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Computational prediction

of workability and mechanical
properties of bentonite plastic
concrete using multi-expression
programming
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Bentonite plastic concrete (BPC) demonstrated promising potential for remedial cut-off wall
construction to mitigate dam seepage, as it fulfills essential criteria for strength, stiffness, and
permeability. High workability and consistency are essential attributes for BPC because it is poured
into trenches using a tremie pipe, emphasizing the importance of accurately predicting the slump

of BPC. In addition, prediction models offer valuable tools to estimate various strength parameters,
enabling adjustments to BPC mixing designs to optimize project construction, leading to cost and
time savings. Therefore, this study explores the multi-expression programming (MEP) technique to
predict the key characteristics of BPC, such as slump, compressive strength (fc), and elastic modulus
(Ec). In the present study, 158, 169, and 111 data points were collected from the experimental studies
for the slump, fc, and Ec, respectively. The dataset was divided into three sets: 70% for training, 15%
for testing, and another 15% for model validation. The MEP models exhibited excellent accuracy with
a correlation coefficient (R) of 0.9999 for slump, 0.9831 for fc, and 0.9300 for Ec. Furthermore, the
comparative analysis between MEP models and conventional linear and non-linear regression models
revealed remarkable precision in the predictions of the proposed MEP models, surpassing the accuracy
of traditional regression methods. SHapley Additive exPlanation analysis indicated that water,
cement, and bentonite exert significant influence on slump, with water having the greatest impact on
compressive strength, while curing time and cement exhibit a higher influence on elastic modulus. In
summary, the application of machine learning algorithms offers the capability to deliver prompt and
precise early estimates of BPC properties, thus optimizing the efficiency of construction and design
processes.
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The ageing infrastructure worldwide poses a significant concern for many nations. Unfortunately, public
awareness regarding this issue tends to escalate only following a catastrophic failure in some aspect of the
infrastructure'. For instance, during the Katrina and Rita Hurricanes in the Gulf Coast, embankment dams and
levees experienced severe and widespread failure in 2005% Earthen dams can fail in different ways, including
insufficient maintenance, over-topping, foundation issues, and slope instability. The latter often happens when
water seepage beneath the dam weakens internal friction, leading to the dam sliding or slipping’. As a result,
significant attention has been directed towards ensuring the safety of dams, leading to the implementation of
various global programs focused on dam repair and remediation’. A widely used approach to address dam
seepage involves the construction of cut-off walls. There are numerous options for backfill materials in cut-off
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walls, but there is a growing interest in plastic concrete*®. This is because of its favorable qualities, such as its
elastic—plastic properties, low permeability, and homogeneity®.

Due to its excellent low permeability characteristics, bentonite is utilized to prepare plastic concrete to con-
struct cut-off walls beneath dams to block water penetration’. Plastic concrete must possess robust strength,
impermeability, and stiffness similar to the surrounding soil. Ensuring compatibility of strain between adjacent
soil and the wall helps mitigate the risk of wall over-stressing and allows for deformation without separation®.
This type of concrete holds significant potential in meeting the criteria for strength, stiffness, and permeability in
the construction of remedial cut-off walls’. Although it offers enhanced formability, its strength is comparatively
lower due to the incorporation of clay slurry’. Typically, plastic concrete includes typical concrete constituents
and bentonite clay, and a greater water-binder ratio to yield a more workable and elastic material®. It is noteworthy
that bentonite has long been employed for sealing purposes in hydraulic and civil structures'®3.

Bentonite plastic concrete (BPC) must have excellent workability and consistency because fresh concrete
deposited into a trench by pipe must be capable of moving in the ditch and forcing the already poured concrete
with high pressure'*. This emphasizes the significance of forecasting the slump of BPC. Moreover, regulating
seepage content and, ensuring the stability of dams is significantly influenced by the compressive strength (fc) of
the employed plastic concrete (PC). Therefore, obtaining comprehensive details about factors impacting the fc of
PC, including the mixing ratio and curing duration, is essential'*. Numerous factors can impact the strength of
BPC, including the attributes of concrete constituents, curing time, and mixing ratio. In dam construction sites
and during the manufacturing of BPC, it is customary to subject samples from different mixers to testing using
specialized equipment and expert personnel. This process is essential for ensuring quality control and reliabil-
ity.!>!6. However, challenges arise in the workplace, such as construction issues, storage, and curing processes for
a large number of concrete samples'’~2!. The need for a prompt assessment of sample resistance to adjust ratios
adds complexity and incurs significant time and costs. Therefore, having a reasonably accurate and compre-
hensive estimate of compressive strength (within the desired confidence level) is essential for making informed
decisions??*. Researchers have employed empirical regression methods to estimate the strength of BPC?*-%.

