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Computational prediction 
of workability and mechanical 
properties of bentonite plastic 
concrete using multi‑expression 
programming
Majid Khan 1*, Mujahid Ali 2, Taoufik Najeh 3* & Yaser Gamil 4

Bentonite plastic concrete (BPC) demonstrated promising potential for remedial cut‑off wall 
construction to mitigate dam seepage, as it fulfills essential criteria for strength, stiffness, and 
permeability. High workability and consistency are essential attributes for BPC because it is poured 
into trenches using a tremie pipe, emphasizing the importance of accurately predicting the slump 
of BPC. In addition, prediction models offer valuable tools to estimate various strength parameters, 
enabling adjustments to BPC mixing designs to optimize project construction, leading to cost and 
time savings. Therefore, this study explores the multi‑expression programming (MEP) technique to 
predict the key characteristics of BPC, such as slump, compressive strength (fc), and elastic modulus 
(Ec). In the present study, 158, 169, and 111 data points were collected from the experimental studies 
for the slump, fc, and Ec, respectively. The dataset was divided into three sets: 70% for training, 15% 
for testing, and another 15% for model validation. The MEP models exhibited excellent accuracy with 
a correlation coefficient (R) of 0.9999 for slump, 0.9831 for fc, and 0.9300 for Ec. Furthermore, the 
comparative analysis between MEP models and conventional linear and non‑linear regression models 
revealed remarkable precision in the predictions of the proposed MEP models, surpassing the accuracy 
of traditional regression methods. SHapley Additive exPlanation analysis indicated that water, 
cement, and bentonite exert significant influence on slump, with water having the greatest impact on 
compressive strength, while curing time and cement exhibit a higher influence on elastic modulus. In 
summary, the application of machine learning algorithms offers the capability to deliver prompt and 
precise early estimates of BPC properties, thus optimizing the efficiency of construction and design 
processes.
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The ageing infrastructure worldwide poses a significant concern for many nations. Unfortunately, public 
awareness regarding this issue tends to escalate only following a catastrophic failure in some aspect of the 
 infrastructure1. For instance, during the Katrina and Rita Hurricanes in the Gulf Coast, embankment dams and 
levees experienced severe and widespread failure in  20052. Earthen dams can fail in different ways, including 
insufficient maintenance, over-topping, foundation issues, and slope instability. The latter often happens when 
water seepage beneath the dam weakens internal friction, leading to the dam sliding or  slipping3. As a result, 
significant attention has been directed towards ensuring the safety of dams, leading to the implementation of 
various global programs focused on dam repair and  remediation1. A widely used approach to address dam 
seepage involves the construction of cut-off walls. There are numerous options for backfill materials in cut-off 
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walls, but there is a growing interest in plastic  concrete4,5. This is because of its favorable qualities, such as its 
elastic–plastic properties, low permeability, and  homogeneity6.

Due to its excellent low permeability characteristics, bentonite is utilized to prepare plastic concrete to con-
struct cut-off walls beneath dams to block water  penetration7. Plastic concrete must possess robust strength, 
impermeability, and stiffness similar to the surrounding soil. Ensuring compatibility of strain between adjacent 
soil and the wall helps mitigate the risk of wall over-stressing and allows for deformation without  separation8. 
This type of concrete holds significant potential in meeting the criteria for strength, stiffness, and permeability in 
the construction of remedial cut-off  walls7. Although it offers enhanced formability, its strength is comparatively 
lower due to the incorporation of clay  slurry9. Typically, plastic concrete includes typical concrete constituents 
and bentonite clay, and a greater water-binder ratio to yield a more workable and elastic  material9. It is noteworthy 
that bentonite has long been employed for sealing purposes in hydraulic and civil  structures10–13.

Bentonite plastic concrete (BPC) must have excellent workability and consistency because fresh concrete 
deposited into a trench by pipe must be capable of moving in the ditch and forcing the already poured concrete 
with high  pressure14. This emphasizes the significance of forecasting the slump of BPC. Moreover, regulating 
seepage content and, ensuring the stability of dams is significantly influenced by the compressive strength (fc) of 
the employed plastic concrete (PC). Therefore, obtaining comprehensive details about factors impacting the fc of 
PC, including the mixing ratio and curing duration, is  essential14. Numerous factors can impact the strength of 
BPC, including the attributes of concrete constituents, curing time, and mixing ratio. In dam construction sites 
and during the manufacturing of BPC, it is customary to subject samples from different mixers to testing using 
specialized equipment and expert personnel. This process is essential for ensuring quality control and reliabil-
ity.15,16. However, challenges arise in the workplace, such as construction issues, storage, and curing processes for 
a large number of concrete  samples17–21. The need for a prompt assessment of sample resistance to adjust ratios 
adds complexity and incurs significant time and costs. Therefore, having a reasonably accurate and compre-
hensive estimate of compressive strength (within the desired confidence level) is essential for making informed 
 decisions22,23. Researchers have employed empirical regression methods to estimate the strength of  BPC24–26.

