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Investigating the spatiotemporal 
characteristics and medical 
response during the initial 
COVID‑19 epidemic in six Chinese 
cities
Li Lan 1, Gang Li 1,2*, Muhammad Sajid Mehmood 3, Tingting Xu 1, Wei Wang 4 & Qifan Nie 5

In the future, novel and highly pathogenic viruses may re‑emerge, leading to a surge 
in healthcare demand. It is essential for urban epidemic control to investigate different 
cities’ spatiotemporal spread characteristics and medical carrying capacity during the early stages 
of COVID‑19. This study employed textual analysis, mathematical statistics, and spatial analysis 
methods to examine the situation in six highly affected Chinese cities. The findings reveal that 
these cities experienced three phases during the initial outbreak of COVID‑19: “unknown‑origin 
incubation”, “Wuhan‑related outbreak”, and “local exposure outbreak”. Cities with a high number of 
confirmed cases exhibited a multicore pattern, while those with fewer cases displayed a single‑core 
pattern. The cores were distributed hierarchically in the central built‑up areas of cities’ economic, 
political, or transportation centers. The radii of these cores shrank as the central built‑up area’s level 
decreased, indicating a hierarchical decay and a core–edge structure. It suggests that decentralized 
built environments (non‑clustered economies and populations) are less likely to facilitate large‑scale 
epidemic clusters. Additionally, the deployment of designated hospitals in these cities was consistent 
with the spatial distribution of the epidemic; however, their carrying capacity requires urgent 
improvement. Ultimately, the essence of prevention and control is the governance of human activities 
and the efficient management of limited resources about individuals, places, and materials through 
leveraging IT and GIS technologies to address supply–demand contradictions.

The coronavirus disease 2019 (COVID-19) is an infectious disease caused by a novel strain of the coronavirus 
family, namely severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)1, which belongs to the same 
viral family as SARS-CoV-1 responsible for the global outbreak of severe acute respiratory syndrome (SARS) in 
 20032. As of August 26, 2022, over 596 million confirmed cases of COVID-19 have been reported worldwide to 
the World Health Organization (WHO). Despite efforts to control its spread, the COVID-19 pandemic persists 
in numerous countries due to highly transmissible variants such as Delta and  Omicron3,4. This ongoing crisis has 
profoundly disrupted societal norms and inflicted significant economic repercussions on a global scale. Conse-
quently, containment and mitigation strategies have emerged as the prevailing focus in fields such as medicine, 
health, public administration, and city planning.

In retrospect, there have emerged highly virulent viruses such as cholera, typhus, smallpox, measles, tuber-
culosis, leprosy, and malaria, alongside grave epidemics like the Black Death (1331–1353), the Great Plague of 
London (1665–1666), the San Francisco plague (1900–1904) and the Spanish flu (1918–1920). Over the past 
two decades alone, Africa, Asia, Europe, and Arabia have been predominantly affected by outbreaks, including 
SARS in 2002, Middle East respiratory syndrome (MERS) in 2014, influenza A(H1N1) in 2009, Ebola in 2014 
and Zika in  20165. It is worth noting that all these viruses and plagues initially appeared and proliferated within 
urban areas. Currently accounting for approximately 95% of COVID-19 pandemic cases concentrated in  cities6, 
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as Alirol et al.7 highlighted, metropolitan areas have evolved into epicenters for infectious diseases. Considering 
that urban populations currently constitute around 55% of the global population with an expected increase to 
68% by  20508, it is crucial to comprehend the transmission characteristics of COVID-19 during its early stages 
within cities to effectively manage future epidemics while mitigating potential public health crises, economic 
downturns, political tensions, and various social issues.

The transmission of the novel coronavirus is primarily through human contact, and thus, the spread of the 
COVID-19 pandemic has close links with human  activities9–11. For instance, in Daegu City in South Korea, 
“Patient 31” continued to visit public places and attend gatherings such as religious services despite exhibiting 
symptoms without being diagnosed, resulting in a widespread outbreak within South  Korea12. The activity pat-
terns shown by the population in a city largely influence the severity and spatiotemporal distribution of urban 
epidemics. Therefore, analyzing the sociological characteristics of diagnosed patients, spatiotemporal patterns 
of the outbreak, and the social impact has become increasingly prevalent in epidemiology, public health, and 
geography over the past few  decades13,14. The primary objective of such analysis is to identify disease clusters, 
interpret their spatial distribution patterns and causes, and predict the risk of disease  transmission15,16. Timely 
and accurate surveillance of spatial and temporal disease dynamics is crucial for detecting outbreaks and iden-
tifying high-risk areas for  transmission17. Given that infectious disease transmission risk varies across time 
and space, monitoring spatiotemporal trends in disease occurrence can reveal dynamic patterns of risk and aid 
in mitigating the spread of diseases. Furthermore, during outbreaks, many cities face overwhelming pressure 
on medical  facilities18,19 while also experiencing disparities in their ability to respond to surges in healthcare 
 demands20. Therefore, comprehending the early-stage spatiotemporal spread characteristics of COVID-19 and 
assessing medical carrying capacity can contribute to developing effective measures for policymakers’ response 
to future novel pandemics.

As China was the first country to report and respond to the COVID-19 outbreak, this study selected six 
high-prevalence Chinese cities and utilized textual analysis, mathematical statistics, and spatial analysis to com-
pare sociodemographic characteristics of confirmed patients, spatiotemporal distribution of the epidemic, and 
spatial layout and carrying capacity of medical care in these cities to identify commonalities. The results were 
subsequently deliberated from the perspective of urban planning, architectural design, and healthcare services, 
culminating in recommendations for future epidemic prevention and control. These findings aim to furnish 
policymakers with valuable insights.

