
1

Vol.:(0123456789)

Scientific Reports |         (2024) 14:5447  | https://doi.org/10.1038/s41598-024-56066-6

www.nature.com/scientificreports

Explanation of the influence 
of geomorphometric variables 
on the landform classification 
based on selected areas in Poland
Krzysztof Dyba 

In recent years, automatic image classification methods have significantly progressed, notably black 
box algorithms such as machine learning and deep learning. Unfortunately, such efforts only focused 
on improving performance, rather than attempting to explain and interpret how classification models 
actually operate. This article compares three state-of-the-art algorithms incorporating random 
forests, gradient boosting and convolutional neural networks for geomorphological mapping. It 
also attempts to explain how the most effective classifier makes decisions by evaluating which of 
the geomorphometric variables are most important for automatic mapping and how they affect 
the classification results using one of the explainable artificial intelligence techniques, namely 
accumulated local effects (ALE). This method allows us to understand the relationship between 
predictors and the model’s outcome. For these purposes, eight sheets of the digital geomorphological 
map of Poland on the scale of 1:100,000 were used as the reference material. The classification results 
were validated using the holdout method and cross-validation for individual sheets representing 
different morphogenetic zones. The terrain elevation entropy, absolute elevation, aggregated 
median elevation and standard deviation of elevation had the greatest impact on the classification 
results among the 15 geomorphometric variables considered. The ALE analysis was conducted for 
the XGBoost classifier, which achieved the highest accuracy of 92.8%, ahead of Random Forests at 
84% and LightGBM at 73.7% and U-Net at 59.8%. We conclude that automatic classification can 
support geomorphological mapping only if the geomorphological characteristics in the predicted 
area are similar to those in the training dataset. The ALE plots allow us to analyze the relationship 
between geomorphometric variables and landform membership, which helps clarify their role in the 
classification process.

Geomorphology is a scientific discipline that studies landforms, their features and the processes that shape  them1. 
One of the key aspects of geomorphology is the mapping process, which involves identifying landforms and 
determining their spatial distribution in the context of processes occurring on the Earth’s  surface2. Traditional 
and automatic mapping are two different approaches to mapping landforms based on their features, shape, and 
spatial distribution.

Traditional geomorphological mapping is based on fieldwork and manual interpretation of various data 
sources (for example, digital elevation models, topographic maps, aerial or satellite imagery), which requires 
a high level of expertise and experience. Therefore, this approach is time consuming and expensive. Another 
debatable issue is the repeatability of mapping results related to the subjective nature of interpretation, which 
can consequently lead to different divisions and ranges of landforms or soil  units3.

On the other hand, automatic geomorphological mapping can be more efficient and cheaper, and most 
importantly, can provide reproducible results by removing the aspect of subjectivity. Basically, three different 
approaches to automatic classification can be distinguished, i.e., the pixel-based4–8, object-based9,10 and pattern-
based. The first two are currently used as state-of-the-art, but the last one is new and requires further research.

The pattern approach mainly relies on convolutional neural networks (CNNs), which involve a multi-step 
learning process using convolutional layers to create a feature map that extracts certain image patterns. CNNs 
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have become very popular in computer vision due to their high efficiency in identifying low-level features and 
patterns, making them very effective for data  classification11,12.

Recent research on the application of convolutional neural networks in geomorphology includes the use of 
a multi-channel deep neural network architecture to classify  landforms13, a comparison of Random Forests and 
U-Net models to classify loess  formations14, a comparison between traditional and automated U-Net-based 
 approaches15, and classification using textural properties of the  terrain16.

So far, several initiatives have been undertaken to develop high-resolution digital geomorphological maps 
of selected areas in Poland based on traditional mapping, including Roztocze  Upland17, Pomeranian and War-
mian–Masurian  voivodeships18,  Mazovia19,  Carpathians20, Narew National  Park21, Wielkopolska–Kujawy Low-
land, Mysliborsk Lakeland and Szczecin  Lowland22,  Podlasie23, and  Tykocin24. Nevertheless, the mentioned 
studies were conducted by independent research teams and are not unified, thus they have different catalogs of 
landforms, mapping principles and spatial scales.

