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Segmentation‑based 
cardiomegaly detection based 
on semi‑supervised estimation 
of cardiothoracic ratio
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The successful integration of neural networks in a clinical setting is still uncommon despite major 
successes achieved by artificial intelligence in other domains. This is mainly due to the black box 
characteristic of most optimized models and the undetermined generalization ability of the trained 
architectures. The current work tackles both issues in the radiology domain by focusing on developing 
an effective and interpretable cardiomegaly detection architecture based on segmentation models. 
The architecture consists of two distinct neural networks performing the segmentation of both 
cardiac and thoracic areas of a radiograph. The respective segmentation outputs are subsequently 
used to estimate the cardiothoracic ratio, and the corresponding radiograph is classified as a case of 
cardiomegaly based on a given threshold. Due to the scarcity of pixel‑level labeled chest radiographs, 
both segmentation models are optimized in a semi‑supervised manner. This results in a significant 
reduction in the costs of manual annotation. The resulting segmentation outputs significantly 
improve the interpretability of the architecture’s final classification results. The generalization ability 
of the architecture is assessed in a cross‑domain setting. The assessment shows the effectiveness 
of the semi‑supervised optimization of the segmentation models and the robustness of the ensuing 
classification architecture.
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Cardiomegaly refers to an abnormally enlarged heart, that can be caused by various medical conditions such as 
kidney diseases, heart valve diseases, hypertension, coronary artery or pulmonary diseases, and  cardiomyopathy1. 
In a clinical setting, the cardiothoracic ratio (CTR)2 of a posteroanterior (PA) chest radiograph constitutes a 
simple and useful screening technique to detect cardiomegaly. The CTR is defined as the ratio of maximum 
horizontal cardiac diameter by the maximum horizontal thoracic diameter, with a value higher than 0.50 usually 
pointing at a case of cardiomegaly (even though in some cases this specific threshold can be set to 0.553,4). Expert 
knowledge is therefore needed for the computation and interpretation of the cardiothoracic ratio. Thus, the whole 
process can be time consuming and the resulting interpretation can be very subjective and significantly vary 
across different experts. Hence, in order to significantly improve the efficiency of the calculation process, as well 
as reducing the discrepancy across the interpretation of the cardiothoracic ratio, several approaches have been 
proposed with the main goal of performing an automatic detection of cardiomegaly based on posteroanterior 
chest radiographs. These approaches can be grouped in two main categories: classification-based cardiomegaly 
detection approaches and segmentation-based cardiomegaly detection approaches.

Classification-based cardiomegaly detection approaches rely on image-level labeled chest X-ray (CXR) images 
in order to generate classification models to perform the detection of cases of cardiomegaly. In most cases, 
transfer learning is applied in order to adapt a model pre-trained on a specific data set to the classification 
task at hand: Candemir et al.5 perform the comparison of several models that have either been fine-tuned by a 
limited number of CXR samples or pre-trained using a larger amount of labeled data to perform the detection 
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of cardiomegaly instances; Zhou et al.6 propose an architecture consisting of three pre-trained and distinct 
deep neural networks: the feature representations extracted by the models are merged and subsequently used to 
train a neural network performing the classification task; other authors such as Bougias et al.7, Cardenas et al.8, 
use a specific pre-trained model to extract specific feature representations from the radiographs, which are 
subsequently used for the optimisation of the classification model. Even though, the results presented in these 
studies are very promising, most of the proposed approaches have been assessed on a single data set. A steep 
performance decline can be observed when such approaches are applied in a cross-domain  setting9, thus, domain 
 adaptation10 is required in order to adapt the trained models to data sets, stemming from domains other than 
that of the data set used to optimise the classification models. Moreover, the interpretability of the generated 
results requires the application of other statistical visualisation approaches such as the t-Distributed Stochastic 
Neighbor Embedding (t-SNE)11 (which interpretation can be confounding at times) or the Gradient-Weighted 
Class Activation Mapping (Grad-CAM)12.

Segmentation-based cardiomegaly detection approaches rely on pixel-level labeled chest X-ray images in order 
to perform the classification task. More specifically, such approaches are based on models that are optimised 
to perform the segmentation of both cardiac and thoracic areas. Based on the generated segmentation outputs, 
a CTR score is computed and the corresponding image is classified as an instance of cardiomegaly based on a 
specific threshold. The overall performance of such a classification architecture rests upon the accuracy of the 
performed cardiac and thoracic segmentation. Such an approach is adopted by Que et al.13, with the proposed 
deep neural network CardioXNet, as well as Jafar et al.14, with the proposed deep neural network CardioNet. 
Lee et al.15 propose and evaluate two segmentation-based approaches for the detection of cardiomegaly in CXRs: 
one with the segmentation models consisting of the standard U-Net architecture from Ronneberger et al.16 
and the other consisting of segmentation models based on the XLSor model from Tang et al.17. Saviroonporn 
et al.18 assess four different U-Net based models for the automatic measurement of the cardiothoracic ratio. 
Sogancioglu et al.19 perform a comparison between segmentation-based and classification-based cardiomegaly 
detection architectures. The proposed segmentation-based approach also relies on a U-Net architecture, while 
the classification-based approach consists of a transfer learning method. The reported results show that the 
segmentation-based method significantly outperforms the classification-based method. However, in this case 
also, most of the approaches have been assessed based on a single data set or a combination of several data 
sets. The assessment of the proposed architectures in a cross-domain setting has not been performed, thus, the 
generalisation ability of the methods can not be determined. Moreover, most of the segmentation models are 
optimised in a supervised manner. Since a huge amount of annotated data is needed in order to perform the 
optimisation of a performant deep neural network, most of the proposed architectures rely on segmentation 
models that are suited for small-sized labeled data (e.g. U-Net).