In the past few decades, machine learning (ML) has garnered significant interest in its application to con-
struction materials'®?”?8, ML techniques, like neural network (NN) prediction models, were chosen from the
beginning of the application of data mining®***!. However, over time, alternative techniques such as adaptive
probabilistic neural networks (APNN)?*, fuzzy polynomial neural networks (FPNN)***4, and GMDH-type neural
networks®, were developed to improve the reliability, pace, and enhancing the performance of NN, but the
artificial neural network (ANN) technique still holds the majority of literature*’~*2. In addition to ANN, several
authors have employed other ML techniques in their studies, such as SVM and ANFIS*~*3%¢, Nevertheless, the
use of the ANN approach has certain drawbacks and limitations in prediction modeling*’-*°. To begin with, the
ANN is categorized as a black-box approach, offering limited interpretation in terms of how the model gener-
ates its estimations®~>>. The absence of clarity of interpretation may hinder understanding and confidence in
the model, particularly in vital applications where interpretability holds significant importance. For example,
Ekanayake et al.>* highlighted the difficulty faced by individuals lacking familiarity with ML methods in under-
standing them, often perceiving them as an enigmatic “black-box” approach®>’. The absence of vital informa-
tion like the relationship between outputs and inputs, and the logic behind estimations, erodes end-users’ trust
in ML estimations®®. In addition, ANN is susceptible to overfitting or underfitting the data. Overfitting occurs
when the model becomes excessively complex, memorizing the training data and subsequently exhibiting poor
generalization performance when applied to new, unseen data®. Moreover, fine-tuning hyperparameters in ANN
models is frequently necessary to improve model performance. Identifying the ideal setup can pose challenges
and may necessitate extensive experimentation through trial and error®-%*. To address these issues, evolutionary
algorithms (EAs) and genetic algorithms (GA), which include gene expression programming (GEP) and multi-
expression programming (MEP), are being utilized to forecast concrete properties***>*374 The superiority
of such algorithms is the generation of useful mathematical expressions, as well as their great reliability and
predictive potential.

Recently, few studies have been conducted to forecast the characteristics of BPC. For instance, Ghanizadehe
et al.' utilized ANN and SVM approaches to estimate the fc of BPC. Similarly, another study by Amlashi et al.>
employed four techniques (SVM, RSM, GMDH, MGGP) to forecast the fc of BPC. It was reported that the SVM
model outperformed the remaining three models. Amlashi et al.*® also used SVM and adaptive Neuro-fuzzy
inference system (ANFIS) methods optimized with particle swarm optimization (PSO) to estimate the fc of BPC.
The majority of these studies focused on neural network methods, which lack transparency and interpretability
aspects of ML modeling. Moreover, ANN methods are vulnerable to the issue of overfitting®-*.

To address the shortcomings of other neural algorithms, a novel approach known as MEP has been
developed® . Due to the linear nature of chromosomes and their potential for coding several solutions on
just one chromosome. The finest of the chosen chromosomes is selected as the final replica. In comparison to
EA, MEP is an improved version of GP that can compute an accurate output even when the complexity of the
objective is unknown. Contrary to ML techniques, MEP does not need the final equation’s formulation to be
determined. The mathematical discrepancies are determined and removed from the final formulation through-
out the MEP development process. Furthermore, in comparison to other soft computing systems, the decoding
procedure in MEP is significantly simpler. Despite the numerous advantages of MEP over other evolutionary
algorithms, its utilization till now is limited in construction materials research. MEP was used by Alavi et al.”’
to forecast soil classification established on the liquid limit (LL), plastic limit (PL), and soil color. Similarly, MEP
is used for Marshall mix design, flow, and stability”>-74.

In the present study, fc, elastic modulus (Ec), and slump of BPC have been modeled using the MEP technique
while taking into consideration the most influential input variables. An extensive database has been collected and
categorized into different sets (training, validation, testing) to guarantee that the model is effectively prepared. To
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ensure model applicability and accuracy, extensive statistical and performance checks are performed to measure
model efficiency. In addition, SHAP analysis was used for the interpretability of the suggested models.

Research methodology

Multi-expression programming (MEP)

The objective of this modeling technique is to offer precise and useful mathematical formulations to predict
output using pre-defined parameters. Koza” introduced an extension of GA called GP, which is relying on
Darwinian principles'®. The fundamental distinction between both methods is that in GA, binary strings are
used, but in GP, parse trees are used. Recently, multiple kinds of EAs have been suggested, with one of their
main differences being linearity”. One method for describing the output of an MEP modeling is a linear string
of commands with variables or operations. Figure 1 depicts the processes that occur in MEP development. The
MEDP algorithm forms through several stages: initially, it creates a diverse population of chromosomes. Then,
it employs a binary tournament operation to select parents. With a constant crossover probability, it merges
selected parents to produce offspring. Mutation introduces variation, and finally, the algorithm replaces inferior
members of the population with the best-performing ones. The process is iterative and continues until it reaches
convergence’’. Figure 2 depicts the MEP architecture.

MEP offers various advantages over other types of genetic techniques like genetic programming. GP uses a
tree crossover evolutionary process, which produces several parse trees, increasing computational time and the
need for storage’. In addition, since GP is both a phenotype and a genotype, it is difficult to provide a simple
formulation for the required task. MEP maintains a large variety of expressions, including certain implicit
structures, which is referred to as implicit parallelism. MEP also has the capacity to maintain many solutions
to a problem on a single chromosome®"’’. MEP can distinguish between phenotype and genotype due to the
linear variations’. MEP is thought to be more effective than other ML methods due to its capacity to encode
several answers inside a single chromosome. This unique feature enables MEP to look over for a better feasible
response. Unlike other GP algorithms, MEP provides simple decoding operations and pays particular attention
to cases where the specifics of the desired expression are unclears®'. MEP can manage issues such as division
by zero, improper expressions, and many more’”. Furthermore, multi-gene genetic programming (MGGP) and
MEDP are both extensions of traditional GP designed to address complex optimization problems. While they
share similarities in their approach, there are distinct differences in how they represent and evolve solutions. In
MGGSP, an individual is represented as a set of multiple genes, each of which may encode a distinct subcompo-
nent or module of the solution’®”*. These genes can be trees or other structures suitable for the problem domain.
In MEP, an individual is represented as a set of multiple expressions, typically in the form of linear or matrix-
based representations®. Each expression contributes to the overall solution and can be evaluated independently.
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Figure 1. Flowchart illustration of MEP algorithm.
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Figure 2. Architecture of MEP.