However, research on automatic classification of the geomorphological landforms in Poland remains at an 
early stage. The first study compares unsupervised automatic classification with the traditional mapping for 
the  Sudetes25. The second study also concerns unsupervised classification for the area of the Silesian  Upland26. 
Another study on supervised classification was conducted by Janowski et al.27, in which the authors compared 
machine learning algorithms for classifying glacial landforms in the Lubawa Upland and Gardno–Leba Plain 
areas using ground truth dataset. In a previous article co-written by the present author, we clustered the land-
forms of the entire country using an unsupervised  method28. This means that we made no prior assumptions 
about geomorphological units. Finally, we separated 20 land surface types in the process of interpreting and 
labeling clusters.

The first objective of this article is to perform a supervised classification using machine learning based on 
the available sheets of the digital geomorphological map of Poland. Unlike the unsupervised approach, the 
catalog of geomorphological units is known in advance, but the problem is to map it as best as possible using 
an automatic classification method. The second objective is to interpret the classification decisions made by the 
model, in particular to explain which geomorphometric variables are most relevant and how they affect the 
classification results.

Materials and methods
We divided this section into several subsections to clearly present the extensively used materials and methods. 
Section “Digital geomorphological map” describes the digital geomorphological map of Poland. Section “Mor-
phometric variables” provides information on geomorphometric explanatory variables and how they are pro-
cessed. Section “Selection of a classification model” presents the machine learning and neural network models 
employed, while Section “Validation” presents the methods and metrics for their validation. Section “Model 
explanation” describes the method to explain the classifier’s decision. Finally, Section “Software” contains techni-
cal information about the software used.

Digital geomorphological map
The digital geomorphological map of Poland on the scale of 1:100,000 is a vector map showing the forms of relief 
and the genesis of the Earth’s surface alongside information about its  formation29. The color scheme is based on 
the Gustavsson et al.30 concept with modifications. Eight available sheets with a total area of 9072  km2 were used 
as a reference dataset (Fig. 1). Currently, it is the only such detailed and up-to-date source on a national scale 

Figure 1.  Sheet coverage of the digital geomorphological map of Poland.
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with uniform principles of development. The landforms presented are from all morphogenetic zones, including 
the coastal area (Świnoujście), the young and old glacial areas (Toruń and Kutno), the upland areas (Katowice, 
Kraków Zachodni and Tomaszów Lubelski), and the areas of young and old mountains (Jelenia Góra and Nowy 
Targ). In the technical manual there are 77 surface divisions in 10 morphogenetic groups; however, only 54 divi-
sions can be found on the available sheets. The landforms are listed in Supplementary Fig. S1.

The representativeness of the morphological forms is strongly unbalanced; for instance, the slope surface 
landform accounts for more than 23% of the total dataset, while the other 43 landforms represent less than 15% 
(Fig. 2). This issue is a major problem in automatic classification methods. This means that the algorithm is unable 
to learn how to correctly classify forms that are a significant minority (permille) in the dataset. To address this 
problem, we reduced the size of the 14 largest classes to 150,000 observations using the data under-sampling 
 procedure31 and removed the two least numerous classes (beach and dune plain). The second issue relates to 
missing values (NA) that result from areas not covered by mapping or water surfaces (Fig. 2). In the case of 
machine learning algorithms, typically missing values can be omitted (they will not be included in the training 
set), while neural networks use them in the learning process, and then they are masked (excluded). The final 
dataset consisted of over 3.3 million observations (pixels).

Machine learning algorithms require a discrete representation of data, for this reason we rasterized vector 
maps to a resolution of 30 m in the Polish geodetic coordinate system 1992 (EPSG: 2180). For this purpose, we 
created a classification table that contained the original category names encoded as text and their corresponding 
IDs in numerical form. We coded missing data (NA), water reservoirs, and areas not surveyed with a value of 0.

Morphometric variables
As the main data source, we used a digital terrain model with a resolution of 30 m adapted from Digital Terrain 
Elevation Data Level 2 (Fig. 3). The data has been smoothed and resampled, so the artifacts (noise strips) seen 
in the original do not  appear32. Then we generated a number of derivative products based on it.