Results
Sociodemographic characteristics of COVID‑19 confirmed in six Chinese cities
Demographic characteristics
The confirmed patients were categorized into nine age groups with 10-year intervals. Figure 1 illustrates that, 
excluding Shenzhen, the diagnosed patients in the case cities were predominantly male, with gender ratios above 
100 and an age concentration between 30 and 59 years. Among them, Xinyang City exhibited the highest gender 
ratio (139.22), with male confirmed cases between 20 and 49. Conversely, Shenzhen (population gender ratio 
in 2019 was 101.1) had the lowest gender ratio of confirmed cases (89.04). In Shenzhen, female confirmed cases 
were concentrated between the ages of 30 and 39 and between 60 and 69 years old. Textual analysis revealed that 
these findings are associated with activity patterns among confirmed cases: young and middle-aged diagnosed 
men in Xinyang primarily consisted of migrant workers returning from Wuhan, whereas in Shenzhen, most 
confirmed cases involved individuals traveling back and forth from other cities.

Wuhan serves as Hubei Province’s capital city and possesses a higher economic status than Xinyang—a 
prefecture-level city located northwards—thus attracting significant population mobility between both cities due 
to its greater allure for residents from Xinyang seeking better opportunities. On the other hand, Shenzhen has 

Figure 1.  Gender and age distribution of confirmed cases in six Chinese cities. M male, F female.
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transformed from a small fishing village that houses merely thirty thousand people into an international metropo-
lis that accommodates millions. This development has benefited from China’s first special economic zone initia-
tive and reform policies during its opening-up period. As a result, Shenzhen has become an attractive destination 
for numerous young talents who choose to work or reside there. The initial stages of the epidemic coincided with 
China’s distinctive Spring Festival travel rush, leading to a notable trend of middle-aged and elderly individuals 
visiting relatives between Shenzhen and other regions. These observations suggest that the early spread of the 
epidemic is associated with urban economy,  culture21, and corresponding population  movement22,23.

Trajectory characteristics of confirmed cases
Trajectory characteristics of confirmed cases were analyzed and categorized based on their activity range, includ-
ing “Local” (cases with no travel history outside the city), “Wuhan-related” (cases who had visited or transited 
through Wuhan), “Had been out” (cases who had traveled outside the city without any link to Wuhan), and “No 
information” (Fig. 2A). Except for Shenzhen, all cities exhibited similar patterns. The activities of confirmed 
cases in the five cities were primarily local, whereas, in Shenzhen, the activities of confirmed cases were predomi-
nantly associated with Wuhan or travel outside the city (most to Hubei Province). Textual analysis revealed that 
a significant proportion of confirmed cases in Shenzhen consisted of middle-aged and elderly individuals from 
Wuhan who visited their relatives during the Spring Festival, reflecting both demographic factors (dominance 
of outsiders) and China’s social culture (reuniting with family during the Spring Festival).

However, the absence of significant local transmission in Shenzhen, a city with a population of tens of mil-
lions, despite the presence of numerous confirmed cases related to Wuhan and individuals who had traveled 
outside the city, can be attributed to Shenzhen’s extensive experience in prevention and control measures accu-
mulated since SARS outbreak and its unique demographic characteristics (Fig. 2B). In 2020, Shenzhen witnessed 
a sharp increase in its out-migration population size index starting from January 16 while intra-city travel 
intensity began to decline. Both indices reached their lowest point at the beginning of the Chinese Lunar New 
Year. The implementation of effective pandemic prevention policies successfully curtailed the growth of both the 
in-migration population size index and intra-city travel intensity index after the Spring Festival. These factors 
collectively contributed to impeding the large-scale local spread of the  outbreak24.

Therefore, it can be inferred that cities’ social, economic, and cultural  contexts21 as well as population 
 mobility22,23 play crucial roles in determining the extent of COVID-19 transmission within cities.

Spatiotemporal characteristics of the COVID‑19 pandemic
Temporal evolution process
Based on the classification of COVID-19 confirmed cases by activity range, we depicted the temporal evolution 
of each category in six cities (Fig. 3). Regarding the daily series of confirmed COVID-19 cases in these cities, the 
number of “Wuhan-related” cases (blue columns) reached its peak at the end of January, followed by a surge in 
“Local” cases (orange columns) at the beginning of February. Despite Wuhan’s lockdown measures implemented 
on January 23, 2020, the incubation period of SARS-CoV-2 and population outflow from Wuhan before travel 
restrictions resulted in ongoing outbreaks related to Wuhan and subsequent local exposure outbreaks across 
these six cities. Consequently, the initial spread of COVID-19 within these areas underwent three stages: an 
unknown-origin incubation period, followed by a Wuhan-related outbreak, and ultimately transitioning into a 
local exposure outbreak. Furthermore, it is noteworthy that “Local” confirmed cases generally had later dates 
compared to those classified as “Wuhan-related”, supporting that SARS-CoV-2 exhibits an incubation period 
and necessitates vigilance for identifying asymptomatic infected  individuals25.

The cumulative number of confirmed cases (blue lines) increased in late January 2020. Still, it reached a pla-
teau and maintained a stable trend in mid-February due to the implementation of intra-city travel restrictions 
in six cities. This finding supports the notion that travel restrictions can effectively mitigate the spread of the 
 outbreak26,27. However, it is essential to acknowledge that humans have an inherent inclination for unrestricted 

Figure 2.  Activity range of confirmed cases in six Chinese cities (A) and demographic travel characteristics in 
Shenzhen, China (B).
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movement and may find “home confinement” challenging. Therefore, effective pandemic control lies in the 
rational planning and management of human behavior while simultaneously addressing their basic needs.