Moreover, MGGP typically uses genetic operators such as crossover and mutation at the gene level®'. It means
that crossover and mutation operations can occur within individual genes, allowing for the exchange or modi-
fication of entire subcomponents of the solution. In contrast, MEP often employs mutation operators that act at
the expression level, modifying individual expressions or parts of expressions to create new candidate solutions.
Crossover operations in MEP may involve combining entire expressions from different individuals®.

Experimental database

An extensive database of BPC has been collected from the existing literature for GEP modeling (provided in
supplementary as Tables S1-S3)®. The database contains 158, 169, and 111 datasets for the slump, fc, and Ec,
respectively. It must be noted that the samples used in experimental studies were of two distinct dimensions
(150 x 150 x 150 mm and 100 x 100 100 mm). To estimate the characteristics of BPC, an ML model considered
a wide range of input features. To build up a predictive model for the slump, six input variables, which include
gravel, sand, silty clay, cement, bentonite, and water, were retrieved from the literature. In addition, for modeling
compressive and elastic modulus, curing time was added to these six influential input variables.

The distribution of input variables influences the generated model’s generalization capabilities. Frequency
histograms are provided in Fig. 3 to visualize variable distribution. Tables 1, 2 and 3 summarize the various
statistics for the collected datasets of slump, compressive strength, and elastic modulus. The dataset is split into
three categories: testing (15%), training (70%), and validation (15%). This data partitioning approach facilitates
evaluating the model’s performance on new, unseen data, offering a more precise gauge of its real-world appli-
cability. By doing so, it mitigates the risk of overfitting, preventing the model from depending excessively on
particular training data patterns. Additionally, it supports model refinement and hyperparameter optimization
by furnishing a distinct validation set for comparing and selecting the most effective model configurations*”**84,
Each subset of the dataset has comparable statistical characteristics such as standard deviation, variance, mean,
and range. These statistical analyses prove that the proposed ML models are usable for a diverse set of data, which
broadens their generalization. It is noticeable that only a few research have determined slump, fc, and Ec for a
specific mix proportion. Due to this reason, separate databases have been collected for these three characteristics
and are considered for their respective model development.

MEP model development
The methodology used in this research is outlined in Fig. 4. Several MEP setting variables must be defined prior
to building a valid and adaptive model. The setting variables are chosen by prior recommendations and a trial-
and-error procedure®. The number of developed programs is determined by the population size. A large-scale
population model can be more complex, but it is more exact and reliable, and it takes longer to reach convergence.
However, if the size increases above a certain range, the model may overfit. Table 4 shows the setup variables that
were used for the model constructed in this work. The function just comprises the simple mathematical opera-
tors (In, exp, -, x,+, +) for simplicity in the final formulations. The number of generations indicates the accuracy
of the method before it is discontinued. The model for simulation with the fewest errors will be produced by a
multi-generation run. Various variable combinations were used to optimize the model, and the optimum com-
bination was chosen to offer an outcome model with the lowest errors, as shown in Table 4. The main challenge
with ML prediction simulation is the over-fitting of the prediction model. Whenever utilized with original data,
the model performs well; however, when given unknown data, the model performs significantly worse. To avoid
overfitting, it has been suggested that the model be evaluated using previously unknown data®%. As a result, the
data is proportionately divided into three groups. Following validation, the model is evaluated on the dataset
that was not used in the training of the model. The database was divided into three subsets, i.e., 15% for testing,
15% for validation, and 70% for training. The generated models perform excellently across all datasets. In the
current study, the MEPX tool (version. 2023.3.5) was used to carry out MEP modeling.

Initially, the modeling process generates optimal solutions for the population. The procedure is repeated, with
every iteration getting closer to a solution. The fitness of each successive generation is determined. The MEP
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Figure 3. Frequency histograms of variables: (a) Slump (b) fc (c) Ec.

modeling process carries on until the fitness value does not change. If the outcomes are not precise, the opera-
tion is iterated by progressively increasing the size of the population and tuning other hyperparameters. After
evaluating the fitness function of every model, the model with the lowest fitness is chosen. It should be noted that
the evolution time and the number of generations have a considerable impact on the accuracy of the suggested
model. Due to the addition of new features to the framework, a model will be iterated indefinitely using these
approaches. However, in the current study, the model has completed either the change in function was less than
0.1% or after 1000 generations. The hyperparameters setup of the suggested MEP model is provided in Table 4.

Model performance assessment

The models’ effectiveness is assessed by calculating numerous statistical error metrics. Multiple performance
metrics such as R, RMSE, MAE, RRMSE, RSE, and performance index (p) are used to check the accuracy of the
MEP model, as given in Eqs. (1-6). Another approach to prevent model overfitting is to choose the optimum
model by reducing the objective function (OF)%,%.