More than 100 different geomorphometric variables can be found in popular applications for geomorpho-
metric analysis. It is impossible to include all of them for technical reasons (hardware limitations, processing 
time) and analytical reasons (some are strongly correlated). Therefore, we considered the 15 most commonly 
used and made a final selection of the most important features for classification using model performance met-
rics, visual inspection and model information gain (Fig. 4). Eventually, we reduced their number to 9 (Table 1), 
which increased the performance of the classifier (i.e., faster training and prediction, and reduced memory 
consumption) and, most importantly, simplified the structure of the model, thus making its decisions easier 
to interpret. We initially tested absolute elevation, multidirectional  hillshade33,  slope34, topographic position 
 index35, multi-scale topographic position index, tangential and profile  curvatures34, convergence index with 
 radius36, terrain surface  texture6, terrain surface  convexity6, topographic  openness37, aggregated elevation, local 
standard deviation, and textural features including contrast, energy and  entropy38.

The aggregated elevation was calculated using a statistic (in this case, the median) from neighboring pixels at 
a lower spatial resolution (500 and 1000 m respectively), and then the aggregated cell was divided into smaller 
blocks corresponding to a resolution of 30 m. If it was possible to set the analysis radius, we set it to 16 pixels 
(representing an area of about 0.7  km2). Additionally, we removed the variables above a linear correlation of 
0.9 because they essentially convey the same information except for aggregated elevation and entropy (they are 
perfectly correlated with absolute elevation but contain information on a larger spatial scale), which allows for 

Figure 2.  Distribution of the geomorphological forms from the used sheets. All forms with a total area of less 
than 166  km2 (i.e., the 80th percentile) are combined into one category in the figure: Other.
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mapping morphological objects with continuity. The geomorphometric variables used in this study are presented 
in Fig. 5.

Selection of a classification model
We compared the three most popular models based on machine learning—Random  Forests39 and gradient 
boosting including  XGBoost40 and  LightGBM41, and the convolutional neural network (CNN) model—U-Net42. 
The main difference between random forests and gradient boosting is that the former reduces the variance of 
a large number of complex models with low bias (the models are built independently and parallelly), while the 
gradient boosting reduces the bias of a large number of simple models with low variance (the models depend 
on each other because each is based on all previous small models with the appropriate weight, hence the name 
“boosting”). Both XGBoost and LightGBM models are based on gradient boosting, but the former uses an “exact” 
algorithm, while the latter uses an “approximate” algorithm (observations with similar values are aggregated into 
bins). This acts as a compromise between performance and accuracy of trained models.

In contrast, convolutional neural networks are primarily dedicated to computer vision, whereas machine 
learning models focus on modeling tabular data. They consist of multiple layers that can extract vital image 
features (such as edges) and reduce the spatial resolution while retaining the important information. Thus, it 
can be expected that the recognition of spatial patterns will be independent of the shift (i.e., the model will be 
able to recognize the same pattern in a different place) and the spatial hierarchy of objects will be considered 
(for example, the first layer of the network will learn to recognize small local patterns, and the next layer will 
aggregate them into larger structures). In the case of machine learning, this is not directly possible, and the data 
must be prepared in an appropriate way (feature engineering).

Model hyperparameters tuning
Machine learning models require a predeterminating of the hyperparameters such as maximum tree depth, 
number of leaves (nodes), learning rate, etc. to be effective. This procedure is called tuning. In order to find the 
most effective hyperparameters, we used a random search procedure, which involves defining a search space 

Figure 3.  Elevation map of Poland with hillshading. Histograms with average elevation values calculated for 
latitudes and longitudes are seen on the sides.
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(combination) of hyperparameters and random sampling. Then, using the drawn combination, the model is 
trained, and its performance is evaluated on an independent dataset.

We considered the following hyperparameters in this procedure: eta (step size shrinkage used to prevent 
overfitting), max_depth (maximal tree depth), nrounds (number of iterations), subsample (subsample ratio of the 
training data) in XGBoost; num.trees (number of trees to grow), mtry (number of variables randomly sampled as 
candidates at each node split), min.node.size (minimal node size), max.depth in Random Forests; learning_rate 
(performs the same function as eta in XGBoost), max_bin (maximum number of bins that feature values will 
be bucketed in), num_leaves (maximum number of leaves in one tree), nrounds, max_depth, bagging_fraction 
(performs the same function as subsample in XGBoost), feature_fraction (ratio of variables randomly sampled 
for each tree) in LightGBM. Appropriate selection of these hyperparameters prevents the model from overfit-
ting the training data.