In the specific case of chest radiographs, a huge amount of pixel-level annotated images is not available. Such 
an endeavour is time consuming and necessitates expert knowledge for the accurate pixel-level annotation. In 
contrast to the scarcity of huge amount of pixel-level labeled CXRs, there is a gradually increasing amount of 
corpora, each comprising a significantly large amount of unlabeled chest X-ray images (most of these images 
are labeled at the image-level but not at the pixel-level, or in other words, no manually generated segmentation 
masks are available). Several studies have shown that the performance of a chest X-ray segmentation model can 
be significantly improved by performing the optimisation of the model’s parameter in a semi-supervised setting 
(hence, taking advantage of a significantly larger amount of unlabeled data to improve the performance of the 
segmentation model), thus reducing the costs of manual annotation and generating more accurate segmentation 
outputs. Bortsova et al.20 propose a semi-supervised learning segmentation approach consisting of generating 
segmentation consistent output under a given set of transformations applied on both labeled and unlabeled 
CXRs. Wang et al.21 propose an improved Generative Adversarial Network (GAN) segmentation model named 
U-Shaped GAN for the semi-supervised segmentation of lungs from chest radiographs. The proposed model 
is characterised by a U-Net model in place of the usual discriminator specific to GAN models, which generates 
a segmentation output as well as an additional pixel-level label indicating if the generated pixel-output stems 
from a real or fake image. The whole architecture is trained in a semi-supervised manner by using a loss function 
consisting of the sum of a supervised loss computed by using the labeled data, and an unsupervised loss computed 
by using the unlabeled data. Brioso et al.22 propose a semi-supervised segmentation approach consisting of 
using available information regarding specific anatomical structures to guide the segmentation process when 
the ground truth segmentation mask for a given structure is not available. Even though the reported results in 
all of the previous works are very promising, the performance evaluation is performed in each study on a single 
data set by performing a 5-fold cross-validation evaluation. In this case also, the true generalisation ability of 
the proposed approaches can not determined.

Two main goals are followed in the current work: the optimisation of an effective cardiomegaly detection 
architecture and the traceability of the corresponding classification output (interpretable results). Therefore, the 
optimisation and evaluation of the segmentation-based cardiomegaly detection architecture is performed in a 
cross-domain evaluation setting. The goal of such a performance assessment is to evaluate the true generalisation 
ability of the designed classification approach, as well as its robustness in the presence of domain shift. Due to the 
aforementioned scarcity of a huge amount of labeled data, the optimisation of the segmentation models, upon 
which the whole architecture is based, is performed in a semi-supervised manner by applying a cross-consistency 
training  approach23. The assessment of the performance of the designed architecture is compared to the one of 
an architecture consisting of models trained in a supervised manner. Moreover, the performance of the proposed 
architecture is also compared to that of a classification-based cardiomegaly detection architecture. Moreover, 
the visualisation of the segmentation output represents a feature of upmost importance, especially in a clinical 
setting, for the interpretability of the generated classification results.
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The remainder of the work is organized as follows. In the “Materials and methods” section, a description of 
the data sets involved in the current study is provided, followed by a thorough description of the segmentation-
based cardiomegaly detection architecture. A description of the experimental settings, as well as the performed 
experiments with the corresponding results is subsequently provided in the “Experimental settings and results” 
section. Next, a discussion of the depicted results is provided in the “Discussion” section, before the work is 
finally concluded in the “Conclusion” section, with a brief summary of the main findings of the study, as well as 
an outlook on potential future works.

Materials and methods
In the current work, the assessment of the proposed cardiomegaly detection architecture is performed in a cross-
domain setting. More specifically, the overall generalisation ability of the designed classification architecture is 
assessed by performing the optimisation of a model using a specific data set (referred to as training set), and 
subsequently evaluating the optimised model on additional data sets stemming from different domains (other 
than the one specific to the training set). In the specific case of cardiomegaly detection from chest X-ray images, 
this can be done by using a data set stemming from a specific institution to optimise the model, and performing 
the subsequent evaluation of the trained model on data stemming from different institutions or collected using 
different protocols and hardware. This form of evaluation, although particularly challenging due to the difference 
between the data distribution of the training set and the one of the evaluation set (also known as domain shift), 
constitutes a rather robust assessment of the generalization ability of the designed and optimised classification 
architecture. In the following, a description of the specific data sets used throughout the current work is provided, 
followed by a thorough description of the designed cardiomegaly detection architecture.

Chest X‑ray data sets
The Japanese Society of Radiological Technology (JSRT)  database24 is a publicly available data set consisting of a 
total of 247 posteroanterior (PA) chest radiographs (100 with malignant pulmonary nodules, 54 with benign 
pulmonary nodules and 93 without a nodule) of 2048× 2048 pixels resolution with a 0.175 millimeter (mm) 
pixel-size and a 12-bit depth, collected from 13 medical centers in Japan and 1 additional institution in the United 
States. Manually generated segmentation masks for the lungs, heart and clavicles, for each single image are pro-
vided by the Segmentation in Chest Radiographs (SCR)  database25. Thus, the JSRT database is primarily used 
to optimise and assess multi-organs or single-organ segmentation models in a supervised learning  setting26,27.