Spatial distribution patterns
By spatially mapping the epidemic distribution across six cities at the district or county level and overlaying 
the earliest date of clinical symptoms along with the classification of activity range for confirmed cases (Fig. 4), 
we observed that Shenzhen, China’s special economic zone and international metropolis, exhibited the earliest 
onset of clinical symptoms on January 4. Then, Chongqing, one of China’s municipalities directly under central 
government administration and an economically robust city, experienced its first clinical case on January 6. 
In contrast, Yueyang, a prefecture-level city in Hunan Province (Table 2), had the latest appearance of clinical 
symptoms on January 17. These findings suggest a positive correlation between earlier symptom onset and 
factors such as cities’ more developed economies, stronger external connections, and higher levels of adminis-
trative authority. However, it is essential to note that early symptom onset does not necessarily indicate a more 
severe epidemic within a particular city. The severity also depends on other factors, including a city’s history 
and culture, population mobility patterns, aggregation tendencies, and experience in epidemic prevention and 
control measures. For instance, despite Shenzhen having the earliest clinical case, its prior experience in SARS 
prevention and control, effective high-level management, and unique characteristics of population mobility 
successfully mitigated widespread local transmission (as previously mentioned).

Additionally, there was a more substantial outbreak (indicated by darker colors in Fig. 4) and more “Local” 
cases in districts or counties with earlier onset of clinical symptoms within the six cities. It highlights the impor-
tance of early detection of asymptomatic infections and contact tracing for effective outbreak prevention and 
 control28. Moreover, based on the findings presented in Fig. 4, it can be observed that the regions prone to 
epidemics within these cities (excluding Hefei and Wenzhou) are predominantly situated in districts where the 
municipal government is located.

By conducting further kernel density estimation (KDE) analysis and overlaying data on residence locations 
of government officials, prominent commercial districts, important transportation hubs, as well as regional 
online maps (Figs. 5, 6), we found that clusters of the pandemic did not concentrate on parks, which aligns with 
the findings reported by Tribby et al.29. Instead, they tended to occur within central built-up regions hosting 
political, economic, or transportation centers such as Yueyanglou District in Yueyang (Fig. 5A1,A2), Nanshan 
and Futian Districts in Shenzhen (Fig. 6B1,B2), Chongqing’s main urban area (Fig. 6C1,C2), as well as Luoshan 
county serving as a crucial transportation hub connecting Xinyang with other cities (Fig. 5B1,B2). Notably, 
convergence points between two or more administrative areas characterized by superior natural and social 
attributes often attract diverse individuals and entities, forming significant pandemic hotspots. Notable examples 
encompass the junction between Shihe and Pingqiao Districts (Fig. 5B1), as well as the primary urban areas in 
both Hefei (Fig. 5C1) and Wenzhou (Fig. 6A1); these regions also serve as the political and economic hubs of 
the respective cities.

Furthermore, we observed that within the city, the pandemic diminished as the central built-up area’s level 
decreased, which can be illustrated by the different sizes and color shades of the KDE kernels. For example, in 

Figure 3.  Temporal dynamics of COVID-19 infection in six Chinese cities during 2020.
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Xinyang (Fig. 5B1), the most severe outbreak occurred at the intersection of Pingqiao District (the municipal 
government station) and Shihe District (the commercial and financial center in Xinyang), characterized by the 

Figure 4.  The spatiotemporal distributions of the COVID-19 epidemic in six Chinese cities. In figure 
(A) Yueyang, the first visit date replaced the earliest date of clinical symptoms as it was unavailable. Shenzhen 
did not provide the “No information” item. This graph was produced using ArcGIS 10.6. https:// www. esri. com; 
the base map is from China Standard Map Service. http:// bzdt. ch. mnr. gov. cn/.

https://www.esri.com
http://bzdt.ch.mnr.gov.cn/
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Figure 5.  Comprehensive map of urban epidemic and human environment in cities near Wuhan, China. 
(A1,A2) Yueyang; (B1,B2) Xinyang; (C1,C2) Hefei. Conduct KDE analysis based on confirmed cases’ addresses 
and overlay this information with a map layer depicting their treatment hospitals to generate figures (A1,B1,C1). 
Then, select high kernel density value areas from (A1,B1,C1) and overlay them with latitude and longitude 
data containing the residence of government officials, prominent local commercial districts, and important 
transportation hubs for symbolic representation. Furthermore, incorporate online base maps from ArcGIS 
10.6 to annotate central urban areas to create figures (A2,B2,C2). This graph was produced using ArcGIS 10.6. 
https:// www. esri. com; the base map is from China Standard Map Service. http:// bzdt. ch. mnr. gov. cn/.

https://www.esri.com
http://bzdt.ch.mnr.gov.cn/


7

Vol.:(0123456789)

Scientific Reports |         (2024) 14:7065  | https://doi.org/10.1038/s41598-024-56077-3

www.nature.com/scientificreports/

largest and darkest KDE core. The sub-serious pandemic emerged within Luoshan County’s built-up area (a vital 
transit hub for Xinyang’s external connections), while less severe outbreaks existed in other counties’ built-up 

Figure 6.  Comprehensive map of urban epidemic and human environment in cities outside Wuhan, China. 
(A1,A2) Wenzhou; (B1,B2) Shenzhen; (C1,C2) Chongqing. The drawing process is the same as in Fig. 5. This 
graph was produced using ArcGIS 10.6. https:// www. esri. com; the base map is from China Standard Map 
Service. http:// bzdt. ch. mnr. gov. cn/.

https://www.esri.com
http://bzdt.ch.mnr.gov.cn/
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areas such as Huangchuan County and Guangshan County, with relatively lower political or economic levels, 
indicated by smaller radii and lighter colors of KDE cores.

Besides, the areas with the highest number of confirmed cases in urban administrative units typically exhib-
ited the highest KDE values. However, Wenzhou presented an exception as its main metropolitan area had the 
highest KDE value while its county-level city, Yueqing (Fig. 4D), reported the highest number of confirmed cases 
along with three smaller and dispersed outbreak cores (Fig. 6A). This discrepancy can be attributed to Yueqing’s 
broader jurisdictional area and more scattered built-up environment compared to the main urban area, result-
ing in a less concentrated distribution of the pandemic. Consequently, it can be inferred that decentralized built 
environments pose a lower risk for large outbreaks when compared to concentrated built environments found 
in political and economic centers.