In the past few decades, machine learning (ML) has garnered significant interest in its application to con-
struction  materials18,27,28. ML techniques, like neural network (NN) prediction models, were chosen from the 
beginning of the application of data  mining2930,31. However, over time, alternative techniques such as adaptive 
probabilistic neural networks (APNN)32, fuzzy polynomial neural networks (FPNN)33,34, and GMDH-type neural 
 networks35,36, were developed to improve the reliability, pace, and enhancing the performance of NN, but the 
artificial neural network (ANN) technique still holds the majority of  literature37–42. In addition to ANN, several 
authors have employed other ML techniques in their studies, such as SVM and  ANFIS43–4546. Nevertheless, the 
use of the ANN approach has certain drawbacks and limitations in prediction  modeling47–50. To begin with, the 
ANN is categorized as a black-box approach, offering limited interpretation in terms of how the model gener-
ates its  estimations51–53. The absence of clarity of interpretation may hinder understanding and confidence in 
the model, particularly in vital applications where interpretability holds significant importance. For example, 
Ekanayake et al.54 highlighted the difficulty faced by individuals lacking familiarity with ML methods in under-
standing them, often perceiving them as an enigmatic “black-box”  approach55–57. The absence of vital informa-
tion like the relationship between outputs and inputs, and the logic behind estimations, erodes end-users’ trust 
in ML  estimations58. In addition, ANN is susceptible to overfitting or underfitting the data. Overfitting occurs 
when the model becomes excessively complex, memorizing the training data and subsequently exhibiting poor 
generalization performance when applied to new, unseen  data59. Moreover, fine-tuning hyperparameters in ANN 
models is frequently necessary to improve model performance. Identifying the ideal setup can pose challenges 
and may necessitate extensive experimentation through trial and  error60–63. To address these issues, evolutionary 
algorithms (EAs) and genetic algorithms (GA), which include gene expression programming (GEP) and multi-
expression programming (MEP), are being utilized to forecast concrete  properties49,50,53,57,64. The superiority 
of such algorithms is the generation of useful mathematical expressions, as well as their great reliability and 
predictive potential.

Recently, few studies have been conducted to forecast the characteristics of BPC. For instance, Ghanizadehe 
et al.14 utilized ANN and SVM approaches to estimate the fc of BPC. Similarly, another study by Amlashi et al.65 
employed four techniques (SVM, RSM, GMDH, MGGP) to forecast the fc of BPC. It was reported that the SVM 
model outperformed the remaining three models. Amlashi et al.66 also used SVM and adaptive Neuro-fuzzy 
inference system (ANFIS) methods optimized with particle swarm optimization (PSO) to estimate the fc of BPC. 
The majority of these studies focused on neural network methods, which lack transparency and interpretability 
aspects of ML modeling. Moreover, ANN methods are vulnerable to the issue of  overfitting67–69.

To address the shortcomings of other neural algorithms, a novel approach known as MEP has been 
 developed51,70. Due to the linear nature of chromosomes and their potential for coding several solutions on 
just one chromosome. The finest of the chosen chromosomes is selected as the final replica. In comparison to 
EA, MEP is an improved version of GP that can compute an accurate output even when the complexity of the 
objective is unknown. Contrary to ML techniques, MEP does not need the final equation’s formulation to be 
determined. The mathematical discrepancies are determined and removed from the final formulation through-
out the MEP development process. Furthermore, in comparison to other soft computing systems, the decoding 
procedure in MEP is significantly simpler. Despite the numerous advantages of MEP over other evolutionary 
algorithms, its utilization till now is limited in construction materials research. MEP was used by Alavi et al.71 
to forecast soil classification established on the liquid limit (LL), plastic limit (PL), and soil color. Similarly, MEP 
is used for Marshall mix design, flow, and  stability72–74.

In the present study, fc, elastic modulus (Ec), and slump of BPC have been modeled using the MEP technique 
while taking into consideration the most influential input variables. An extensive database has been collected and 
categorized into different sets (training, validation, testing) to guarantee that the model is effectively prepared. To 
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ensure model applicability and accuracy, extensive statistical and performance checks are performed to measure 
model efficiency. In addition, SHAP analysis was used for the interpretability of the suggested models.

Research methodology
Multi‑expression programming (MEP)
The objective of this modeling technique is to offer precise and useful mathematical formulations to predict 
output using pre-defined parameters.  Koza75 introduced an extension of GA called GP, which is relying on 
Darwinian  principles14. The fundamental distinction between both methods is that in GA, binary strings are 
used, but in GP, parse trees are used. Recently, multiple kinds of EAs have been suggested, with one of their 
main differences being  linearity75. One method for describing the output of an MEP modeling is a linear string 
of commands with variables or operations. Figure 1 depicts the processes that occur in MEP development. The 
MEP algorithm forms through several stages: initially, it creates a diverse population of chromosomes. Then, 
it employs a binary tournament operation to select parents. With a constant crossover probability, it merges 
selected parents to produce offspring. Mutation introduces variation, and finally, the algorithm replaces inferior 
members of the population with the best-performing  ones51. The process is iterative and continues until it reaches 
 convergence71. Figure 2 depicts the MEP architecture.