It should be emphasized that the applied machine learning algorithms do not use the pixel neighborhood, 
so information about the shape and continuity of geomorphological forms is not included. In fact, information 
about the values of the geomorphometric variables is only used for individual pixels. We used feature engineering, 
to address this problem, which is based on three elements: 1) calculation of the geomorphometric variables in 
the local window (if it was possible); 2) use of selected geomorphometric variables at lower spatial resolution to 
detect larger landforms; 3) use image textural features. See Section “Morphometric variables” for more details.

Convolutional neural network
We evaluated the convolutional neural networks using the U-Net model in  Tensorflow43. This architecture con-
sists of two main components, i.e., a contracting path (encoder) and an expansive path (decoder). The former 

Figure 4.  Importance of the geomorphometric variables for the geomorphological classification using the 
XGBoost model. The higher the value, the greater the suitability. The red dashed line indicates discarded low-
significance variables.

Table 1.  Morphometric variables used in this study.

# Variable Range Mean value Unit

1 Absolute elevation − 0.03, 2483 171 ± 129.2 m

2 Slope 0, 76.1 1.75 ± 3.08 deg

3 Local standard deviation 1000 m 0, 262.7 5 ± 8.3 m

4 Multi-scale topographic position index − 53.1, 44.6 0 ± 0.7 m

5 Terrain surface convexity 0, 88.6 48.7 ± 7.5 –

6 Entropy 7, 940318 52,441 ± 44,508 –

7 Topographic openness 0.61, 1.7 1.55 ± 0.03 –

8 Median elevation 500 m 0, 2335 171 ± 128.9 m

9 Median elevation 1000 m 0, 2238 170 ± 128.5 m
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progressively reduces the spatial resolution of the input image while increasing the number of features. The 
expansive path is the inverse of the contracting path and involves upsampling operations to restore the spatial 
resolution and reduce the number of features. The final layer consists of a convolutional layer with a softmax 
activation function, producing pixel-wise class predictions. The detailed architecture is shown in the original 
article by Ronneberger et al. in Fig. 142.

Several tile sizes were tested as input, i.e., 32 × 32, 64 × 64, 128 × 128 and 256 × 256 pixels. Finally, the most 
satisfactory results were obtained for blocks of 128 × 128 pixels due to the compromise between capturing spatial 
patterns by the model and the number of missing values in the tiles. To solve the problem of a large percentage of 
missing data, we removed those blocks for which the number of missing values was more than 70%, ultimately 
resulting in a total of 685 raster blocks. In order to increase the amount of input data, data augmentation was 
applied by flipping images in the vertical and horizontal planes. Adam’s algorithm was used as the optimization 
 function44. It should be noted that deep learning models have hundreds of thousands of parameters for tuning 
and, therefore, require much more input data compared to machine learning models. In this study, U-Net was 
used only as a reference method and its lower performance is expected compared to the other models tested.

Validation
We used holdout validation to validate the results—30% of the randomly selected input dataset was used as a 
test set to calculate the models’ performance metrics, i.e., accuracy, Cohen’s kappa coefficient (κ) and Matthews 
correlation coefficient (φ). The former provides overly optimistic results for unbalanced datasets, but the sec-
ond and third are corrected for this effect and offer more reliable results. However, because we under-sampled 
classes to balance our dataset, the difference between these metrics is insignificant. Moreover, we used fivefold 
cross-validation to test the accuracy of the most efficient classifier (i.e., XGBoost) in this study for individual 
areas. Note that non-spatial validation can produce somewhat biased  results45,46, and in order to evaluate the 
performance completely independently, new geomorphological sheets (i.e., those that have not been used to 
train the models) should be used.

Model explanation
The models used in this study are black box models. This means that the predictions and decisions they generate 
are not interpretable in a simple way. In other words, the high complexity of the algorithms causes difficulties in 
explaining how it actually  works47,48. In order to understand which geomorphometric features the model uses 
to make decisions, we used the XGBoost gain metric (Fig. 4), which determines the improvement in model per-
formance by adding a specific feature to the decision tree. Moreover, in addition to examining which variables 

Figure 5.  Geomorphometric variables used in this study. The absolute elevation is shown in Fig. 3 with the 
topographic color scale. The aggregated by median elevations of 500 and 1000 m look almost identical, but 
actually represent different spatial scales. The slope, standard deviation, convexity, entropy, openness variables 
are scaled by the square root, and the multi-scale TPI by the sine to better represent spatial variability.
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are most useful for mapping, we also evaluated the interactions between the classification results and each geo-
morphometric variable using accumulated local effects  plots49.