RMSE = (1)
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where ei shows actual data and mi shows model data of actual while n denotes the number of collected values.
Whereas ei and mi represent the mean of experimental and predicted values, respectively. The training and
validation sets are represented by the subscripts T and V, respectively. R measures the correlation between
estimated and actual values®, and a value greater than 0.8 shows a strong connection between anticipated and
actual results®*®. However, because R is insensitive to the division or multiplication of data by a constant number,
it is insufficient as a check of the overall model efficacy. The RMSE and MAE calculate the mean magnitude of
the errors. Each variable, though, has its own significance. A larger RMSE value indicates that the frequency of
estimations with substantial errors is significantly greater than expected and should be decreased. On the other
hand, MAE provides minimum weight to higher error and is always lower than RMSE.

The MEP model used in this study is also assessed via the OF to determine the overall efficiency because OF
takes into account the influence of RMSE, R, and the total number of collected values. The values OF range from
0 to infinity. A model is considered best if p and OF are both 0.2%. The OF considers three parameters, namely
R, RRMSE, and the proportion of data in validation and training sets. Consequently, the least value signifies a

(5)
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Figure 3. (continued)
model’s greater performance. Furthermore, the MEP model was externally validated using criteria suggested in
the literature, as shown in Table 5.
Results and discussion
The MEP algorithm was employed to construct predictive models for various properties of bentonite plastic
concrete. These models were meticulously developed with a hyperparameter configuration comprising a sub-
population size of 250, generations of 1000, a mutation probability of 0.9, and sub-populations of 50. Addition-
ally, mathematical operators including +, —, /, Inv, and exp were utilized in the model construction process. The
optimized MEP code for future prediction of slump, fc, and Ec has been compiled and is conveniently accessible
in the supplementary materials under Tables S4-S6. These codes provide a comprehensive overview of the gener-
ated code, facilitating accurate and efficient forecasting of slump, fc, and Ec.
Outcomes of MEP modeling
Figure 5 displays the comparison model forecasted and experimental values of the slump. The plot also includes
the expressions for regression lines. In perfect condition, the regression slope should be approached close to 1.
Figure 5 illustrates a significant correlation between original and modeled values, as evidenced by slopes of 0.987,
0.991, and 0.976 for the training, validation, and testing phases, respectively. Moreover, the values are relatively
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Gravel Sand Silty clay | Cement | Bentonite | Water Slump
Statistics (Kg.m™) (Kg.m™) (Kg.m™) | (Kgm™) |(Kg.m3) (L.m3) (mm)
Training (70%)
Mean 684.958 815.427 34.587 181.780 48.202 349.685 181.688
Standard deviation 206.970 216.642 76.452 49.460 30.057 68.354 45.501
Sample variance 42,836.767 | 46,933.895 | 5844.967 2446.340 | 903.395 4672.248 | 2070.328
Range 912.000 864.000 260.000 228.000 | 152.000 347.900 220.000
Testing (15%)
Mean 728.938 809.063 39.792 172.333 38.188 326.925 186.208
Standard deviation 208.559 172.442 80.305 43.646 15.251 56.345 33.127
Sample variance 43,496.789 | 29,736.137 | 6448.868 1905.014 | 232.586 3174.749 | 1097.389
Range 926.000 747.000 225.000 150.000 57.000 259.200 179.000
Validation (15%)
Mean 676.160 793.440 23.400 186.880 37.676 329.723 161.040
Standard deviation 235.618 197.696 65.108 59.313 18.076 77.378 69.056
Sample variance 55,515.973 | 39,083.673 | 4239.000 3518.027 | 326.729 5987.366 | 4768.790
Range 889.000 928.000 225.000 189.000 85.000 340.000 217.000

Table 1. Statistical analysis of the slump dataset.

Gravel Sand Silty clay | Cement | Bentonite | Water Curing time c
Statistics (Kg.m™) | (Kgm3) | (Kg.m™) | (Kgm?®) [(Kg.m3) (L.m3) (days) (MPa)
Training (70%)
Mean 615.3342 | 835.8254 | 158.3772 130.7456 | 75.74561 337.3454 86.31579 3.502456
Standard deviation 187.2431 | 250.8098 | 94.75048 36.82506 | 41.73342 77.82741 | 138.8061 2.553283
Sample variance 35,059.99 | 62,905.58 | 8977.653 1356.085 | 1741.678 6057.106 19,267.12 6.519254
Range 580 781 380 202 304 347.9 533 13.74
Testing (15%)
Mean 679.9621 778.2034 | 154.8276 137.8966 | 66.41379 326.7959 87.72414 5.685172
Standard deviation 168.8335 229.3582 102.4389 46.04217 | 31.06849 88.56716 | 129.942 5.528141
Sample variance 28,504.76 | 52,605.17 | 10,493.72 |2119.882 |965.2512 7844.141 16,884.92 30.56034
Range 580 781 280 202 122 297.9 533 20.19
Validation (15%)
Mean 654.4222 917.4593 174.2593 146.4444 | 64.77778 344.1211 67.59259 4.103704
Standard deviation 192.6646 | 289.7691 70.96456 42.65184 | 30.45089 60.193 99.91968 4.410454
Sample variance 35,226.23 | 83,966.14 | 5035.969 1819.179 | 927.2564 3623.198 9983.943 19.45211
Range 580 781 310 180 124 277.85 533 20.77

Table 2. Statistical analysis of compressive strength dataset.

similar and near to perfect matching, showing that the MEP model is trained effectively and has a better predic-
tion performance, i.e., it works similarly very well with new data.