MEP offers various advantages over other types of genetic techniques like genetic programming. GP uses a 
tree crossover evolutionary process, which produces several parse trees, increasing computational time and the 
need for  storage76. In addition, since GP is both a phenotype and a genotype, it is difficult to provide a simple 
formulation for the required task. MEP maintains a large variety of expressions, including certain implicit 
structures, which is referred to as implicit parallelism. MEP also has the capacity to maintain many solutions 
to a problem on a single  chromosome51,70. MEP can distinguish between phenotype and genotype due to the 
linear  variations74. MEP is thought to be more effective than other ML methods due to its capacity to encode 
several answers inside a single chromosome. This unique feature enables MEP to look over for a better feasible 
response. Unlike other GP algorithms, MEP provides simple decoding operations and pays particular attention 
to cases where the specifics of the desired expression are  unclears51. MEP can manage issues such as division 
by zero, improper expressions, and many  more77. Furthermore, multi-gene genetic programming (MGGP) and 
MEP are both extensions of traditional GP designed to address complex optimization problems. While they 
share similarities in their approach, there are distinct differences in how they represent and evolve solutions. In 
MGGP, an individual is represented as a set of multiple genes, each of which may encode a distinct subcompo-
nent or module of the  solution78,79. These genes can be trees or other structures suitable for the problem domain. 
In MEP, an individual is represented as a set of multiple expressions, typically in the form of linear or matrix-
based  representations80. Each expression contributes to the overall solution and can be evaluated independently. 

Figure 1.  Flowchart illustration of MEP algorithm.
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Moreover, MGGP typically uses genetic operators such as crossover and mutation at the gene  level81. It means 
that crossover and mutation operations can occur within individual genes, allowing for the exchange or modi-
fication of entire subcomponents of the solution. In contrast, MEP often employs mutation operators that act at 
the expression level, modifying individual expressions or parts of expressions to create new candidate solutions. 
Crossover operations in MEP may involve combining entire expressions from different  individuals82.

Experimental database
An extensive database of BPC has been collected from the existing literature for GEP modeling (provided in 
supplementary as Tables S1–S3)83. The database contains 158, 169, and 111 datasets for the slump, fc, and Ec, 
respectively. It must be noted that the samples used in experimental studies were of two distinct dimensions 
(150 × 150 × 150 mm and 100 × 100 100 mm). To estimate the characteristics of BPC, an ML model considered 
a wide range of input features. To build up a predictive model for the slump, six input variables, which include 
gravel, sand, silty clay, cement, bentonite, and water, were retrieved from the literature. In addition, for modeling 
compressive and elastic modulus, curing time was added to these six influential input variables.

The distribution of input variables influences the generated model’s generalization capabilities. Frequency 
histograms are provided in Fig. 3 to visualize variable distribution. Tables 1, 2 and 3 summarize the various 
statistics for the collected datasets of slump, compressive strength, and elastic modulus. The dataset is split into 
three categories: testing (15%), training (70%), and validation (15%). This data partitioning approach facilitates 
evaluating the model’s performance on new, unseen data, offering a more precise gauge of its real-world appli-
cability. By doing so, it mitigates the risk of overfitting, preventing the model from depending excessively on 
particular training data patterns. Additionally, it supports model refinement and hyperparameter optimization 
by furnishing a distinct validation set for comparing and selecting the most effective model  configurations47,52,84. 
Each subset of the dataset has comparable statistical characteristics such as standard deviation, variance, mean, 
and range. These statistical analyses prove that the proposed ML models are usable for a diverse set of data, which 
broadens their generalization. It is noticeable that only a few research have determined slump, fc, and Ec for a 
specific mix proportion. Due to this reason, separate databases have been collected for these three characteristics 
and are considered for their respective model development.

MEP model development
The methodology used in this research is outlined in Fig. 4. Several MEP setting variables must be defined prior 
to building a valid and adaptive model. The setting variables are chosen by prior recommendations and a trial-
and-error  procedure85. The number of developed programs is determined by the population size. A large-scale 
population model can be more complex, but it is more exact and reliable, and it takes longer to reach convergence. 
However, if the size increases above a certain range, the model may overfit. Table 4 shows the setup variables that 
were used for the model constructed in this work. The function just comprises the simple mathematical opera-
tors (ln, exp, -, × , ÷ , +) for simplicity in the final formulations. The number of generations indicates the accuracy 
of the method before it is discontinued. The model for simulation with the fewest errors will be produced by a 
multi-generation run. Various variable combinations were used to optimize the model, and the optimum com-
bination was chosen to offer an outcome model with the lowest errors, as shown in Table 4. The main challenge 
with ML prediction simulation is the over-fitting of the prediction model. Whenever utilized with original data, 
the model performs well; however, when given unknown data, the model performs significantly worse. To avoid 
overfitting, it has been suggested that the model be evaluated using previously unknown  data85,86. As a result, the 
data is proportionately divided into three groups. Following validation, the model is evaluated on the dataset 
that was not used in the training of the model. The database was divided into three subsets, i.e., 15% for testing, 
15% for validation, and 70% for training. The generated models perform excellently across all datasets. In the 
current study, the MEPX tool (version. 2023.3.5) was used to carry out MEP modeling.

Initially, the modeling process generates optimal solutions for the population. The procedure is repeated, with 
every iteration getting closer to a solution. The fitness of each successive generation is determined. The MEP 

Figure 2.  Architecture of MEP.
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modeling process carries on until the fitness value does not change. If the outcomes are not precise, the opera-
tion is iterated by progressively increasing the size of the population and tuning other hyperparameters. After 
evaluating the fitness function of every model, the model with the lowest fitness is chosen. It should be noted that 
the evolution time and the number of generations have a considerable impact on the accuracy of the suggested 
model. Due to the addition of new features to the framework, a model will be iterated indefinitely using these 
approaches. However, in the current study, the model has completed either the change in function was less than 
0.1% or after 1000 generations. The hyperparameters setup of the suggested MEP model is provided in Table 4.