From the overall epidemic distribution of six case cities in China, we observed that cities with a high number 
of confirmed cases typically exhibited a multicore pattern, whereas those with fewer cases displayed a single-core 
pattern. Specifically, Yueyang and Hefei had relatively low confirmed cases (Table 2), demonstrating the single-
core pattern (Figs. 5 and 6). In contrast, the remaining cities experienced a significant number of confirmed 
cases, showing a multicore pattern. Among them, Xinyang is under the jurisdiction of Henan Province but 
exhibits more robust population mobility (as described above) with Wuhan due to Wuhan’s higher economic 
level and geographical proximity, resulting in numerous confirmed cases and a multicore pattern. The cities of 
Wenzhou (Wuhan is known as Wenzhou businessmen’s “second hometown”) and Shenzhen (known for its thriv-
ing economy in China, primarily influenced by outsiders) are geographically distant from Wuhan, but maintain 
close socioeconomic ties with Wuhan, resulting in a significant influx of population movement, a higher number 
of confirmed cases and the emergence of a multicore structural pattern.

In conclusion, the initial spatiotemporal spread of the epidemic across six cities in China is associated with 
regional political, economic, and transportation factors, as well as the characteristics of the built-up environment.

Medical response to the early COVID‑19 pandemic in six Chinese cities
Spatial distribution of designated hospitals
Overlaying the layers of government-designated hospitals, confirmed cases, and their assigned hospitals with 
the layers of KDE, we observed that the spatial distribution of designated hospitals (red crosses in A1, B1 and 
C1 in Figs. 5 and 6) in case cities (excluding Shenzhen) followed a pattern of “local concentration, overall bal-
ance”—more designated hospitals were located in central urban areas while fewer were present in counties 
(mostly limited to “County People’s Hospital” which typically offered better facilities). Shenzhen exhibited a 
unique characteristic. It had 49 designated medical  institutions30, but its confirmed cases were all admitted to 
No. 3 People’s Hospital (Fig. 6B1) due to the hospital’s more advanced equipment and specialized knowledge 
in infectious disease treatment and management, as well as the city’s extensive experience gained from SARS 
control measures and relatively small administrative area (Table 2). Additionally, the majority of the confirmed 

Table 1.  Medical carrying capacity of six Chinese cities.

City Number of medical and sanitary beds in 2018/10,000 MCCI/1000 COVID-19 MCCI

Yueyang 3.366 5.831 0.005

Xinyang 3.636 5.625 0.007

Hefei 5.220 6.374 0.003

Wenzhou 4.236 4.556 0.012

Shenzhen 5.132 3.819 0.008

Chongqing 23.190 7.422 0.002

Table 2.  General information in six Chinese cities. The high-speed train time was from the official website 
of China Railway (https:// www. 12306. cn/ index/); The socioeconomic data came from the 2020 Statistical 
Yearbook of China Economic and Social Big Data Research Platform (https:// data. cnki. net/ yearB ook? type= 
type& code=A).

City

Shortest high-speed 
train time to Wuhan/
min

Total population at 
the end of 2019/10,000

2019 GDP/100 m 
yuan Urban land area/km2 Administrative rank Sample size

The coverage rate of 
the sample (%)

Yueyang 50 577.13 3780.41 14,858 prefecture-level 154 100

Xinyang 43 646.39 2758.47 18,916 prefecture-level 246 98

Hefei 98 818.90 9409.40 11,496 Provincial capital 170 100

Wenzhou 377 930.00 6606.10 12,103 prefecture-level 471 94

Shenzhen 276 1343.88 26,927.09 1998 Sub-provincial city 413 100

Chongqing 369 3124.32 23,605.77 82,370
Municipality directly 
under the Central 
Government

441 82

https://www.12306.cn/index/
https://data.cnki.net/yearBook?type=type&code=A
https://data.cnki.net/yearBook?type=type&code=A
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patients were transferred to designated hospitals within the district or county where they developed symptoms 
(blue arrows in A1, B1, and C1 in Figs. 5 and 6), with only a few cases being referred to higher-level hospitals.

Moreover, areas with the highest KDE values correspond to multiple designated hospitals, whereas regions 
with lower values have only one designated hospital. It indicates that the medical deployment in case cities was 
consistent with the spatial distribution of the epidemic.

Medical carrying capacity
According to the Guiding Principles for Medical Institution Setting Planning (2016–2020) issued by the Chinese 
National Health and Family Planning Commission in 2016, the number of beds in medical and health institu-
tions should meet a standard of six per 1000 permanent residents by 2020. However, less than half of the six cities 
meet this criterion (Table 1), indicating an insufficient carrying capacity of their medical institutions. Although 
these cities did not experience overload during the outbreak (with low COVID-19 MCCIs), it does not imply 
their ability to withstand a more severe epidemic. With ongoing urbanization leading to continued population 
concentration in China’s urban areas, particularly within three major urban agglomerations southeast of the Hu 
 Line31, as well as global projections indicating an increase in urban population to 68% by  20508, addressing how 
to flexibly match concentrated urban populations with limited medical and health resources becomes crucial for 
building resilient cities capable of dealing with public health emergencies. This issue will be further discussed 
in the following section.

Discussion
Spatial distribution characteristics of the epidemic
First, our results indicate that in the initial stage, the outbreak concentrations were predominantly in the centrally 
built-up areas in a region’s economic, political, or transportation centers. These central built-up areas typically 
encompass diverse city functions and possess well-developed built environments and exceptional services, lead-
ing to extensive human mobility, significant population aggregation, and high population density. Consequently, 
these areas emerged as the most severely affected regions during the COVID-19  epidemic32–34. In other words, 
early in the outbreak, COVID-19 outcomes were typically highest in areas with high population mobilities and 
densities, and this pattern was  evident35.