The fc findings have also been compared to experimental values of fc, as shown in Fig. 6. The resulting model
appears to have undergone effective training on the input data, as evidenced by its ability to generate precise
predictions for the actual fc. All three sets of data have almost optimal regression line slopes (0.988, 0.834, and
0.984). This model, like the one for the slump, does very well on test data. This demonstrates that the concern
of the model being overfitted has been much reduced. The greater the number of data points, the more accurate
and generalizable the outcomes will be®. The largest number of points possible (169) were chosen for fc in the
compiled database, resulting in a high level of precision with the least statistical errors.

Similarly, Fig. 7 provides a comparison of the model and experimental results of Ec. In contrast, to slump and
fc models, the MEP model for Ec exhibited a comparatively lower regression slope as shown in Fig. 7. According
to Gholampour et al.”, the precision and efficacy of the model are heavily influenced by the number of dataset
points. In the current work, a greater number of datasets (111) were obtained from the available published work
and used for the suggested model, resulting in improved accuracy.

Performance evaluation of MEP models
The number of data points required to construct a model is crucial because it affects the model’s validity. The
data set proportion to the number of inputs should be 3 for a satisfactory model, and a ratio of 5 is preferred®®®'.
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Gravel Sand Silty clay Cement | Bentonite | Water Curing time | Ec
Statistics (Kg.m™) (Kg.m™) (Kg.m™) (Kg.m?) | (Kg.m™) (L.m>) | (days) (MPa)
Training (70%)
Mean 785.588 798.274 99.855 165.928 50.245 367.767 61.957 1825.915
Standard deviation 310.351 235.661 119.539 51.926 19.322 60.462 40.335 1749.309
Sample variance 96,317.836 55,536.138 14,289.685 | 2696.333 | 373.356 3655.696 | 1626.925 3,060,080.52
Range 1519.600 848.000 370.000 250.000 80.000 430.000 173.000 7686.720
Testing (15%)
Mean 930.290 900.859 72.381 197.905 37.181 356.110 43.095 1484.000
Standard deviation 420.056 318.772 137.510 67.107 17.867 54.500 27.630 1016.307
Sample variance 176,447.408 | 101,615.448 | 18,909.048 | 4503.290 | 319.234 2970.290 763.390 1,032,880.43
Range 1547.700 990.000 380.000 200.000 85.200 205.000 83.000 3896.480
Validation (15%)
Mean 735.862 768.878 99.048 169.476 44.105 367.462 48.667 1718.613
Standard deviation 315.819 217.178 113.398 61.712 19.018 60.572 29.949 1378.513
Sample variance 99,741.440 47,166.438 12,859.048 | 3808.362 | 361.681 3668.990 896.933 1,900,297.05
Range 1519.600 827.000 330.000 200.000 64.000 220.000 62.000 4673.750
Table 3. Statistical analysis of the elastic modulus dataset.
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Figure 4. Flowchart of the methodology followed in the present study.

Parameter Set up
Sub-population size 250
Mutation probability 0.01
Number of generations 1000

Operators

X,+,+,—,In, exp

Number of sub-populations | 50

Tournament size 40
Variable 0.5
Length of code 0.5
Probability of crossover 0.9
Fitness function MAE

Table 4. Set up of parameters for MEP algorithm.
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Table 5. External validation requirements.
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Figure 5. MEP prediction model comparison with experimental data of slump.
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Figure 6. MEP prediction model comparison with experimental data of fc.
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Figure 7. MEP prediction model comparison with experimental data of Ec.

In this study, the ratios are 26.3, 24.1, and 15.9 for the slump, fc, and Ec, respectively. As discussed previously,
the performance of all three models is assessed by using various statistical measures (R, MAE, RMSE, RSE,
RRMSE, p, and OF). The values of all these error measurements for the three models are provided in Table 6
and illustrated in Fig. 8. The table provides a good correlation between the model estimated and actual values, as
R-values are closer to 1 (ideal condition) for the three suggested models. The MAE, RSE, and RMSE values for the
three datasets are notably lower, which indicates the good precision and generalization ability of MEP models.

It is shown that the values of RRMSE in the three sets of slump models are lower than 0.2, indicating that
the slump model is in the excellent range. The values of p are less than 0.20 for all sets of slump and compres-
sive strength models, demonstrating that the MEP models are accurate and suitable for predicting the output.
However, these values of p are a little high for the elastic modulus model. OF for the slump, fc, and Ec models
are 0.0453, 0.0471, and 0.1662, respectively. These values are quite close to 0, substantiating the accuracy and
indicating that the issue of overfitting for the models has been adequately handled.

Figure 9 shows the absolute error in each MEP model to explain the statistics of absolute errors. The mean
absolute error values for the slump, fc, and Ec are 1.095 mm, 0.226 MPa, and 296.79 MPa, respectively, with a
maximum error of 12.64 mm, 1.08 MPa, and 2560.2 MPa. It is worth noting that the occurrence of maximum
error is very low. In addition, the predicted values of MEP models closely followed the trend of the experimental
values.

External validation of MEP model

Table 7 represents the numbers of the additional criteria used for model validations. It has been proposed that
the slopes of regression lines should be close to 1°2. Roy and Roy® proposed another criterion of Rm to measure
the external reliability of the model. When the value of Rm is higher than 0.5, this criterion is satisfied. Table 7
illustrates that the MEP model meets the additional validation criteria, showing that the MEP algorithm is
accurate and has better predictive potential. Thus, the formulated MEP models have the potential to accurately
and precisely predict the workability and strength properties of BPC.