Model performance assessment
The models’ effectiveness is assessed by calculating numerous statistical error metrics. Multiple performance 
metrics such as R, RMSE, MAE, RRMSE, RSE, and performance index (ρ) are used to check the accuracy of the 
MEP model, as given in Eqs. (1–6). Another approach to prevent model overfitting is to choose the optimum 
model by reducing the objective function (OF)88,89.
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Figure 3.  Frequency histograms of variables: (a) Slump (b) fc (c) Ec. 
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where ei shows actual data and mi shows model data of actual while n denotes the number of collected values. 
Whereas ēi and m̄i represent the mean of experimental and predicted values, respectively. The training and 
validation sets are represented by the subscripts T and V, respectively. R measures the correlation between 
estimated and actual  values87, and a value greater than 0.8 shows a strong connection between anticipated and 
actual  results88,89. However, because R is insensitive to the division or multiplication of data by a constant number, 
it is insufficient as a check of the overall model efficacy. The RMSE and MAE calculate the mean magnitude of 
the errors. Each variable, though, has its own significance. A larger RMSE value indicates that the frequency of 
estimations with substantial errors is significantly greater than expected and should be decreased. On the other 
hand, MAE provides minimum weight to higher error and is always lower than RMSE.

The MEP model used in this study is also assessed via the OF to determine the overall efficiency because OF 
takes into account the influence of RMSE, R, and the total number of collected values. The values OF range from 
0 to infinity. A model is considered best if ρ and OF are both 0.288. The OF considers three parameters, namely 
R, RRMSE, and the proportion of data in validation and training sets. Consequently, the least value signifies a 
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Figure 3.  (continued)
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model’s greater performance. Furthermore, the MEP model was externally validated using criteria suggested in 
the literature, as shown in Table 5.

Results and discussion
The MEP algorithm was employed to construct predictive models for various properties of bentonite plastic 
concrete. These models were meticulously developed with a hyperparameter configuration comprising a sub-
population size of 250, generations of 1000, a mutation probability of 0.9, and sub-populations of 50. Addition-
ally, mathematical operators including + , −, /, Inv, and exp were utilized in the model construction process. The 
optimized MEP code for future prediction of slump, fc, and Ec has been compiled and is conveniently accessible 
in the supplementary materials under Tables S4–S6. These codes provide a comprehensive overview of the gener-
ated code, facilitating accurate and efficient forecasting of slump, fc, and Ec.

Outcomes of MEP modeling
Figure 5 displays the comparison model forecasted and experimental values of the slump. The plot also includes 
the expressions for regression lines. In perfect condition, the regression slope should be approached close to 1. 
Figure 5 illustrates a significant correlation between original and modeled values, as evidenced by slopes of 0.987, 
0.991, and 0.976 for the training, validation, and testing phases, respectively. Moreover, the values are relatively 
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similar and near to perfect matching, showing that the MEP model is trained effectively and has a better predic-
tion performance, i.e., it works similarly very well with new data.

The fc findings have also been compared to experimental values of fc, as shown in Fig. 6. The resulting model 
appears to have undergone effective training on the input data, as evidenced by its ability to generate precise 
predictions for the actual fc. All three sets of data have almost optimal regression line slopes (0.988, 0.834, and 
0.984). This model, like the one for the slump, does very well on test data. This demonstrates that the concern 
of the model being overfitted has been much reduced. The greater the number of data points, the more accurate 
and generalizable the outcomes will  be90. The largest number of points possible (169) were chosen for fc in the 
compiled database, resulting in a high level of precision with the least statistical errors.

Similarly, Fig. 7 provides a comparison of the model and experimental results of Ec. In contrast, to slump and 
fc models, the MEP model for Ec exhibited a comparatively lower regression slope as shown in Fig. 7. According 
to Gholampour et al.90, the precision and efficacy of the model are heavily influenced by the number of dataset 
points. In the current work, a greater number of datasets (111) were obtained from the available published work 
and used for the suggested model, resulting in improved accuracy.

Performance evaluation of MEP models
The number of data points required to construct a model is crucial because it affects the model’s validity. The 
data set proportion to the number of inputs should be 3 for a satisfactory model, and a ratio of 5 is  preferred90,91. 

Table 1.  Statistical analysis of the slump dataset.

Statistics
Gravel
(Kg.m−3)

Sand
(Kg.m−3)

Silty clay
(Kg.m−3)

Cement
(Kg.m−3)

Bentonite
(Kg.m−3)

Water
(L.m−3)

Slump
(mm)

Training (70%)

 Mean 684.958 815.427 34.587 181.780 48.202 349.685 181.688

 Standard deviation 206.970 216.642 76.452 49.460 30.057 68.354 45.501

 Sample variance 42,836.767 46,933.895 5844.967 2446.340 903.395 4672.248 2070.328

 Range 912.000 864.000 260.000 228.000 152.000 347.900 220.000

Testing (15%)

 Mean 728.938 809.063 39.792 172.333 38.188 326.925 186.208

 Standard deviation 208.559 172.442 80.305 43.646 15.251 56.345 33.127

 Sample variance 43,496.789 29,736.137 6448.868 1905.014 232.586 3174.749 1097.389

 Range 926.000 747.000 225.000 150.000 57.000 259.200 179.000

Validation (15%)

 Mean 676.160 793.440 23.400 186.880 37.676 329.723 161.040

 Standard deviation 235.618 197.696 65.108 59.313 18.076 77.378 69.056

 Sample variance 55,515.973 39,083.673 4239.000 3518.027 326.729 5987.366 4768.790

 Range 889.000 928.000 225.000 189.000 85.000 340.000 217.000

Table 2.  Statistical analysis of compressive strength dataset.