The accumulated local effect (ALE) is a machine learning interpretability method that allows gain insights 
into the model’s behavior, identifying how features affect predictions. The ALE method is similar to the partial 
dependence  plot50, but is faster and more robust (i.e., it enables an analysis of the correlated variables). The for-
mer focuses on local effects that are calculated in small windows, while the PDP calculates average values. The 
resulting ALE plot shows how the model prediction changes as the particular feature value increases (assuming 
that the other features are fixed), enabling an examination of the relationship between a feature and the model’s 
prediction. In practice, this helps identify interactions that are not evident by simply assessing the significance 
of the features like using XGBoost gain metric. To the best of the author’s knowledge, this method has not been 
previously used to explain the decision making of the classification models in geomorphological mapping.

Software
The geomorphometric variables were generated in GRASS GIS 7.8.051 with default function parameters. The data 
analysis and machine learning parts were completed in  R52, while the neural networks were used in Python. In 
particular, the stars package was utilized for processing the raster  data53, and sf for the vector  data53. Statistical 
metrics were implemented in the yardstick54 package. The ranger package was used to train Random  Forests55. 
Accumulated local effects plots were generated by the ALEPlot  package49.

The development of the models was very time-consuming. It took nearly two weeks of continuous computa-
tions to train all 1180 models on an AMD Ryzen 9 5900X with 128 GB RAM. The models were trained in parallel 
on 12 physical CPU cores. The largest part of the trained models were models based on LightGBM algorithm, 
because of the largest number of hyperparameters to be tuned compared to other machine learning models.

Results
Classification
As a result of the evaluation on an independent test dataset, the XGBoost model proved to be the best with an 
accuracy of 92.8%. It was followed by Random Forests with an accuracy of 80.4% and LightGBM with an accuracy 
of 73.7%. The worst performance was achieved by the U-Net model due to insufficient training data (Table 2). 
During model tuning, the highest performance of the classifiers was obtained for the following hyperparameters:

1. XGBoost: eta = 0.2; max_depth = 20; nrounds = 150; subsample = 0.6
2. Random Forests: num.trees = 1000; mtry = 5; min.node.size = 1; max.depth = 20
3. LightGBM: learning_rate = 0.05; max_bin = 2048; num_leaves = 70; nrounds = 150; max_depth = 15; bag-

ging_fraction = 1; feature_fraction = 1

Further performance of the models can be improved by using larger values for the max_depth and max_bin 
hyperparameters, but this actually results in overfitting on the test dataset.

The potential application of model fusion may be intriguing. This technique typically results in an overall 
improvement in classification performance using aggregated results from several different models. However, 
this is provided that all models offer similar and high prediction efficiency, which is not case in this study. Ulti-
mately, this would reduce the quality of the prediction and, moreover, it would become impossible to explain 
the performance of the combined models.

From this point on, only the XGBoost classifier is subjected to further analysis because it achieved the best 
result compared to the other models. The analysis of models with lower performance is unjustified, especially 
in the context of explaining how geomorphometric variables influence landform classifications (i.e., misclassi-
fications mean misinterpretations). In the evaluation of the predicted landforms on individual sheets, XGBoost 
recorded the best accuracy for Jelenia Góra at 96.2%, and the lowest for Tomaszów Lubelski at 88% (Table 3). 
The average accuracy value using cross-validation was over 93%, while the Kappa coefficient and Matthews 
correlation coefficient values were slightly lower. This demonstrates the high potential application, provided 
that the predicted landforms and distributions of geomorphometric variables are similar in both the test and 
training datasets. However, it is not possible to conclude that there is a strong correlation between the number 
of landforms and model accuracy—classification performance is rather related to the representativeness of the 
forms and the complexity of the spatial patterns associated with the geomorphological characteristics of the areas. 
Examples of the classifier’s application are shown in Fig. 6. It is noteworthy that small landforms appear on the 

Table 2.  Evaluation of the model classification performance. The higher the metric values, the better the 
model.

Model Accuracy Kappa coefficient Matthews correlation coefficient

Random Forests 0.840 0.830 0.830

XGBoost 0.928 0.917 0.917

LightGBM 0.737 0.724 0.725

U-Net 0.598 0.576 0.576
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predicted rasters that are not visible on the geomorphological map. This may be due to the higher spatial resolu-
tion of the geomorphometric variables compared to the reference map (not necessarily the prediction errors).