Model | Subset R MAE RMSE RRMSE | p OF
Training 0.9989 1.4175 2.5176 0.0141 | 0.0070
Slump Testing 0.9999 0.4272 0.5018 0.0035 | 0.0017 | 0.0038
Validation | 0.9999 0.2262 0.6007 0.0035 | 0.0014
Training 0.9965 0.2245 0.3374 0.0852 | 0.0427
fe Testing 0.9550 0.1574 0.1897 0.0477 | 0.0244 | 0.0471
Validation | 0.9831 0.3146 0.3886 0.0956 | 0.0482
Training 0.9612 | 352.9337 | 560.2367 | 15.3485 | 0.1902
Ec Testing 0.9110 | 359.6862 | 258.9647 2.3486 | 0.1772 | 0.1662
Validation | 0.9300 | 126.0827 |189.6300 | 11.9749 |0.1931

Table 6. Various statistical calculations of the MEP model.
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Figure 8. Radar plots presenting the performance of MEP models: (a) Slump, (b) fc, (c) Ec.

Comparing the MEP model with statistical regression models

In this study, non-linear (NLR) and linear regression (LR) models were constructed using similar databases to
predict the characteristics of BPC. The outcomes were compared with MEP models. The RMSE and p values are
lower for the MEP model compared to the regression models for all three datasets.

The formulations to estimate the slump of BPC using LR and NLR analysis are provided in Egs. (7-8). The
results of NLR and LR regression analysis are compared with the MEP model for the slump and shown in Fig. 10.
The RMSE,ining of the MEP model for the slump is 95.2% lower than that of the linear regression, which shows
the accuracy and reliability of the MEP model. It is worth noticing from Fig. 10 that the regression model failed
to capture the lower value of the slump.

(Slump)LR = 106.7 4 0.038(gravel) + 0.005(sand) + 0.051(silty clay)

7
— 0.37(cement) + 0.086(Bentonite) + 0.30 (water) @

=81.84+1x107° (gravel)z‘6 +3.2 x 10~ (sand)"** + 0.17(silty clay) 094

— 6 X 10_5(cement)2'5 + 0.28(bent0nite)0'75 +1x 10_3(water)1'89

(Slump) NLR
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Figure 9. Representation of error in the established models: (a) slump; (b) fc; (c) Ec.

S.No | Parameter |Slump | fc Ec

(1) k 0.99 1.04 | 1.12
(2) K 1.10 0.95 |0.87
3) R? 0.99 0.97 |0.94
(4) Ry 0.99 0.99 |0.96
(5) Rm 0.98 0.80 |0.75

Table 7. Various external validation values of the proposed models.

120

Similarly, based on the same dataset, LR and NLR analyses are conducted for the compressive strength of
BPC. LR and NLR formulations for fc of BPC are shown as Egs. (9-10). MEP-predicted values for compressive
strength are compared with LR and NLR, as provided in Fig. 11. The statistical errors for the MEP model of fc are

considerably lower than those of regression models. The RMSE,;,iy, of the MEP model is 52% less than that of

the regression model, which indicates the inaccuracy of the conventional regression model. It is worth noticing
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Figure 10. Comparison of slump predicted by MEP with LR and NLR models.
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Figure 11. Comparison of fc predicted by MEP with LR and NLR models.

that the non-linear regression model for fc produced similar values of outcomes throughout all the dataset data,
as represented by the nearly straight line. This provides the inaccuracy of the NLR model to forecast the fc of BPC.

(fc)LR = —149+14x 1072 (gravel) +7.1 x 10~3(sand)
+13x1073 (silty clay) + 5.1 x 10"2(cement) 9)
+3x 10_4(bentonite) —9.6 X 10_3(water) +41x1073 (curing time)

(fe) ig = 823 + 8.7 x 1072 (gravel) *** 4 4.1 x 107 (sand)"**

+124x 1078 (silty clay) 265 4 0.12(cement)®?” 4+ 9.1 x 10~%(bentonite)?> (10)

~7.9 x 107 (water)*® 4 8.1 x 1072 (curing time) 012

The formulations of LR and NLR for the elastic modulus of BPC are given as Egs. (11-12). The outcomes of
elastic modulus regression analysis are compared with the MEP model and experimental data, as depicted in
Fig. 12. The RMSE,iing of the MEP model for Ec is 60% lower than that of linear regression, which shows the
excellent capability of MEP model to precisely forecast the elastic modulus of BPC.

Scientific Reports|  (2024) 14:6105 | https://doi.org/10.1038/s41598-024-56088-0 nature portfolio



www.nature.com/scientificreports/

8000 - Experimental —— MEP

Linear Regression Non-Linear Regression

7000

6000
5000

4000

Ec (MPa)

3000

2000

1000

04

0 20 40 60 80 100 120
Data set

Figure 12. Comparison of Ec predicted by MEP with LR and NLR models.

(Eo)ir = 896.1 + 22.6(gravel) + 0.84(sand)—21.1(silty clay)

11
+ 5.12(cement)— 0.6(bentonite) + 0.3(water) —1.1 (curing time) ()
0.13 —1.86 2/ . 0.39
(Ec)NLr = 762.3 + 12.69 (gravel) —0.4(sand) —6x10 (sﬂty clay)
+ 26(cemen'[)0‘007 + 4.48 x 10_6(bent0nite)1'4 + 0.5(water)0'09 (12)

—8.7 x 107%(curing time)z'1

These findings imply that MEP-based models outperform both LR and NLR models. The reason for this is
that these statistical regression procedures have limits, such as the actual issue being linked to a forecast model
by certain pre-defined functions. In contrast, the outcomes of MEP-based modeling, demonstrate that the models
have a great generalization capability and, most importantly, less error than the regression models. Hence, these
limitations impede the utilization of statistical regression models for predictive tasks.