Second, the results indicated that at a macroscopic level within a city, there is a reduction in the severity 
of the regional epidemic as the level of the central built-up area declines. Additionally, at a microscopic level, 
neighborhoods farther away from central built-up areas exhibit fewer recorded  cases36. These findings indicate 
that during the early stages of the pandemic without intervention, the epidemic spread was not constrained by 
administrative boundaries and distances but rather influenced by urban planning, layout, and socio-economic-
cultural context of a  city21, which manifested through population  mobility10,22,23.

To be more specific, structurally, towns within a city always tend to exhibit core-periphery  characteristics37,38, 
with the cores representing macroscopic economic, political, or transportation centers or microscopically central 
built-up areas. The higher the level of administrative functions and the more prosperous the economy of a region, 
the stronger the attraction of the core becomes, resulting in closer social and economic ties with other regions, a 
more active and concentrated population, and more severe  epidemics33. Conversely, periphery or suburban areas 
generally experience lower epidemic  levels39 due to their poor built environment density and less prosperous 
economy, resulting in lower population density, clustering patterns, and mobility. The previous analysis of the 
Wenzhou epidemic supports this observation.

Besides, within the context of social, economic, and cultural factors, mobility and connectivity also exert a 
significant influence on the spread of outbreaks, potentially surpassing the impact of population  density40. For 
instance, despite the diagnosis of a passenger on the Diamond Princess cruise ship in Japan on February 1, 2020, 
the vessel underwent a month-long quarantine at Yokohama port, effectively preventing a substantial outbreak 
within  Japan41. Conversely, in Daegu City, South Korea, “Patient 31” continued to appear in public gathering 
places frequently even after experiencing symptoms, resulting in a severe domestic  epidemic12. Moreover, the 
assertion is also supported by our previous analysis that Shenzhen’s distinctive foreign population structure and 
outflow during the Spring Festival impeded the spread of the local epidemic. Therefore, effective regulation of 
social and economic elements, as well as human activities (especially early-stage symptomatic individuals), can 
contribute to epidemic  control42.

In summary, the spread of the epidemic exhibits a hierarchical decay and a core-periphery structure; a 
decentralized built environment is less likely to create a large-scale epidemic cluster. The COVID-19 pandemic, 
which has dealt a heavy blow to the world’s society and economy and has yet to subside, has prompted urbanists 
to rethink urban planning and architectural  design5,43. Are the current agglomerated urban forms characterized 
by high-rise buildings livable? How can cities effectively reconcile the tripartite challenge of balancing economic 
development, epidemic prevention and control, and human well-being during the epidemic?

Future urban planning and architectural design
During the initial stages of the pandemic, nations worldwide implemented diverse control measures on popula-
tion activities, including the closure of commercial service facilities and sports and recreational venues, stay-
at-home orders, and travel  restrictions44. These measures resulted in a reduction in outdoor physical activity 
among urban  residents45, a decline in social interactions in public spaces, and a deterioration of both physical 
and mental health levels across many populations and  countries46,47. Additionally, there was an increase in tele-
activities, including teleconferencing, telework, telehealth services, online learning platforms, virtual meetings 
with friends and family members, online live concerts, and virtual  weddings48. Following the end of lockdowns, 
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people expressed an urgent need for social interaction within communal  areas49, as well as a strong desire to 
reconnect with nature by spending time in green  spaces50.

These phenomena, arising from the COVID-19 epidemic, emphasize the imperative of reshaping urban 
development patterns in the post-pandemic era. The future urban social and living spaces are likely to witness 
significant transformations. In response to the surged demand for green and outdoor activities during the pan-
demic, cities such as San Francisco and  Birmingham51 created small pocket parks and converted parking lots into 
parklets. London established walking paths and safe cycling routes along its main arteries and streets, while New 
York announced the opening of over 150 km of streets to create safe recreational spaces for socializing. Similar 
examples can be found in Rome, Mexico City, and other  cities52. These temporary strategies, while addressing 
immediate needs and alleviating the pressure of epidemic prevention and control, also reveal the limitations of 
prevailing agglomerated urban forms characterized by high-rise buildings, dense populations, restricted green 
outdoor spaces, and small indoor living areas.

Urban planning and architectural design should strive to align with the Sustainable Development Goals, 
such as sustainable cities and communities and good health and well-being. Furthermore, it is crucial to pri-
oritize people’s welfare by reducing the density of high-rise buildings, expanding outdoor activity spaces, and 
increasing green spaces rather than focusing more on agglomeration economic effects. Numerous studies have 
already emphasized the importance of a more equitable distribution of urban land use instead of concentration 
in specific  areas53.

Both cities and villages possess their allure, yet the undeniable superiority of urban living conditions exerts a 
more compelling force, attracting 55% of the global population to  reside8. Individuals seek an enhanced quality 
of life, gravitating towards cities due to perceived advantages such as superior employment prospects, higher 
wages, increased social opportunities, and abundant entertainment options; nevertheless, urban dwellers yearn 
for the natural splendor and fresh air found in rural  areas54. Therefore, transcending the dichotomy between 
urban and rural settings by embracing Howard’s Garden City concept that amalgamates the strengths of both 
realms to foster novel settlement  forms55 represents an optimal solution for bolstering community resilience, 
responding effectively to epidemics, and promoting overall health and well-being.

Besides, in the post-epidemic era, as tele-activities persist, commuting may no longer remain the primary 
focus for urban residents; instead, there will be an increased demand for spacious living spaces and green spaces. 
Consequently, physical offline spaces such as corporate offices, retail outlets, and transportation facilities might 
experience a certain degree of reduction while the minimum required living spaces for families might expand to 
accommodate home offices, personal  gardens56, individual balconies, and other residential areas. These changes 
have the potential to save commuting time, reduce energy consumption, increase daily leisure time, and provide 
access to nature within one’s home environment—making them functional and desirable even in the absence 
of an  epidemic57.