Statistics
Gravel
(Kg.m−3)

Sand
(Kg.m−3)

Silty clay
(Kg.m−3)

Cement
(Kg.m−3)

Bentonite
(Kg.m−3)

Water
(L.m−3)

Curing time
(days)

fc
(MPa)

Training (70%)

 Mean 615.3342 835.8254 158.3772 130.7456 75.74561 337.3454 86.31579 3.502456

 Standard deviation 187.2431 250.8098 94.75048 36.82506 41.73342 77.82741 138.8061 2.553283

 Sample variance 35,059.99 62,905.58 8977.653 1356.085 1741.678 6057.106 19,267.12 6.519254

 Range 580 781 380 202 304 347.9 533 13.74

Testing (15%)

 Mean 679.9621 778.2034 154.8276 137.8966 66.41379 326.7959 87.72414 5.685172

 Standard deviation 168.8335 229.3582 102.4389 46.04217 31.06849 88.56716 129.942 5.528141

 Sample variance 28,504.76 52,605.17 10,493.72 2119.882 965.2512 7844.141 16,884.92 30.56034

 Range 580 781 280 202 122 297.9 533 20.19

Validation (15%)

 Mean 654.4222 917.4593 174.2593 146.4444 64.77778 344.1211 67.59259 4.103704

 Standard deviation 192.6646 289.7691 70.96456 42.65184 30.45089 60.193 99.91968 4.410454

 Sample variance 35,226.23 83,966.14 5035.969 1819.179 927.2564 3623.198 9983.943 19.45211

 Range 580 781 310 180 124 277.85 533 20.77



9

Vol.:(0123456789)

Scientific Reports |         (2024) 14:6105  | https://doi.org/10.1038/s41598-024-56088-0

www.nature.com/scientificreports/

Table 3.  Statistical analysis of the elastic modulus dataset.

Statistics
Gravel
(Kg.m−3)

Sand
(Kg.m−3)

Silty clay
(Kg.m−3)

Cement
(Kg.m−3)

Bentonite
(Kg.m−3)

Water
(L.m−3)

Curing time
(days)

Ec
(MPa)

Training (70%)

 Mean 785.588 798.274 99.855 165.928 50.245 367.767 61.957 1825.915

 Standard deviation 310.351 235.661 119.539 51.926 19.322 60.462 40.335 1749.309

 Sample variance 96,317.836 55,536.138 14,289.685 2696.333 373.356 3655.696 1626.925 3,060,080.52

 Range 1519.600 848.000 370.000 250.000 80.000 430.000 173.000 7686.720

Testing (15%)

 Mean 930.290 900.859 72.381 197.905 37.181 356.110 43.095 1484.000

 Standard deviation 420.056 318.772 137.510 67.107 17.867 54.500 27.630 1016.307

 Sample variance 176,447.408 101,615.448 18,909.048 4503.290 319.234 2970.290 763.390 1,032,880.43

 Range 1547.700 990.000 380.000 200.000 85.200 205.000 83.000 3896.480

Validation (15%)

 Mean 735.862 768.878 99.048 169.476 44.105 367.462 48.667 1718.613

 Standard deviation 315.819 217.178 113.398 61.712 19.018 60.572 29.949 1378.513

 Sample variance 99,741.440 47,166.438 12,859.048 3808.362 361.681 3668.990 896.933 1,900,297.05

 Range 1519.600 827.000 330.000 200.000 64.000 220.000 62.000 4673.750

Figure 4.  Flowchart of the methodology followed in the present study.

Table 4.  Set up of parameters for MEP algorithm.

Parameter Set up

Sub-population size 250

Mutation probability 0.01

Number of generations 1000

Operators  × , ÷ , + , − , ln, exp

Number of sub-populations 50

Tournament size 40

Variable 0.5

Length of code 0.5

Probability of crossover 0.9

Fitness function MAE
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Table 5.  External validation requirements.

S. no Expression Conditions Suggested by
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Figure 5.  MEP prediction model comparison with experimental data of slump.

Figure 6.  MEP prediction model comparison with experimental data of fc. 
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In this study, the ratios are 26.3, 24.1, and 15.9 for the slump, fc, and Ec, respectively. As discussed previously, 
the performance of all three models is assessed by using various statistical measures (R, MAE, RMSE, RSE, 
RRMSE, ρ, and OF). The values of all these error measurements for the three models are provided in Table 6 
and illustrated in Fig. 8. The table provides a good correlation between the model estimated and actual values, as 
R-values are closer to 1 (ideal condition) for the three suggested models. The MAE, RSE, and RMSE values for the 
three datasets are notably lower, which indicates the good precision and generalization ability of MEP models.