The publicly available Pathology Detection in Chest Radiographs (PadChest) data  set28 consists of a total of 
160, 868 radiographs, stemming from 67, 625 patients and recorded at the San Juan Hospital in Spain between 
2009 and 2017. In contrast to the JSRT data set, no segmentation mask is available for the PadChest data set. 
Instead, the radiographs are annotated into a total of 170 distinct categories of radiographic findings (image-level 
labels), including cardiomegaly. The data set comprises chest X-ray images recorded in six different positions, 
including standing posteroanterior (PA) and lateral (L) views, anteroposterior (AP) supine and erect views, 
lordotic and oblique sternum views. Around 27% of the entire data set was manually annotated by trained physi-
cians and cases where no anomalies were found were subsequently annotated as normal. The remaining 73% of 
the data set was automatically annotated using an attention-based recurrent neural network (trained using the 
set of manually annotated X-ray images). The experiments in the current work are carried out based uniquely 
on the manually annotated radiographs recorded in a standing posteroanterior view. Furthermore, since the 
current study focuses on the detection of cases of cardiomegaly, the optimisation process is performed based on 
image samples labeled either as cases of cardiomegaly or as normal.

The Indiana University chest X-ray Collection (CXR OpenI)29 is a publicly available data set, consisting of 
around 7470 manually labeled chest X-ray images, recorded in both lateral and posteroanterior views and stem-
ming from various hospitals of the Indiana University School of Medicine. The data set is extracted from the 
National Library of Medicine (NLM) using the Open Access Biomedical Search Engine (OpenI)30. Similarly to 
the PadChest data set, there is no segmentation mask available for the data set. Furthermore, the data retrieved 
for the assessment of the proposed cardiomegaly detection architecture consist of chest X-ray images recorded 
in a posteroanterior position and labeled either as cases of cardiomegaly or as normal.

A custom data set (CXR Ulm) consisting of manually annotated posteroanterior radiographs stemming from 
a total of 131 patients (31 female and 100 male) and collected within a study at the Department of Diagnostic 
and Interventional Radiology of the Ulm University Medical Center in Germany, is also used for the assessment 
of the proposed cardiomegaly detection architecture. The data stems from a study which was (i) approved by the 
Ethics Commitee of the local Medical Faculty and the University Hospital (Confirmation number 115/21) and 
was also (ii) compliant with regards to the Health Insurance Portability and Accountability Act (HIPAA) and 
conducted in accordance with the Declaration of Helsinki. Additionally, informed consent was waived by the 
local Ethics Commitee based on the retrospective nature of study. The annotation of the data set was performed 
by two trained radiologists, who not only provided a label for the detected pathology but also segmentation 
masks for both lungs and cardiac organs. The chest X-ray images were labeled as cases of cardiomegaly based 
on computed cardiothoracic ratios, with a fixed threshold of 0.55.

The National Institutes of Health Chest X-Ray Database (CXR NIH)31 is a publicly available data set consisting 
of around 112, 120 chest X-ray images, stemming from 30, 805 patients and automatically annotated using 
different Natural Language Processing (NLP) techniques into either one or several categories of a total of 14 
thoracic pathologies (including cardiomegaly). In cases where no pathologies were reported, the corresponding 
images were labeled as normal. There are also no segmentation masks available for this specific data set. 
Analogously to the previous data sets (PadChest, CXR OpenI, CXR Ulm), assessment experiments are performed 
using uniquely chest X-ray images belonging to both cardiomegaly and normal classes, and collected in a 
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posteroanterior view. Therefore, all images belonging to the category of cardiomegaly are selected, and the same 
amount of images is randomly selected from the set of images labeled as normal, in order to form the assessment 
set specific to this data set. A summary of the data distribution specific to each of these data sets is displayed in 
Table 1.

During the assessment of the proposed architecture, both JSRT and PadChest data sets are used as training 
sets, while the optimised architecture is subsequently evaluated on each of the remaining sets (CXR OpenI, CXR 
Ulm, CXR NIH). None of the samples specific to these evaluation sets are seen during the parameter optimisa-
tion of the classification architecture.

Methodology
The cardiomegaly detection architecture presented in the current work consists of a segmentation-based 
classification approach. As depicted in Fig. 1, the architecture comprises two distinct models (which are basically 
two neural networks), optimised to perform the segmentation of both lungs and heart areas respectively. Given 
an input image, each model generates a segmentation mask of the corresponding area of interest.

Bounding boxes around the resulting areas of interest are subsequently computed, followed by the computa-
tion of the corresponding cardiothoracic ratio (CTR) based on the widths of both bounding boxes. Finally, based 
on a specific threshold ( π ), the input image is classified either as a case of cardiomegaly ( CTR > π ) or as normal 
( CTR ≤ π ), as described in Equation 1:

The overall performance, as well as the generalization ability of this specific classification architecture is 
inherently bound to the capacity of both models to accurately perform the segmentation of the corresponding 
areas of interest. In other words, the more accurate the resulting segmentation masks, the higher the classification 
performance of the architecture. Thus, a huge amount of annotated data is needed in order to perform some 
optimal optimisation of both segmentation models. In a supervised learning setting, each model is optimised 
based on a labeled set of images, consisting of chest X-ray images with the corresponding manually generated 
segmentation masks (pixel-level labels). However, manually annotated segmentation data for chest X-ray images 
are rather scarce (since such an annotation process is costly and time consuming), in contrast to the abundance 

(1)Output =

{

Cardiomegaly if 1[CTR>π](CXR) = 1
Normal otherwise

Table 1.  Data distribution. Number of image samples specific to each class, for each of the data sets.