Urban medical carrying capacity
The medical institutions in the six Chinese cities did not overload during the epidemic; however, this does not 
imply they could withstand a more severe outbreak. In reality, the COVID-19 pandemic posed significant chal-
lenges to healthcare systems globally. Cities with a high epidemic incidence generally faced shortages of medical 
resources. For example, during the intense outbreak in Wuhan, China, over ten Fangcang shelter hospitals were 
established by converting exhibition centers and stadiums to accommodate confirmed  patients58. Similar large 
“tent” venues were also constructed in other countries. Melbourne, Australia, witnessed the erection of a pre-
fabricated semi-containerized two-story COVID-19 hospital in a car  park59. London, United Kingdom, created 
a 500-bed Nightingale Hospital within Excel Exhibition Center in Docklands with an increased capacity to treat 
approximately 4000  patients60. India repurposed spaces like train carriages to serve COVID-19  patients61. These 
examples collectively demonstrate that medical facilities and workers become overwhelmed during  outbreaks18 
due to limited resources, thus emphasizing that finding ways to maximize their utilization is crucial.

Urban medical services during an epidemic are essentially the management, allocation, and efficient utiliza-
tion of resources pertaining to individuals, places, and materials to address the imbalance between supply and 
 demand62,63. The restructuring of built fabric above during the outbreak is an excellent example of using the 
static “place” resource. As people and materials are movable, their management and utilization would be sig-
nificantly improved by leveraging big data, cloud computing, geographic information systems (GIS), artificial 
intelligence (AI), and other technologies. Therefore, it is imperative to establish a medical resource platform based 
on the dynamic database of medical personnel and supplies. The database should encompass the professional 
background, skill level, career stage (in-service staff members, interns, or school students), workplace location, 
and home address of all (potential) doctors and nurses, and information on the name, production date, shelf 
life duration, storage location and quantity of all available medical products, as well as these medical resources’ 
utilization rates and consumption patterns within a region. Subsequently, utilizing real-time hospital carry-
ing capacity data alongside resource consumption metrics enables automatic calculation and development of 
contingency plans for scheduling medical staff members effectively while facilitating replenishment plans for 
circulating backup medical supplies. Furthermore, optimizing medical equipment’s lifespan, extending medical 
drugs’ shelf life, and developing reusable, ultra-light, and intelligent masks are crucial steps towards achieving 
large-scale, long-term storage capabilities for materials, thereby minimizing wastage of resources while mitigat-
ing environmental  pollution64.

Furthermore, flexibility and location independence of medical and therapeutic activities have enhanced with 
the advancement of technologies mentioned above and the establishment of digital health  systems65. A prominent 
example is telehealth service, which may experience a substantial and enduring  increase66–69. Consequently, it 
becomes imperative to disseminate fundamental medical knowledge and foster nursing skills (preferably through 
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compulsory public university courses) to better accommodate remote diagnosis, treatment, and home care 
 wards70 to address the scarcity of healthcare professionals and hospitals during  pandemics71.

Implications for prevention and control
In summary, the initial spread of the COVID-19 epidemic exhibited hierarchical and core–edge structural char-
acteristics within cities, which is closely related to human activities. Urban medical services during epidemics 
are essentially the supply–demand contradiction among individuals, places, and materials. Therefore, epidemic 
prevention and control ultimately require effective planning and management of human activities and limited 
 resources44.

However, managing diverse individuals with initiatives and different social, economic, and cultural back-
grounds poses significant challenges. The same epidemic prevention policies, such as mask usage, travel restric-
tions, or medical service responses, implemented in countries with different cultural backgrounds, economic 
levels, or urban environments may yield disparate  outcomes9,19. For instance, regarding the issue of mask usage 
in public places during the pandemic, individuals in predominantly individualistic cultures like Germany and 
the United States often exhibit reluctance to wear masks and even participate in anti-mask  protests72. In contrast, 
individuals in primarily collectivist cultures like China usually wear masks voluntarily. Nevertheless, culture, 
created by people, has subjective plasticity, while viruses and their detrimental impact on human health are objec-
tive. Therefore, it is crucial to establish an objective and scientific epidemic prevention culture while enhancing 
people’s awareness of infectious diseases and their hazards across different cultural backgrounds for effective 
policy implementation. In other words, transitioning from managing individuals to educating them about self-
management represents the optimal approach for epidemic prevention and control.

Furthermore, given the interconnection of all activities involving individuals, encompassing resource manage-
ment and allocation, it necessitates a focus on the inherent nature of human behavior, adherence to humanitarian 
principles, prioritization of people-centered  approaches73, and maximum employment of information technolo-
gies (IT) such as big data, the internet of things, and intelligent monitoring/control systems. Consequently, 
establishing a regional integrated emergency management  GIS74 is crucial for precise prevention measures and 
decision  support75—a component of smart city development that has been proven beneficial for pandemic 
 control24. The regional integrated emergency management GIS should include, at a minimum, a database includ-
ing dynamic medical case geo-information, a platform for space–time planning of outdoor activities, and a 
medical resource platform (mentioned in the previous section).

Medical cases with spatial attributes, particularly the earliest confirmed cases, can provide invaluable infor-
mation on potential high-risk areas for timely control of infection sources, interruption of transmission routes, 
and early warning of new pandemics. Therefore, it is imperative to establish a dynamic geo-information data-
base dedicated explicitly to medical cases. This database should be based on diagnosis and treatment data and 
incorporate crowdsourced data such as Chinese Ding Xiang Yuan. Crowdsourcing data offers geotagged high-
frequency information and alternative insights that enhance the resolution of disease spatiotemporal analysis 
while fostering public health awareness through active public engagement  processes76,77.