It is shown that the values of RRMSE in the three sets of slump models are lower than 0.2, indicating that 
the slump model is in the excellent range. The values of ρ are less than 0.20 for all sets of slump and compres-
sive strength models, demonstrating that the MEP models are accurate and suitable for predicting the output. 
However, these values of ρ are a little high for the elastic modulus model. OF for the slump, fc, and Ec models 
are 0.0453, 0.0471, and 0.1662, respectively. These values are quite close to 0, substantiating the accuracy and 
indicating that the issue of overfitting for the models has been adequately handled.

Figure 9 shows the absolute error in each MEP model to explain the statistics of absolute errors. The mean 
absolute error values for the slump, fc, and Ec are 1.095 mm, 0.226 MPa, and 296.79 MPa, respectively, with a 
maximum error of 12.64 mm, 1.08 MPa, and 2560.2 MPa. It is worth noting that the occurrence of maximum 
error is very low. In addition, the predicted values of MEP models closely followed the trend of the experimental 
values.

External validation of MEP model
Table 7 represents the numbers of the additional criteria used for model validations. It has been proposed that 
the slopes of regression lines should be close to  192. Roy and  Roy93 proposed another criterion of Rm to measure 
the external reliability of the model. When the value of Rm is higher than 0.5, this criterion is satisfied. Table 7 
illustrates that the MEP model meets the additional validation criteria, showing that the MEP algorithm is 
accurate and has better predictive potential. Thus, the formulated MEP models have the potential to accurately 
and precisely predict the workability and strength properties of BPC.

Figure 7.  MEP prediction model comparison with experimental data of Ec. 

Table 6.  Various statistical calculations of the MEP model.

Model Subset R MAE RMSE RRMSE ρ OF

Slump

Training 0.9989 1.4175 2.5176 0.0141 0.0070

0.0038Testing 0.9999 0.4272 0.5018 0.0035 0.0017

Validation 0.9999 0.2262 0.6007 0.0035 0.0014

fc

Training 0.9965 0.2245 0.3374 0.0852 0.0427

0.0471Testing 0.9550 0.1574 0.1897 0.0477 0.0244

Validation 0.9831 0.3146 0.3886 0.0956 0.0482

Ec

Training 0.9612 352.9337 560.2367 15.3485 0.1902

0.1662Testing 0.9110 359.6862 258.9647 2.3486 0.1772

Validation 0.9300 126.0827 189.6300 11.9749 0.1931
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Comparing the MEP model with statistical regression models
In this study, non-linear (NLR) and linear regression (LR) models were constructed using similar databases to 
predict the characteristics of BPC. The outcomes were compared with MEP models. The RMSE and ρ values are 
lower for the MEP model compared to the regression models for all three datasets.

The formulations to estimate the slump of BPC using LR and NLR analysis are provided in Eqs. (7–8). The 
results of NLR and LR regression analysis are compared with the MEP model for the slump and shown in Fig. 10. 
The  RMSEtraining of the MEP model for the slump is 95.2% lower than that of the linear regression, which shows 
the accuracy and reliability of the MEP model. It is worth noticing from Fig. 10 that the regression model failed 
to capture the lower value of the slump.

(7)

(

Slump
)

LR
= 106.7+ 0.038

(

gravel
)

+ 0.005(sand) + 0.051
(

silty clay
)

− 0.37(cement) + 0.086(Bentonite) + 0.30 (water)

(8)
(

Slump
)

NLR
= 81.8+ 1× 10−6

(

gravel
)2.6

+ 3.2× 10−3(sand)1.23 + 0.17
(

silty clay
)0.94

− 6× 10−5(cement)2.5 + 0.28(bentonite)0.75 + 1× 10−3(water)1.89
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Figure 8.  Radar plots presenting the performance of MEP models: (a) Slump, (b) fc, (c) Ec. 
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Similarly, based on the same dataset, LR and NLR analyses are conducted for the compressive strength of 
BPC. LR and NLR formulations for fc of BPC are shown as Eqs. (9–10). MEP-predicted values for compressive 
strength are compared with LR and NLR, as provided in Fig. 11. The statistical errors for the MEP model of fc are 
considerably lower than those of regression models. The  RMSEtraning of the MEP model is 52% less than that of 
the regression model, which indicates the inaccuracy of the conventional regression model. It is worth noticing 
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Figure 9.  Representation of error in the established models: (a) slump; (b) fc; (c) Ec. 

Table 7.  Various external validation values of the proposed models.

S.No Parameter Slump fc Ec

(1) k 0.99 1.04 1.12

(2) k’ 1.10 0.95 0.87

(3) R2 0.99 0.97 0.94

(4) R0
2 0.99 0.99 0.96

(5) Rm 0.98 0.80 0.75
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that the non-linear regression model for fc produced similar values of outcomes throughout all the dataset data, 
as represented by the nearly straight line. This provides the inaccuracy of the NLR model to forecast the fc of BPC.