Model explanation
We first assessed the overall relevance of each geomorphometric variable for mapping. Among the tested vari-
ables, entropy, median elevation and absolute elevation turned out to be the most significant for classification. 
Next ranked were standard deviation, convexity and openness, slope and multi-scale TPI. The least useful for 
mapping were texture, profile and tangential curvatures, TPI, and hillshade (Fig. 4). The last group of variables 
with the lowest importance was excluded from the final classification since they do not actually improve map-
ping results, but significantly increase processing time, require additional memory and cause greater model 
complexity.

In the next step, we deepened the analysis of the relationship between the used geomorphometric variables, 
and the probability of the landform specified with accumulated local effects. As an example, we chose the four 
well-representative landforms, for instance: (a) proluvial plain; (b) plateau; (c) rock wall/rock slope; (d) depo-
sitional scree slope (Fig. 7). All other geomorphological landforms are presented in Supplementary Fig. S2.

Figure 7 shows how the probability of landform affiliation changes depending on geomorphometric variables. 
The first landform proluvial plain (Fig. 7a) is an extensive sandy flat surface created as a result of the periglacial-
fluvial accumulation process. It is noticeable, in this case, the greatest impact on the detection of this form is the 
openness feature, whose high values (above 1.55) indicate an open and flat surface. The other geomorphometric 
variables are not very significant. The second example is the plateau (Fig. 7b), which is usually characterized by 
an irregular surface and explicit hillsides. In this case, low values of two features, i.e., entropy (below 85,000) and 
openness (below 1.58), reduce the probability of classifying this form, while an increase in the value of the slope 
increases this probability (in particular, a slope above 10°). The last example is rock wall/rock slope (Fig. 7c) and 
depositional scree slope (Fig. 7d). The former is a very steep or rugged fragment of the surface with a high slope, 
in which the process of weathering and falling rock materials occurs, creating an accumulated rubble slope at the 
foot of the slope. The latter usually takes the form of a mound or heap that is composed of rock rubble from a rock 
wall/rock slope. To detect the rock wall/rock slope, the slope, standard deviation and multi-scale TPI variables 
are important, high values of which increase the probability of classifying this landform. However, in the case 
of the depositional scree slope, high values of slope (above 30°) and standard deviation (above 150 m) reduce 
the probability of classifying this landform. The probability of classifying this landform by the model increases 
with high entropy (above 750,000) and low values of openness (below 1.3), which is probably related to the size 
of the rock material that creates irregular (undulated) surfaces. These examples demonstrate the convergence of 
classification decisions made by the model and geomorphological knowledge.

We also considered how the landform area represented in the dataset relates to the variability of the impact 
on the classification probability calculated from accumulated local effects. For this purpose, we defined the 
amplitude as the difference between the influence that increases the probability of being classified in a given 
class (the maximum is 1) and the influence that reduces this probability (the minimum is − 1), so the maximum 
amplitude can be 2. We noticed a positive relationship between this amplitude and the area of the landforms 
(Fig. 8). This means that it is easier for the model to provide a classification decision when the sample is larger. 
The largest amplitude occurs for the elevation, entropy and standard deviation, and this is consistent with the 
variable importance results from the XGBoost model. Moreover, it should be emphasized that the range of impact 
between sheets is different. This is because the sheets present areas of varying morphogenesis with different 
levels of geomorphological features (marking); therefore, some geomorphometric variables are more (or less) 
useful for characterizing the forms occurring there. In practice, this means that if the slope surface class can be 
easily classified on the Toruń sheet (i.e., a young glacial area) using the slope variable, it may be impossible on 
the Nowy Targ sheet (i.e., a young mountains area) due to the completely different structure and characteristics 
of the Tatra Mountains range.

Table 3.  Performance of the XGBoost models for individual sheets based on fivefold cross-validation. The 
physico-geographical mesoregions are defined based on Solon et al.56 classification.