The construction of a platform for space–time planning of outdoor activities should be based on the dynamic 
geo-information database of medical cases above, ensuring normal outdoor activities while reducing direct 
person-to-person contact, which is the primary mode of SARS-CoV-2  transmission78 and other infectious dis-
eases. Before the nationwide lockdown in mid-March in Italy, outdoor leisure time was allowable. However, due 
to inadequate deployment and intervention measures, gardens and parks became gathering places, exacerbating 
the contagion risk, leading to the closure of public places and stricter outing  restrictions79. Hence, a platform for 
space–time planning of outdoor activities is indispensable. This platform should initially map all available out-
door areas for people’s activities in high-risk regions (including unused driveways and parking lots within control 
areas). Subsequently, utilizing temporal geography methods, maximum safe trip numbers should be designed for 
each region, with trips categorized and dynamically counted by households daily and hourly, to reasonably plan, 
arrange, and adjust the activity locations/ranges and periods/frequencies of individuals with outdoor activity 
requirements. In this way, utmost efforts can be made to fulfill people’s basic demands for outdoor activities in 
high-risk areas during epidemics, ultimately regulating and promoting their physical and mental well-being16.

In addition, the epidemic spreads hierarchically and exhibits a core-fringe structure; the built environment 
significantly varies across diverse social, economic, and cultural backgrounds and different groups exhibit distinct 
activity characteristics. Therefore, it is necessary to formulate tailored policies based on specific temporal and 
spatial conditions. The principles of prioritizing science approaches, implementing hierarchical planning, foster-
ing situational awareness, promoting people-centric strategies, providing individualized treatment options, and 
embracing eco-friendly measures should be consistently applied throughout the prevention and control process 
to effectively address people’s needs, gain their trust, and ultimately garner their support.

Limitations and prospects
Although our research has generated new knowledge, there are certain limitations. Firstly, the data solely relies 
on officially reported cases and fails to consider  underreporting80. Underreporting can significantly impact the 
study of spatial distribution and prevention and control strategies of the epidemic, including vaccine  strategies81. 
Despite the research advancements in measuring the underreporting of infectious  diseases82, this article focuses 
on the early stage of the COVID-19 outbreak when cities’ epidemic response strategies were not yet fully devel-
oped; thus, it was challenging to avoid underreporting, resulting in incomplete coverage of confirmed cases in 
this study. Besides, some data had to be excluded due to incomplete information. Nevertheless, existing datasets 
still exhibit relatively high data coverage (Table 2). Therefore, these findings objectively present current facts 
with a certain degree of reference value.
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Secondly, the study area is small, which may have an unconvincing influence, but the results are consistent 
with that of other scholars. It has revealed some commonalities among cities at the beginning of the pandemic, 
which could extend to different cities and the future novel pandemic prevention.

Thirdly, due to substantial variations in confirmed cases and administrative regions, the study employed KDE 
with different bandwidth settings to depict the spatial distribution patterns of the COVID-19 outbreak in the six 
cities. These settings present challenges when comparing between different cities. Still, when considering this 
research primarily focuses on exploring common characteristics of COVID-19 spatial distribution within each 
city through a case-by-case approach rather than intercity comparisons, they are deemed appropriate.

Lastly, the formula of MCCI needs improvement. There are differences in the treatment needs of citizens for 
different hospital departments. The treatment needs, and demand levels vary among individuals and diseases, 
exhibiting constant fluctuations. Therefore, relying solely on population size and the number of hospital beds 
as indicators for static measurement poses challenges in accurately describing the capacity of an urban medi-
cal system. The concept of MCCI is based on an exaggerated assumption that all city residents simultaneously 
generate medical treatment needs. While this scenario would not occur in reality, to some extent, the formula 
can still reflect the level of medical services and their differences between cities, thereby providing value to 
this study and justifying its adoption. Moreover, noted that the COVID-19 MCCI formula does not consider 
patients other than those with COVID-19, which may underestimate the actual situation and create a relatively 
optimistic impression.

Despite these limitations, they also provide directions for future research endeavors. As epidemic prevention 
and control technologies mature along with governance systems, addressing underreporting becomes feasible. 
Research exploring spatiotemporal distribution characteristics during other periods of the COVID-19 pan-
demic is more reliable. Future research on comprehensive investigations into spatiotemporal evolution patterns 
of epidemics and their relationships with urban environments at an individual city level could validate some 
results of this study. Additionally, cities with similar characteristics can be selected to compare spatiotemporal 
patterns of the epidemic using the KDE method with identical bandwidths. Lastly, efforts could focus on improv-
ing the MCCI calculation formula for COVID-19 to support formulating effective epidemic response strategies 
for urban medical systems.

Conclusion
This study investigates the sociodemographic characteristics of early confirmed COVID-19 cases, spatiotempo-
ral distribution patterns of the epidemic, and spatial arrangement of designated hospitals and medical carrying 
capacity in six Chinese cities by employing textual analysis, mathematical statistics, and spatial analysis methods. 
The results indicate that the severity of urban epidemics during their initial stages is associated with cities’ politi-
cal, economic, and transportation levels and built-up area environment. Furthermore, we observe a correlation 
between epidemic spread and social-cultural-economic backgrounds as well as factors like population mobility. 
The potential imbalance between population size and medical capacity poses challenges in effectively managing 
large-scale outbreaks. Consequently, urban epidemic prevention and control essentially involve governing human 
activities within limited resources to achieve supply–demand equilibrium during such crises.

This research provides fundamental insights for cities to address future large-scale epidemics better. These 
findings prompt scholars to reflect on the interplay among economic and social-cultural factors in constructing 
an urban cascade network system while urging urban planners to reconsider planning strategies and architec-
tural designs accordingly. Moreover, this study offers policymakers and urban managers valuable knowledge 
in formulating resource governance measures alongside effective epidemic prevention and control strategies.

