). Comparison of BIC values 
showed that these models did not improve upon the models that did not include English proficiency (Supple-
mentary Table S20). As such, we focused our discussion on the implications of Python expertise.

Data availability
All data is available in the manuscript, supplementary materials, or on OpenNeuro: https:// openn euro. org/ datas 
ets/ ds004 771.
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