CXR PadChest CXR OpenI CXR Ulm CXR NIH

Cardiomegaly 2140 334 79 1563

Normal 8708 1396 52 1563

Total 10, 848 1730 131 3126

Figure 1.  Segmentation based cardiomegaly detection architecture. Two distinct segmentation models are 
applied on an input image to perform the segmentation of both cardiac and lungs’ areas. Bounding boxes 
around the areas of interest are subsequently computed based on the resulting segmentation masks. The CTR 
score is calculated based on the widths of the respective cardiac and lungs’ bounding boxes. Based on a fixed 
threshold ( π ) and the computed CTR score, the input image is finally classified either as a case of cardiomegaly 
or as normal.
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of unlabeled chest X-ray data. Therefore, the optimisation of both segmentation models is performed in a semi-
supervised learning setting, where a model is optimised based on two specific sets of data: 

1. a set of labeled data X l = {
(

xl1, y
l
1

)

, . . . ,
(

xln, y
l
n

)

} (where xli ∈ [0, 255]W×H×C corresponds to the i-th chest 
X-ray image with a width W , a height H and a total of C channels, and the corresponding pixel-level label 
yli ∈ [0, 1]W×H , with 0 corresponding to pixels specific to the background and 1 depicting pixels of the area 
of interest).

2. a significantly larger set of unlabeled data X u = {xu1 , . . . , xum} (with n ≪ m).

Inspired by the work presented by Ouali et al.23, cross-consistency training is applied in order to perform the 
optimisation of a models’ parameters. An overview of the architecture and training procedure is depicted in 
Fig. 2. The architecture consists of a total of three neural networks: a shared encoder E , a main decoder D and 
an auxiliary decoder Daux . Images stemming from both labeled and unlabeled sets are simultaneously fed into 
the shared encoder E . The generated latent representations are subsequently fed into the two remaining neural 
networks. The representations specific to both labeled and unlabeled images are fed into the main decoder D.

Concurrently, a set of k stochastic perturbations are applied on each of the representations stemming from the 
set of unlabeled images, and the resulting altered representations are fed into the auxiliary decoder Daux . Based 
on the output of the main decoder and the provided labels, the parameters of the main decoder are optimised 
using a supervised loss function LS . Meanwhile, the parameters specific to the auxiliary decoder are optimised 

Figure 2.  Semi-supervised segmentation approach. The architecture consists of an encoder E , a main decoder 
D and an auxiliary decoder Daux . During each iteration, labeled samples ( xli ) and unlabeled samples ( xuj  ) are fed 
into the shared encoder. The resulting representations ( zli and zuj  ) are subsequently fed into the main decoder, 
which generates the segmentation masks for both labeled and unlabeled images ( ̂yli and ŷuj  ). Concurrently, a set 
of k distinctive perturbations ( P ) are applied to the latent representations specific to the unlabeled samples ( zuj  ), 
and the resulting representations ( {ẑu,dj }1≤d≤k ) are fed into the auxiliary decoder. The resulting set of auxiliary 
segmentation masks ( {ŷu,dj }1≤d≤k ) are used in combination with the corresponding output of the main decoder 
( ̂yuj  ) to compute an unsupervised loss ( LU ), while the supervised loss ( LS ) is calculated based on the labeled 
samples’ output of the main decoder ( ̂yli ) and the corresponding labels ( yli).
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based on an unsupervised loss function LU , computed based on its output and those from the main decoder 
stemming uniquely from the unlabeled samples. This is done in order to enforce a certain level of consistency 
between the output of the main decoder D and the auxiliary decoder Daux . The parameters of the shared encoder 
are optimised based on a weighted sum of both loss functions ( L ), as follows:

where, ωU is a weighting function specific to the unsupervised loss. By enforcing the segmentation consist-
ency between the output of the main decoder and the one of the auxiliary decoder regarding unlabeled chest 
X-ray images, the representations generated by the shared encoder are further enhanced by taking advantage of 
additional information stemming from unlabeled samples. Following the optimisation of the models, both the 
shared encoder and the main decoder are used to perform the segmentation of unseen samples during inference.

In the current work, the supervised loss consists of the combination of a pixel-level classification loss and a 
segmentation loss as depicted in Eq. (3):

where bsl depicts the batch size for the set of labeled samples, H represents the Binary Cross-Entropy loss (BCE) 
and dice represents the Dice loss. Meanwhile, the unsupervised loss consists of the Mean Squared Error (MSE) 
between the output of the main decoder and those of the auxiliary decoder specific to the unlabeled set of images, 
as depicted in Eq. (4):

where bsu depicts the batch size for the set of unlabeled samples and d(ŷuj , ŷ
u,p
j ) (see Eq. 5) represents the pixel-

level squared error between both outputs ŷuj  (from the main decoder D ) and ŷu,pj  (from the auxiliary decoder 
Daux ). The weighting function ωU specific to the unsupervised loss corresponds to a Gaussian ramp-up function 
(see Eq. 6) as proposed by Laine and  Aila32:

where t depicts the current optimisation epoch and L depicts the ramp-up length. The computed unsupervised 
loss weight slowly ramps up from 0 to 1 during the optimisation process, therefore reducing the impact of noisy 
segmentation outputs of the main decoder D during the early phase of the optimisation process. The perturba-
tions applied to the latent representations specific to the unlabeled images consist of feature based perturba-
tions and random perturbations (as proposed by Ouali et al.23). These perturbations have not just proven to be 
effective in such areas as semi-supervised semantic  segmentation23,33,34 or object  localisation35, but are also very 
simple to implement.

Feature based perturbations consist of injecting random noise into the latent representation stemming from 
the shared encoder E . Two specific feature based perturbations are applied to the latent representation in the 
current work:

• F-Noise: ∀j, zu,1j = zuj +
(

zuj ⊙N
)

 with N ∼ U (−0.3, 0.3) being a uniformly sampled random tensor of the 
same shape as zuj .