Comparison of the developed models with literature models

To date, several soft-computing models have been developed to predict the properties of bentonite plastic con-
crete. The majority of developed models have primarily focused on predicting the fc of BPC. However, it is
noteworthy that despite the significance of slump, most studies have not delved into developing prediction
models for this parameter, with Amlashi et al.%> being an exception. To facilitate a precise comparison between
existing models from the literature and the established models in this study, two statistical metrics (R, RMSE)
were selected, as given in Table 8.

As given in Table 8, a comparative analysis between the highest-performing model for predicting slump
models in this study (i.e., MEP model) and the top-performing model from the literature (i.e., ANN model by
Amlashi et al.®*). The RMSE value of the MEP model was reduced by 95.70% compared to the top-performing
model (ANN model developed by Amlashi et al.*?) in the literature for slump prediction of BPC. Similarly, the
RMSE value of the MEP model for compressive strength is 46.26% lower than that of the best prediction model
in the literature (ANN-PSO developed by Amlashi et al.**). Furthermore, the reduction in RMSE for Ec is 45.16%
in the MEP model developed in the present study compared to the most accurate model found in the literature
(ANN model developed by Amlashi et al.**). The developed MEP model exhibited superior accuracy in predict-
ing both the workability and strength properties of bentonite plastic concrete. The MEP model’s performance
surpassed that of all models reported in the literature, demonstrating its efficacy in optimizing predictions for
bentonite plastic concrete. This accuracy signifies a significant advancement in predictive modeling of BPC,
promising enhanced reliability for engineering applications.

Moreover, while the bulk of the research concentrated on constructing ML models for predicting BPC prop-
erties, it overlooked the crucial aspect of model interpretation. The transparency of ML models is pivotal for
engendering trust among end-users. Although several literature studies conducted sensitivity analyses to gauge
the importance of individual features in predicting BPC properties, these analyses primarily provide feature sig-
nificance and do not delve into the internal mechanisms of the models or the complex interrelationships among
these features. Hence, this study employed SHAP analysis to interpret the forecasts of the developed models,
thereby augmenting their transparency. Overall, this study not only provides models with superior accuracy
compared to existing literature models but also enhances model interpretability.
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Performance
Author(s) Method Investigated properties | Dataset | Feature importance method R RMSE
Ghanizadeh et al.'* ANN fe 144 Sensitivity and parametric analyses 0995 04510
SVM 0.992 0.6907
SVM 0.992 0.461
Amlashi et al.® GMDH fe 169 Sensitivity analysis 0527 1120
MGGP 0.973 0.863
RSM 0.953 1.121
ANN 0.961 0.500
ANN-PSO 0.978 0.353
Amlashi et al.** SVM fe 387 Cosine Amplitude Method 0.946 0723
SVM-PSO 0.942 0.469
ANFIS 0.925 0.845
ANFIS-PSO 0.954 0.572
ANN 0.966 11.680
MARS Slump 158 0.872 16.646
M5Tree 0.926 18.030
ANN 0.986 0.574
Amlashi et al.¥ MARS fc 169 Cosine amplitude method 0.982 0.656
M5Tree 0.951 0.963
ANN 0.958 472.252
MARS Ec 119 0.793 997.634
M5Tree 0.896 765.052
MEP Slump 158 0.9999 0.5018
Present study MEP fc 169 SHAP method 0.9550 0.1897
MEP Ec 119 0.9110 | 258.9647

Table 8. Comparison of the established models and existing literature models.

SHAP interpretability of the models

Lundberg and Lee* developed an approach for analyzing ML models that utilize the concept of Shapely Addi-
tive explanations (SHAP). The SHAP-based approach was established to determine each feature’s proportion-
ate relevance to the output and to determine if the feature enhances the output favorably or unfavorably®®*”.
References®™*” give a thorough explanation of the SHAP method. The SHAP value shows how much each input
feature contributed to the results. This approach is equivalent to parametric analysis, in which a particular
parameter is changed while others are kept constant to assess how modifications to one input variable are
impacting the result.

The mean SHAP values provided in Fig. 13 show the importance of the input parameter. As illustrated in
Fig. 13a, bentonite has a relatively greater contribution in output (slump) followed by the rest of the input vari-
ables. Similarly, water has relatively more contribution than other input variables in compressive strength, as
illustrated in Fig. 13b. Cement exhibits the greatest influence, while silty clay has the least impact on the elastic
modulus of BPC, as depicted in Fig. 13c. Furthermore, Fig. 14 shows the summary plot which demonstrates the
influence the input features on output parameter. It shows the order of SHAP value for a specific feature in addi-
tion to the trend of the related variable. The vertical axis of the SHAP plot displays the variables used as inputs
and their importance in decreasing order, while the x-axis displays each individual SHAP result. The dots are data
instances, and the size of the dots is represented by their color, which goes from blue to red. The x-axis shows the
value of the estimate for each feature’s SHAP values as the input parameter’s intensity changes (from blue to red).
Each variable’s high feature value indicates that it has a favorable impact on the output result, as given in Fig. 14.
Nevertheless, the smaller the attribute value is, the greater the unfavorable influence of the input parameter on
the output. As shown in Fig. 14a, a higher amount of water has favorable effects on the slump, while a higher
amount of cement has negative impacts on the slump. It is noticeable from Fig. 14b that the high feature value of
water has significantly unfavorable effects on the fc of BPC, while, on the other hand, gravel, cement, and curing
have positive impacts on compressive strength. Similarly, higher amounts of cement and gravel have favorable
effects on elastic modulus, as given in Fig. 14c.