The formulations of LR and NLR for the elastic modulus of BPC are given as Eqs. (11–12). The outcomes of 
elastic modulus regression analysis are compared with the MEP model and experimental data, as depicted in 
Fig. 12. The  RMSEtraining of the MEP model for Ec is 60% lower than that of linear regression, which shows the 
excellent capability of MEP model to precisely forecast the elastic modulus of BPC.
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Figure 10.  Comparison of slump predicted by MEP with LR and NLR models.
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These findings imply that MEP-based models outperform both LR and NLR models. The reason for this is 
that these statistical regression procedures have limits, such as the actual issue being linked to a forecast model 
by certain pre-defined functions. In contrast, the outcomes of MEP-based modeling, demonstrate that the models 
have a great generalization capability and, most importantly, less error than the regression models. Hence, these 
limitations impede the utilization of statistical regression models for predictive tasks.

Comparison of the developed models with literature models
To date, several soft-computing models have been developed to predict the properties of bentonite plastic con-
crete. The majority of developed models have primarily focused on predicting the fc of BPC. However, it is 
noteworthy that despite the significance of slump, most studies have not delved into developing prediction 
models for this parameter, with Amlashi et al.83 being an exception. To facilitate a precise comparison between 
existing models from the literature and the established models in this study, two statistical metrics (R, RMSE) 
were selected, as given in Table 8.

As given in Table 8, a comparative analysis between the highest-performing model for predicting slump 
models in this study (i.e., MEP model) and the top-performing model from the literature (i.e., ANN model by 
Amlashi et al.83). The RMSE value of the MEP model was reduced by 95.70% compared to the top-performing 
model (ANN model developed by Amlashi et al.83) in the literature for slump prediction of BPC. Similarly, the 
RMSE value of the MEP model for compressive strength is 46.26% lower than that of the best prediction model 
in the literature (ANN-PSO developed by Amlashi et al.94). Furthermore, the reduction in RMSE for Ec is 45.16% 
in the MEP model developed in the present study compared to the most accurate model found in the literature 
(ANN model developed by Amlashi et al.83). The developed MEP model exhibited superior accuracy in predict-
ing both the workability and strength properties of bentonite plastic concrete. The MEP model’s performance 
surpassed that of all models reported in the literature, demonstrating its efficacy in optimizing predictions for 
bentonite plastic concrete. This accuracy signifies a significant advancement in predictive modeling of BPC, 
promising enhanced reliability for engineering applications.

Moreover, while the bulk of the research concentrated on constructing ML models for predicting BPC prop-
erties, it overlooked the crucial aspect of model interpretation. The transparency of ML models is pivotal for 
engendering trust among end-users. Although several literature studies conducted sensitivity analyses to gauge 
the importance of individual features in predicting BPC properties, these analyses primarily provide feature sig-
nificance and do not delve into the internal mechanisms of the models or the complex interrelationships among 
these features. Hence, this study employed SHAP analysis to interpret the forecasts of the developed models, 
thereby augmenting their transparency. Overall, this study not only provides models with superior accuracy 
compared to existing literature models but also enhances model interpretability.
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(Ec)LR = 896.1+ 22.6

(

gravel
)

+ 0.84(sand)−21.1
(

silty clay
)

+ 5.12(cement)− 0.6(bentonite) + 0.3(water)−1.1
(

curing time
)

(12)

(Ec)NLR = 762.3+ 12.69
(

gravel
)0.13

− 0.4(sand)−1.86 − 6× 10−2
(

silty clay
)0.39

+ 26(cement)0.007 + 4.48× 10−6(bentonite)1.4 + 0.5(water)0.09

−8.7× 10−8
(

curing time
)2.1

0 20 40 60 80 100 120

0

1000

2000

3000

4000

5000

6000

7000

8000

Ec
 (M

Pa
)

Data set

 Experimental  MEP

 Linear Regression  Non-Linear Regression

Figure 12.  Comparison of Ec predicted by MEP with LR and NLR models.



16

Vol:.(1234567890)

Scientific Reports |         (2024) 14:6105  | https://doi.org/10.1038/s41598-024-56088-0

www.nature.com/scientificreports/

SHAP interpretability of the models
Lundberg and  Lee95 developed an approach for analyzing ML models that utilize the concept of Shapely Addi-
tive explanations (SHAP). The SHAP-based approach was established to determine each feature’s proportion-
ate relevance to the output and to determine if the feature enhances the output favorably or  unfavorably96,97. 
 References96,97 give a thorough explanation of the SHAP method. The SHAP value shows how much each input 
feature contributed to the results. This approach is equivalent to parametric analysis, in which a particular 
parameter is changed while others are kept constant to assess how modifications to one input variable are 
impacting the result.

The mean SHAP values provided in Fig. 13 show the importance of the input parameter. As illustrated in 
Fig. 13a, bentonite has a relatively greater contribution in output (slump) followed by the rest of the input vari-
ables. Similarly, water has relatively more contribution than other input variables in compressive strength, as 
illustrated in Fig. 13b. Cement exhibits the greatest influence, while silty clay has the least impact on the elastic 
modulus of BPC, as depicted in Fig. 13c. Furthermore, Fig. 14 shows the summary plot which demonstrates the 
influence the input features on output parameter. It shows the order of SHAP value for a specific feature in addi-
tion to the trend of the related variable. The vertical axis of the SHAP plot displays the variables used as inputs 
and their importance in decreasing order, while the x-axis displays each individual SHAP result. The dots are data 
instances, and the size of the dots is represented by their color, which goes from blue to red. The x-axis shows the 
value of the estimate for each feature’s SHAP values as the input parameter’s intensity changes (from blue to red). 
Each variable’s high feature value indicates that it has a favorable impact on the output result, as given in Fig. 14. 
Nevertheless, the smaller the attribute value is, the greater the unfavorable influence of the input parameter on 
the output. As shown in Fig. 14a, a higher amount of water has favorable effects on the slump, while a higher 
amount of cement has negative impacts on the slump. It is noticeable from Fig. 14b that the high feature value of 
water has significantly unfavorable effects on the fc of BPC, while, on the other hand, gravel, cement, and curing 
have positive impacts on compressive strength. Similarly, higher amounts of cement and gravel have favorable 
effects on elastic modulus, as given in Fig. 14c.