• F-Drop: ∀j, zu,2j = zuj ⊙Mdrop , where Mdrop represents a binary tensor of the same shape as zuj  obtained based 
on an uniformly sampled threshold γ ∼ U (0.6, 0.9) and the normalized channel-wise averaged tensor of zuj  , 
denoted z̃uj  as follows: Mdrop = 1z̃uj >γ.

Random perturbations consist of randomly dropping some of the activations of the latent representation. In 
the current work, Dropout is applied to the latent representation with an uniformly sampled dropout rate 
r ∼ U (0.1, 0.7).

Experimental settings and results
In the following section, a thorough description of the performed experiments is provided. First, the experi-
mental settings are described, followed by a description and discussion of each performed experiment with its 
corresponding results.

(2)L = LS + ωU LU

(3)LS = 1

bsl

bsl
∑

i=1

(

H(yli , ŷ
l
i)+ dice(yli , ŷ

l
i)

)

(4)LU = 1

k × bsu

bsu
∑

j=1

k
∑

p=1

d(ŷuj , ŷ
u,p
j )

(5)d(ŷuj , ŷ
u,p
j ) =

W
∑

w=1

H
∑

h=1

(

ŷuj (w, h)− ŷ
u,p
j (w, h)

)2

(6)ωU (t) =
{

exp
(

−5
(

1− t
L

)2
)

if t < L

1 otherwise
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Experimental settings
Before being fed into the designed architecture, chest X-ray images are pre-processed in order to significantly 
reduce the amount of noise within the images and homogenize the structure of the input data across different 
domains. In the current work, each image is first resized to the shape 299× 299× 3 and subsequently converted 
into a single-channel gray-scale image. Subsequently, Contrast Limited Adaptive Histogram Equalization 
(CLAHE)36 is applied in order to enhance the contrast of the resulting gray-scale image. Next, a three-channel 
image is generated by replicating the single-channel contrast enhanced image three times. And finally, the pixel 
values of the resulting image are normalized within the range [0, 1] , by dividing each pixel value in each of the 
three channels by the maximum pixel value of 255. Moreover, since the labeled set of data consists of a rather 
limited amount of chest X-ray images (The JSRT database consists of a total of 247 chest X-ray images with the 
corresponding pixel-level labels), data augmentation is performed (uniquely on the set of labeled images) by 
applying a set of geometrical transformations consisting of random horizontal and vertical flipping, random 
image rotation in a range of [0◦, 10◦] , and a 10% image zoom-in. The transformations are applied on both chest 
X-ray images and the corresponding pixel-level labels in order to generate an increased amount of consistent 
labeled data.

Each segmentation model consists of an Encoder–Decoder network which takes as input a chest X-ray image 
and as label the corresponding pixel-level annotated image. In a semi-supervised learning setting, both decoders 
( D and Daux ) have an identical architecture. While the parameters of the main decoder D are optimised by 
using the supervised loss, the parameters of the auxiliary decoder Daux are optimised by using the unsupervised 
loss. The parameters of the encoder E are optimised by a weighted sum of both supervised and unsupervised 

Table 2.  Neural networks’ architectures.

Encoder ( E)

Layer No. filters Kernel size Strides Padding

3× Convolutional block 16 (3× 3) (1× 1) same

Max pooling − (2× 2) (2× 2) −

3× Convolutional block 32 (3× 3) (1× 1) same

Max Pooling − (2× 2) (2× 2) −

3× Convolutional block 64 (3× 3) (1× 1) same

Max Pooling − (2× 2) (2× 2) −

3× Convolutional block 128 (3× 3) (1× 1) same

Max Pooling − (2× 2) (2× 2) −

3× Convolutional block 256 (3× 3) (1× 1) same

Max pooling − (2× 2) (2× 2) −

Decoder ( D , Daux)

Layer No. filters Kernel size Strides Padding

3× Convolutional block 256 (3× 3) (1× 1) same

Conv2DTranspose 128 (3× 3) (2× 2) same

Batch normalization

Activation: ReLU

3× Convolutional block 128 (3× 3) (1× 1) same

Conv2DTranspose 64 (3× 3) (2× 2) valid

Batch normalization

Activation: ReLU

3× Convolutional block 64 (3× 3) (1× 1) same

Conv2DTranspose 32 (3× 3) (2× 2) same

Batch normalization

Activation: ReLU

3× Convolutional block 32 (3× 3) (1× 1) same

Conv2DTranspose 16 (3× 3) (2× 2) valid

Batch normalization

Activation: ReLU

3× Convolutional block 16 (3× 3) (1× 1) same

Conv2DTranspose 1 (3× 3) (2× 2) valid

Batch normalization

Activation: ReLU

Conv2D 1 (3× 3) (1× 1) same

Batch normalization

Activation: sigmoid
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losses. A main component of the designed neural networks consists of a convolutional block, which comprises 
a 2-dimensional convolutional layer, followed by a Batch Normalization layer as a regularization approach and 
subsequently a Rectified Linear Unit (ReLU) activation function. The ensuing feature map is subsequently fed into 
an attention layer, consisting of the Convolutional Block Attention Module (CBAM)37. The designed architectures 
of the encoder ( E ), and both decoders ( D , Daux ) are depicted in Table 2.