Materials and methods
Data and study areas
Data
The epidemic dataset in the study is based on the daily update of the Municipal Health Commission. As of 
0:00 on February 15, 2020 (Beijing time), when the outbreak was under control and in the lasting  period24, a 
total of 2029 information on confirmed patients described in Chinese was extracted through Python 3.5. After 
thorough data cleaning, 1895 valuable records were retained, containing details of gender, age, address, date 
of earliest clinical symptoms onset, date of first visit to healthcare facilities for treatment purposes, designated 
treatment hospital details, and activity range of confirmed patients. Demographic travel characteristics specific 
to Shenzhen were collected manually from the “Baidu Migration” big data visualization platform (https:// qianxi. 
baidu. com/#/). Vector administrative boundaries data were obtained from China’s National Basic Geographic 
Information Center (http:// bzdt. ch. mnr. gov. cn/).

Study areas
The study areas selected for this research include Yueyang, Xinyang, Hefei, Wenzhou, Shenzhen, and Chongqing. 
Each of these cities possesses distinct geographical, economic, and cultural characteristics. Specifically, the first 
three cities are in the south, north, and northeast of Wuhan (Fig. 7), all within a two-hour high-speed rail range. 
On the other hand, the latter three cities are located in the Yangtze River Delta city cluster, Pearl River Delta 
city cluster, and upper middle Yangtze River region, respectively, requiring more than four hours to reach from 
Wuhan. These study areas encompass both coastal and inland cities with varying administrative levels, including 
three prefecture-level cities, one municipality directly under the Central Government, one provincial capital, 
and one sub-provincial city, with significant variations in city size and economic development level (Table 2). 
Notably, all these cities experienced severe outbreaks, making them suitable for this research.

https://qianxi.baidu.com/#/
https://qianxi.baidu.com/#/
http://bzdt.ch.mnr.gov.cn/
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Methods
Textual analysis
Textual analysis involves selecting key features from text and quantifying them to represent information. In 
this study, Python 3.5 was used to extract data such as age, gender, address, and activity trajectory from texts of 
confirmed cases. The extracted data were then manually cleaned and subjected to statistical analysis. Addition-
ally, manual interpretation and classification of the activity trajectory were conducted, given to rereading the 
texts when necessary to fully explore their information and assist in explaining the results of statistical analysis.

Kernel density estimation
KDE quantifies the spatial distribution of events within a specific area by measuring the density of event points 
surrounding each location. In this study, we employed KDE to estimate the degree of aggregation for confirmed 
cases at various locations, aiming to unveil the concentration pattern of the pandemic. The KDE calculation 
formula is:

where n is the total number of confirmed cases, hn is the bandwidth, namely the search radius, and k
(

x−xi
hn

)

 is 
the kernel function. Due to significant variations in both the number of confirmed cases and administrative areas 
among the six cities studied, a uniform bandwidth was not employed. Instead, default settings provided by 
ArcGIS 10.6 software’s KDE analysis tool were utilized. Specifically, for Yueyang, Xinyang, Hefei, Wenzhou, 
Shenzhen, and Chongqing, respectively, search radii of 0.057°, 0.191°, 0.045°, 0.081°, 0.039°, and 0.358° were 
automatically calculated based on spatial configuration and input point numbers without manual 
adjustments.

Spatial overlay analysis
The spatial overlay analysis involves the superimposition of two or more layers of geographic objects within 
the same area, generating multiple attribute features for that spatial region. It encompasses visual information 
overlay, vector layer overlay, and raster layer overlay. In this study, only visual information overlay analysis was 
employed. It entailed utilizing ArcGIS 10.6 to superimpose and visualize multiple layers of information such as 
designated hospital locations, addresses and treatment hospitals for confirmed cases, kernel density distribu-
tion of the outbreak, and regional government office locations as required. This approach was undertaken to 
investigate their shared characteristics regarding spatial patterns.
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)

Figure 7.  Location of six Chinese cities (this graph was produced using ArcGIS 10.6. https:// www. esri. com; the 
base map is from China Standard Map Service. http:// bzdt. ch. mnr. gov. cn/).

https://www.esri.com
http://bzdt.ch.mnr.gov.cn/
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Medical carrying capacity
Based on the infrastructure capacity index  formula83 and the guidelines outlined in the “Guideline for Setting Up 
Medical Institutions (2016–2020)” by the Chinese National Health and Family Planning Commission in 2016, 
the present study developed a medical carrying capacity index (MCCI) that considers the number of permanent 
residents as the target for carrying capacity, while utilizing the total number of beds in medical and health insti-
tutions as an indicator. To adapt it for COVID-19 analysis, we replaced the number of permanent residents with 
the cumulative number of confirmed patients in MCCI while interchanging the numerator and denominator to 
enhance practicality and comprehensibility. The calculation formulas are as follows:

where n is the total number of districts or counties under the jurisdiction of case cities; CCMi are the ith district 
or county medical institution’s total beds; CCOi is the resident population of the ith district or county; CCAi is 
the total cumulative diagnoses in the ith district and county.

Data availability
The epidemic dataset in the study was from the Municipal Health and Wellness Committee websites of the 
six case cities. Their links are listed as follows: http:// wsjkw. xinya ng. gov. cn/a/ zhuan ti/ yxhnl gfk/ xxgzbd/ yqtb/ 
2020/ 0201/ 4575. html, https:// wsj. yueya ng. gov. cn/ 11161/ 60061/ 63074/ conte nt_ 18470 25. html/, https:// wjw. hefei. 
gov. cn/ public/ 17771/ 10949 5472. html, https:// wjw. wenzh ou. gov. cn/ art/ 2020/2/ 11/ art_ 12099 19_ 41899 936. html, 
http:// wjw. sz. gov. cn/ yqxx/ conte nt/ post_ 73436 50. html, https:// wsjkw. cq. gov. cn/ ztzl_ 242/ qlzhx xgzbd fyyqfk gz/ 
yqtb/). The dataset is available from the corresponding author upon reasonable request.
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