Conclusion
In the present study, the slump, fc, and Ec of BPC have been modeled using multi-expression programming. 
An extensive database of 158 datasets for the slump, 169 for compressive strength, and 111 for elastic modulus 
have been collected from the experimental studies available on BPC. The most influential input parameters are 
considered for MEP modeling. The large database has been divided into three distinct categories of training, 
testing, and validation with the purpose of well-training the model on unseen data. Various statistical parameters 

Table 8.  Comparison of the established models and existing literature models.

Author(s) Method Investigated properties Dataset Feature importance method

Performance

R RMSE

Ghanizadeh et al.14
ANN

fc 144 Sensitivity and parametric analyses
0.995 0.4510

SVM 0.992 0.6907

Amlashi et al.65

SVM

fc 169 Sensitivity analysis

0.992 0.461

GMDH 0.927 1.120

MGGP 0.973 0.863

RSM 0.953 1.121

Amlashi et al.94

ANN

fc 387 Cosine Amplitude Method

0.961 0.500

ANN-PSO 0.978 0.353

SVM 0.946 0.723

SVM-PSO 0.942 0.469

ANFIS 0.925 0.845

ANFIS-PSO 0.954 0.572

Amlashi et al.83

ANN

Slump 158

Cosine amplitude method

0.966 11.680

MARS 0.872 16.646

M5Tree 0.926 18.030

ANN

fc 169

0.986 0.574

MARS 0.982 0.656

M5Tree 0.951 0.963

ANN

Ec 119

0.958 472.252

MARS 0.793 997.634

M5Tree 0.896 765.052

Present study

MEP Slump 158

SHAP method

0.9999 0.5018

MEP fc 169 0.9550 0.1897

MEP Ec 119 0.9110 258.9647
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(R, MAE, RMSE, RSE, and RRMSE) have been utilized to check the predictive capability and performance of the 
MEP models. Furthermore, all three models have been validated by using various external validation criteria. 
SHAP analysis was conducted for all models to discover the impact of input parameters on the output property.

The MEP models exhibited excellent accuracy with a correlation coefficient (R) of 0.9999 for slump, 0.9831 
for fc, and 0.9300 for Ec. In addition, the developed models predicted the slump with MAE values of 1.4175 
for training, 0.4272 for testing, and 0.2262 for validation. Similarly, the MEP model for compressive strength 
exhibited MAE values of 0.2245, 0.1574, and 0.3146 for training, testing, and validation, respectively. Overall, 
the suggested MEP models demonstrated higher accuracy and lower errors, indicating their robust prediction 
performance in estimating the properties of bentonite plastic concrete. Moreover, the comparative analysis 
between MEP models and conventional linear and non-linear regression models revealed remarkable precision 
in the predictions of the proposed MEP models, surpassing the accuracy of traditional regression methods. 
SHAP analysis was conducted to investigate the influence of various influential input parameters such as ben-
tonite content, curing time, gravel, sand, cement, water, and silty clay on the properties of BPC. Water, cement, 
and bentonite have a significant influence on slump, but silty clay and sand have less effect. Furthermore, the 
water parameter has the maximum influence on compressive strength while curing time and cement has the 
higher impact on elastic modulus. In summary, this study provides crucial insights for builders and designers, 

Figure 13.  Importance of various input variables: (a) Slump; (b) fc; (c) Ec. 
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elucidating the significance of each constituent in the mix design of bentonite plastic concrete. The application 
of ML algorithms offers the capability to deliver prompt and precise early estimates of BPC properties, thus 
optimizing the efficiency of construction and design processes.

The robustness of the developed models is contingent upon adherence to the prescribed ranges of input 
parameters used in this study. Any deviation beyond these limits warrants comprehensive validation to ensure 
the reliability of model predictions. Moreover, it is highly recommended to augment the dataset with a wider 
range of samples to enrich the model’s predictive capacity. The inclusion of diverse data points spanning various 
scenarios and conditions will significantly enhance the model’s robustness and generalizability, ensuring more 
accurate predictions across different contexts. In addition, exploring the integration of advanced global optimiza-
tion bio-inspired algorithms, such as the human felicity algorithm, artificial bee colony algorithm, and tunicate 
swarm algorithm, for fine-tuning model hyperparameters is recommended. This approach has the potential to 

Figure 14.  SHAP values of input variables: (a) slump; (b) fc; (c) Ec. 
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enhance the hybrid model’s accuracy and robustness significantly, leading to a more reliable prediction model. 
Finally, it is recommended to utilize additional post-hoc model interpretability techniques, such as Individual 
conditional expectation plots and partial dependence plots, to gain deeper insights into the influence of input 
parameters on the properties of bentonite plastic concrete.

Data availability
Data and codes are provided in supplementary information files.
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