During the optimisation phase in a semi-supervised setting, a specific batch size ( bs ) is set, such that 
bs = bsl + bsu : bsl represents the batch size specific to the set of labeled samples and bsu corresponds to the 
batch size specific to the set of unlabeled samples. Given bs , bsl and bsu are computed as depicted in Eq. (7) 
(where n is the number of labeled samples in the training set and m is the number of unlabeled samples in the 
training set) and Eq. (8). Due to memory constraints, bs is set to 16 in the current work.

Moreover, the optimisation is performed with a fixed learning rate set empirically to 10−3 for a total of 100 
epoches. The ramp-up length L (see Eq. (6)) is set to 50. The optimiser used throughout the current work consists 
of the Adaptive Moment Estimation optimisation algorithm (Adam)38. During the optimisation phase, 20% of 
the set of labeled samples are used as validation set and the remaining 80% is used as training set. Concerning 
the set of unlabeled samples, 10% is used as validation set and the remaining 90% as training set. The Jaccard 
index (see Eq. (9)) is used as segmentation performance evaluation metric:

where y represents a pixel-level annotated image (ground truth) and ŷ the output of the decoder (prediction). 
Following the optimisation of both segmentation models (one for the heart and the other for both lungs), the 
performance of the cardiomegaly detection architecture (see Fig. 1) is assessed based on the following perfor-
mance assessment metrics:

• Sensitivity (Sens) :   TP
TP+FN• Specificity

(

Spec
)

 :   TN
TN+FP• Geometric Mean (G-Mean) : 

√
Sens× Spec

• Accuracy (Acc) :   TP+TN
TN+FP+TP+FN

with TP : True Positives; FN : False Negatives; TN : True Negatives; FP : False Positives.
The Area Under the Receiver Operating Characteristic (ROC) Curve (AUC) is also used as an additional 

performance evaluation metric. Thereby, cases of cardiomegaly are set as belonging to the positive class (posi-
tive instances), while normal samples are set as belonging to the negative class (negative instances) throughout 
the entirety of the performed experiments. All implementations and evaluations performed in the current work 
were done with the libraries  Tensorflow39,  Keras40, and Scikit-learn41. The optimisation process of each segmenta-
tion model was performed on a single Tesla V100 SXM2 Graphics Processing Unit (GPU) with 32 gigabytes of 
memory, with the Compute Unified Device Architecture (CUDA) version 11.4. The inference was subsequently 
performed on a M1 Macbook Pro with 16 gigabytes of memory.

Segmentation‑based cardiomegaly detection
The first experiment consists of assessing the performance of the proposed segmentation-based cardiomegaly 
detection architecture in both supervised and semi-supervised settings, and comparing the performance of each 
optimisation approach based on the data sets CXR Ulm, CXR OpenI, and CXR NIH. In order to perform the 
classification task, a threshold of π = 0.55 is used for the CXR Ulm data set, which is the same threshold used 
by the physicians who performed the annotation of the data set. For both CXR OpenI and CXR NIH data sets, 
the threshold is set as follows: π = 0.50 . None of the images specific to these data sets have been seen during 
the optimisation process of the segmentation models. Even though such an assessment is rather challenging, it 
usually depicts the true generalisation ability of the proposed classification approach. In a supervised learning 
setting, a segmentation model consists uniquely of the encoder E and the main decoder D . Its optimisation 
is performed based uniquely on the set of labeled samples (the JSRT data set) and also by using uniquely the 
supervised loss ( LS ). The remaining optimisation parameters are the same as in the case of the semi-supervised 
model optimisation. In a semi-supervised learning setting, the architecture is as described in Fig. 3 and the set of 
labeled instances consists of the JSRT data set, while the set of unlabeled instances consists of the PadChest data 
set. The results of the cardiomegaly detection task, based on segmentation models trained in both supervised 
and semi-supervised settings are depicted in Table 3.

At a glance, the architecture consisting of segmentation models optimised in a semi-supervised learning 
setting systematically outperforms the one based on models optimised in a supervised learning setting for all 
data sets. Thus, the output of a model trained in a semi-supervised manner is more accurate than the one of a 
model trained in a supervised manner. This is also confirmed by the segmentation performance on both lungs 
and heart areas for the CXR Ulm data set: in a supervised learning setting the lungs’ segmentation model achieves 
an averaged Jaccard score of 86.07% , while the heart’s segmentation model achieves an averaged Jaccard score 

(7)δ = (n+m)

bs

(8)bsl =
⌊n

δ

⌋

and bsu = ⌈m
δ
⌉

(9)J
(

y, ŷ
)

= |y ∩ ŷ|
|y ∪ ŷ|
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of 65.38% ; in a semi-supervised learning setting however, the lungs’ segmentation model achieves an averaged 
Jaccard score of 89.88% , while the heart’s segmentation model achieves an averaged Jaccard score of 76.87% . 
The cross-consistency training approach successfully extracts meaningful information from a set of unlabeled 
samples in order to enhance the latent representation stemming from the decoder and therefore significantly 
improves the resulting segmentation output. Learning uniquely from a significantly smaller set of labeled data 
leads to sub-optimal segmentation results, even after the application of data augmentation. Additionally, while 
considering the depicted classification results, one can see that the designed cardiomegaly detection architecture 
performs rather well in a cross-domain setting, since good classification performances can be observed across 
all the data sets. Thus, the designed architecture based on segmentation models trained in a semi-supervised 
manner exhibits a good generalisation ability. Since the labels specific to the CXR Ulm data set are available, a 
visualization of some of the segmentation outputs with models trained in a semi-supervised manner is depicted 
in Fig. 3.