Conclusion

In the present study, the slump, fc, and Ec of BPC have been modeled using multi-expression programming.
An extensive database of 158 datasets for the slump, 169 for compressive strength, and 111 for elastic modulus
have been collected from the experimental studies available on BPC. The most influential input parameters are
considered for MEP modeling. The large database has been divided into three distinct categories of training,
testing, and validation with the purpose of well-training the model on unseen data. Various statistical parameters

Scientific Reports |

(2024) 14:6105 |

https://doi.org/10.1038/s41598-024-56088-0 nature portfolio



www.nature.com/scientificreports/

Bentonite
Cement
Water
Gravel
Sand

Silty Clay

2 P 6 8 10 12
mean(|SHAP value|) (average impact on model output magnitude)

(@)

Water
Cement
Curing Time
Gravel
Bentonite
Silty Clay

Sand

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
mean(|SHAP value|) (average impact on model output magnitude)

(b)

Curing Time

Cement

Gravel
Sand
Bentonite:
Water

Silty Clay

100 200 300 400 500
mean(|SHAP value|) (average impact on model output magnitude)

(©

Figure 13. Importance of various input variables: (a) Slump; (b) fc; (c) Ec.

(R, MAE, RMSE, RSE, and RRMSE) have been utilized to check the predictive capability and performance of the
MEP models. Furthermore, all three models have been validated by using various external validation criteria.
SHAP analysis was conducted for all models to discover the impact of input parameters on the output property.

The MEP models exhibited excellent accuracy with a correlation coefficient (R) of 0.9999 for slump, 0.9831
for fc, and 0.9300 for Ec. In addition, the developed models predicted the slump with MAE values of 1.4175
for training, 0.4272 for testing, and 0.2262 for validation. Similarly, the MEP model for compressive strength
exhibited MAE values of 0.2245, 0.1574, and 0.3146 for training, testing, and validation, respectively. Overall,
the suggested MEP models demonstrated higher accuracy and lower errors, indicating their robust prediction
performance in estimating the properties of bentonite plastic concrete. Moreover, the comparative analysis
between MEP models and conventional linear and non-linear regression models revealed remarkable precision
in the predictions of the proposed MEP models, surpassing the accuracy of traditional regression methods.
SHAP analysis was conducted to investigate the influence of various influential input parameters such as ben-
tonite content, curing time, gravel, sand, cement, water, and silty clay on the properties of BPC. Water, cement,
and bentonite have a significant influence on slump, but silty clay and sand have less effect. Furthermore, the
water parameter has the maximum influence on compressive strength while curing time and cement has the
higher impact on elastic modulus. In summary, this study provides crucial insights for builders and designers,

Scientific Reports |

(2024) 14:6105 |

https://doi.org/10.1038/s41598-024-56088-0 nature portfolio



www.nature.com/scientificreports/

High
Bentonite PR e oo ssaam-Ppd M’.“
Cement - coe o ee oo 8 o P
2
Water e o o om o o o oo of . g
L
Gravel o o e oo ® eoes ese e =
>
[
Sand ° com oo
Silty Clay
T T T Low
—40 —20 40
SHAP value (impact on model output)
(a)
High
Water - .’-ﬁ e ® wme ®e -e & -
Cement “ A
Curing Time oo ---‘ “- emeoe 13,»
<
Gravel )
=
Bentonite - ®- o d"?_’
Silty Clay
Sand
T T T T T T T Low
-2 o 2 4 6 8 10
SHAP value (impact on model output)
(b)
l High
Cement .*m esls o oo Mool ove
Curing Time e o o oo - oo l‘.. ePqeoce oo o
Gravel - momSee e o E
B
Sand o aflonsada o
=
Bentonite - il §
Water ® oo o o =
Silty Clay
T T T T T Low
—1000 —500 o) 500 1000 1500
SHAP value (impact on model output)

(©

Figure 14. SHAP values of input variables: (a) slump; (b) fc; (c) Ec.

elucidating the significance of each constituent in the mix design of bentonite plastic concrete. The application
of ML algorithms offers the capability to deliver prompt and precise early estimates of BPC properties, thus
optimizing the efficiency of construction and design processes.

The robustness of the developed models is contingent upon adherence to the prescribed ranges of input
parameters used in this study. Any deviation beyond these limits warrants comprehensive validation to ensure
the reliability of model predictions. Moreover, it is highly recommended to augment the dataset with a wider
range of samples to enrich the model’s predictive capacity. The inclusion of diverse data points spanning various
scenarios and conditions will significantly enhance the model’s robustness and generalizability, ensuring more
accurate predictions across different contexts. In addition, exploring the integration of advanced global optimiza-
tion bio-inspired algorithms, such as the human felicity algorithm, artificial bee colony algorithm, and tunicate
swarm algorithm, for fine-tuning model hyperparameters is recommended. This approach has the potential to
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enhance the hybrid model’s accuracy and robustness significantly, leading to a more reliable prediction model.
Finally, it is recommended to utilize additional post-hoc model interpretability techniques, such as Individual
conditional expectation plots and partial dependence plots, to gain deeper insights into the influence of input
parameters on the properties of bentonite plastic concrete.
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