The color blue is specific to the lungs while the color red refers to the heart. The displayed contours constitute 
the ground truth (or manually generated segmentation results), while the filled areas constitute the segmenta-
tion models’ output (depicted in the top row of Fig. 3). Furthermore, the resulting bounding boxes, based on the 
segmentation models’ output are also displayed (in the bottom row of Fig. 3). While the lungs’ can be relatively 
well segmented, the heart area revealed to be rather challenging. The segmentation model specific to the heart 
had more difficulties in performing an accurate segmentation in several cases. It was also observed that most of 
the occurred miss-classifications were due to an inaccurate segmentation of the heart. Therefore, it is believed 
that an improvement of the heart segmentation model should also result in an improvement of the overall per-
formance of the cardiomegaly detection architecture.

Classification‑ vs. segmentation‑based cardiomegaly detection
The next experiment consists of comparing the performance of the segmentation-based cardiomegaly detection 
approach, to the one of a classification-based cardiomegaly detection approach. Based on the work presented 

Table 3.  Cardiomegaly detection performance. The numbers in bold depict the best overall performance 
across all evaluated approaches.

CXR Ulm

Segmentation approach Sensitivity (%) Specificity (%) G-Mean (%) Accuracy (%) AUC (%)

Supervised segmentation 56.96 86.54 70.21 68.70 71.75

Semi-supervised segmentation 93.67 90.38 92.01 92.37 92.03

CXR OpenI

   Segmentation approach Sensitivity Specificity G-Mean Accuracy AUC 

   Supervised segmentation 81.74 66.40 73.67 69.36 74.07

   Semi-supervised segmentation 90.12 80.80 85.33 82.60 85.46

CXR NIH

   Segmentation approach Sensitivity Specificity G-Mean Accuracy AUC 

   Supervised segmentation 79.40 66.79 72.82 73.10 73.10

   Semi-supervised segmentation 88.87 75.75 82.05 82.31 82.31

Figure 3.  Semi-supervised segmentation results (CXR Ulm). The top row consists of the segmentation models’ 
output (filled areas) and the ground truth (contours). At the bottom, the exact same set of images is displayed 
as above, this time however uniquely with the segmentation model’s output and the computed bounding boxes 
around the areas of interest.
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by Thiam et al.9, a model is trained using uniquely the PadChest data set with the corresponding image-level 
labels (one-hot encoding consisting of (1, 0) for normal and (0, 1) for cardiomegaly) in order to generate a 
classification-based cardiomegaly detection model using a transfer learning approach. The architecture of the 
model comprises a backbone consisting of pre-trained convolutional layers, followed by an additional and single 
trainable convolutional layer and a subsequent global average pooling (GAP) layer. The backbone is generated 
by removing the top fully connected (FC) layers of a pre-trained deep neural network and freezing the remain-
ing convolutional layers.

For the current experiments, the backbone consists of the InceptionV3  model42 trained on the ImageNet 
 database43. Subsequent layers are added on top of the backbone: first a trainable convolution layer consisting of 
1024 filters ( 3× 3 kernels and 1× 1 strides), followed by a Batch Normalization layer and a subsequent Rectified 
Linear Unit (ReLU) activation; the output is subsequently fed into a global average pooling (GAP) layer. The 
resulting feature representation is subsequently fed into a classifier consisting of two subsequent fully connected 
layers. The first layer uses a ReLU activation function with a total of 512 units and the second layer uses a Softmax 
activation function with a total of 2 units to generate the final output of the classification model. Regularization is 
performed in this case by placing Dropout layers with a fixed dropout rate of 0.25 between both fully connected 
layers, as well as between the GAP layer and the first fully connected layer. During the optimisation process, a 
fixed learning rate of 10−6 is used and the batch size is set to 16. The optimisation process goes on for a total of 
200 iterations, using the Adam optimiser. In order to account for the imbalanced data distribution within the 
PadChest data set, samples are weighted as follows:

where m = m− +m+ , with m− = �{xuj ∈ X
u | yj = (1, 0)}� and m+ = �{xuj ∈ X

u | yj = (0, 1)}� . Following 
its optimisation, the classification model is subsequently applied on the testing sets CXR Ulm, CXR OpenI, 
and CXR NIH. The yielded results are summarised and depicted in Table 4, while the corresponding confusion 
matrices are depicted in Fig. 4.

It can be clearly seen that the segmentation-based cardiomegaly detection approach, based on segmentation 
models trained in a semi-supervised manner outperforms the classification-based cardiomegaly detection 
approach for each of the testing sets, thus further pointing to the effectiveness of the proposed detection 
architecture. Similar results have been presented by Sogancioglu et al.19, where the authors performed a 
comparison of both segmentation-based and classification-based cardiomegaly detection on a single data set. The 
results reported in that study also show that segmention-based detection approaches outperform classification-
based detection approaches (even though the experiments were conducted on a single data set). Furthermore, 
while the impact of the domain shift can be seen from the results specific to the classification-based detection 
approach, both segmentation-based detection approaches (in both supervised and semi-supervised settings) 
prove to be more robust in this regard by yielding better classification performances for almost all of the testing 
sets.

U‑Net vs. semi‑supervised segmentation based cardiomegaly detection
Based on the fact that most of the previous works rely on a U-Net model to perform the segmentation of specific 
areas of interests in a chest X-ray image, the last experiment consists of comparing the performance of the 
described segmentation-based cardiomegaly detection approach with segmentation models trained in a semi-
supervised manner, to the one of a cardiomegaly detection approach based on U-Net models. The encoder of the 
U-Net models consists of the frozen pre-trained convolutional layers of an InceptionV3 model (optimised on the 
ImageNet data  set44). The decoder consists of the mirrored layers of the encoder (with additional up-sampling 
layers), with skip connections between the corresponding layers. Each skip connection is followed by a Dropout 
layer with a rate fixed empirically to 0.3. The whole architecture is trained using uniquely the JSRT data set (with 
the corresponding segmentation masks) for a total of 100 epochs, with a fixed learning rate of 10−4 . The Focal 
 loss45 is used in this case to optimise the whole architecture with an Adam optimiser. The classification results 
depicted in Table  5 clearly show that the overall performance of the semi-supervised cardiomegaly detection 
architecture is substantially better than the one of the detection approach based on U-Net models. These results 
reinforce the previously stated assumption that the diversity of the data set used to optimise a classification 
model plays a crucial role in its generalisation ability, since the models trained in a semi-supervised manner are 
able to improve the feature representations generated by the encoder by using additional information stemming 

(10)∀xuj ∈ X
u, wj =

{

m−
m if yj = (0, 1)
m+
m if yj = (1, 0)

Table 4.  Classification approach vs. segmentation approach. The performances are depicted in terms of 
geometric mean (G-Mean). The numbers in bold depict the best overall G-Mean performance across all 
evaluated approaches. Significant values are in bold.

Detection approach CXR Ulm (%) CXR OpenI (%) CXR NIH (%)

Classification (transfer learning) 53.37 82.78 59.18

Supervised segmentation 70.21 73.67 72.82

Semi-supervised segmentation 92.01 85.33 82.05
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Figure 4.  Confusion matrices. The label 0 corresponds to normal CXR images, while the label 1 corresponds to 
cases of cardiomegaly.

Table 5.  U-Net approach vs. semi-supervised segmentation approach. The performances are depicted in terms 
of geometric mean (G-Mean). The numbers in bold depict the best overall G-Mean performance across all 
evaluated approaches. The best overall results are in bold.

Detection approach CXR Ulm (%) CXR OpenI (%) CXR NIH (%)

U-Net segmentation 82.46 79.44 75.00

Semi-supervised segmentation 92.01 85.33 82.05
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from a diverse set of unlabeled CXR images, resulting in improved segmentation outputs (and thus improved 
cardiomegaly detection results).

Discussion
The presented results clearly show that the performance of a segmentation model can be substantially improved 
by using information stemming from unlabeled samples. In the current work, cross-consistency training has 
proven to be a simple and effective semi-supervised training approach. Some significant performance improve-
ment of the cardiomegaly detection architecture could be achieved by using models trained in a semi-supervised 
manner, in comparison to using models trained in a supervised manner. Thus, an effective integration of infor-
mation stemming from unlabeled samples can significantly reduce the amount of labeled samples required in 
order to achieve high classification performances, therefore significatly reducing the costs of manual annotation. 
Additionally, the results of the subsequent experiments show that the proposed segmentation-based cardio-
megaly detection approach outperforms the classification-based approach (based on image-level labels) in a 
cross-domain setting. Moreover, segmentation-based cardiomegaly detection approaches proved to be more 
robust than classification-based cardiomegaly detection approaches, regarding the domain shift observed while 
performing the detection in a cross-domain setting. Furthermore, since the output of the segmentation models 
can be easily plotted and visualized, the resulting classification results can be easily interpreted, therefore bringing 
more clarity to the generated predictions and allowing the identification of the detection architecture’s flaws and 
limitations. This is particularly relevant in a clinical setting, where a visualisation of the automatically gener-
ated segmentation provides more insights than the results of the classification or detection task alone. Finally, 
even though the experiments were performed in a challenging cross-domain setting, the yielded results point 
at a good generalisation ability of the proposed architecture. Previous works generally focus on single data sets 
and report similar  results15,19. However, such approaches suffer from the domain shift when applied on data sets 
stemming from other centers, resulting in sub-optimal performances. Thus, the diversity of the data sets used 
to perform the optimisation of the segmentation models plays a significant role in the resulting generalisation 
ability of the optimised models.

Conclusion
As a summary, cross-consistency training has proven to be very effective since the segmentation models trained 
in a semi-supervised setting were able to significantly improve the performance of the cardiomegaly detection 
architecture, in comparison to the models trained in a supervised manner. The diversity of the data sets used 
for the optimisation of the segmentation models positively impacted the generalisation ability of the detection 
architecture in a cross-domain setting. The interpretability of the generated results is further improved by the 
segmentation-based approaches, which is of upmost importance in a clinical setting. However, it is believed that 
the performance of the proposed architecture can be further improved, by enhancing the performance of the 
model specific to the heart area, since the observed miss-classifications were mostly due to an inaccurate segmen-
tation output of this specific area of interest. Future directions of the current work could consist in assessing other 
forms of perturbations to be applied at different levels of granularity within the segmentation models, as well as 
an assessment of other semi-supervised learning approaches for the optimisation of the segmentation  models46.

Data availability
Publicly available datasets were analyzed in this study. The Japanese Society of Radiological Technology (JSRT) 
database can be found at http:// db. jsrt. or. jp/ eng. php; The Pathology Detection in Chest Radiographs (PadChest) 
data set can be found at: https:// bimcv. cipf. es/ bimcv- proje cts/ padch est/; The Indiana University chest X-ray 
Collection (CXR OpenI) can be found at: https:// openi. nlm. nih. gov/ gridq uery? it= xg & coll= cxr &m= 1 &n= 100; 
The National Institutes of Health Chest X-Ray Database (CXR NIH) can be found at: https:// nihcc. app. box. 
com/v/ Chest Xray- NIHCC. The custom CXR Ulm data set analysed during the current study is available from 
the corresponding author (MB) on reasonable request.
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