Sheet Mesoregion Number of landforms Accuracy Kappa coefficient

Świnoujście Szczecin Coastland 19 0.961 0.957

Toruń Chełmno–Dobrzyń Lakeland, Toruń–Eberswalde Ice Marginal 
Valley 25 0.913 0.908

Kutno Central Masovia Lowland, Southern Wielkopolska Lowland 15 0.958 0.952

Jelenia Góra Western Sudety, Mountains 19 0.962 0.958

Tomaszów Lubelski Roztocze Upland, Sandomierz Basin 15 0.880 0.866

Katowice Silesia Upland, Woźniki–Wieluń Upland 13 0.943 0.936

Kraków Krakow–Częstochowa Upland, Kraków Gate 17 0.949 0.945

Nowy Targ Orawa–Podhale Basin, Tatra Range 16 0.940 0.934
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Discussion
As demonstrated, the accumulated local effect plot is a valuable tool for interpreting the classification decisions 
made by the machine learning model. Surprisingly, to the best of the author’s knowledge, this technique has 
not yet been used in geomorphological mapping. Fundamentally, it allows us to check why the classifier has 
distinguished a given landform, which is especially important in the case of incorrect classifications (we can 
interpret on the basis of explanatory variables what causes the error). Moreover, this method can be used even 
in traditional mapping; if a geomorphologist is not sure about recognizing a certain landform in the field, he can 
assist with ALE plots. Its main advantage is the relative ease of interpretation since it provides a clear visualization 
of how each geomorphometric feature influences the model’s predictions. In this study, it was used to interpret 
the classification decisions based on the gradient boosting model (XGBoost), but actually it can be applied to a 

Figure 6.  Comparison of the reference data (left) with predicted landforms (right) in the area of: (a) Wolin 
Island; (b) Chełmno-Dobrzyń Lakeland; (c) Jelenia Góra Basin; (d) Tatra Mountains. The predicted raster was 
smoothed with a modal filter of 5 pixels and landforms smaller than 21 pixels (~ 18,000  m2) were removed using 
a sieve filter. The legend is available in Supplementary Fig. S1.
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wide range of different models (for example, linear models, tree-based models, neural networks). While ALE is 
certainly a useful tool, it also has some drawbacks. The main limitations are related to small datasets, low feature 
variability and the sensitivity of the model itself. The quality of the input dataset and the accuracy of the model 
should be carefully considered before conclusions are drawn.

Comparing the obtained results for convolutional neural networks, we can see differences in the accuracy 
of the classifiers between those provided by Du et al.13: 83–98%, Li et al.14: 78–87%, Meij et al.15: 44–94%, Xu 

Figure 7.  Accumulated local effects plot showing how geomorphometric variables affect the probability of 
classifying: (a) proluvial plain; (b) plateau; (c) rock wall/rock slope; (d) depositional scree slope. Entropy is 
expressed in thousands.

Figure 8.  Amplitude of the impact change on the landform classification depending on its area and 
geomorphometric variables. Each set of points represents a different landform. 0.5% is the threshold value 
(marked with a dashed gray line) at which there is a significant increase in amplitude. The values on the X-axis 
are presented on a logarithmic scale. The total area is 9072  km2.
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et al.16: 84% and 70%, and in this study (59.8%). These differences are due to two reasons. The first is that in the 
mentioned studies, classifications were carried out only for a few geomorphological units, while in this study, 
54 different landforms were classified. Naturally, this means obtaining such high-performance values is more 
complicated. The second reason is the selection of the research area. The areas chosen by the cited authors are 
very diverse and relatively easy to distinguish, which does not entirely illustrate the scale of the problem. The 
largest challenge is the analysis of the areas of complex genesis with poorly marked geomorphological features. 
In this case, the lower efficiency of the classifier is expected for the Polish sheets used, which consist mainly of 
lowlands shaped by the glacial and denudative processes.

In this study, U-Net was used as a well-established reference model representing the convolutional neural 
network approach. Although it is widely used for image segmentation, it has some limitations related to the 
optimization of a huge number of parameters. Since its publication, an improved version has been proposed 
by Dinh et al.57, namely U-Lite, which requires fewer parameters (but still hundreds of thousands). There are 
also alternative CNN architectures with relatively fewer parameters, for example LeNet-5, requiring 60,000 
 parameters58 or its improved version (3DLeNet) recently proposed by Fırat et al.59 for classifying hyperspectral 
images. However, simplifying the architecture and reducing the number of parameters can make the model 
unable to recognize complex spatial patterns and structures, and therefore its effectiveness will still be low. The 
better performance of tree-based algorithms compared to CNNs in the study can be explained by the fact that 
they can perform better when handling few data observations. In a digital soil mapping experiment utilizing 
Random Forests, Bouslihim et al.60 showed that it could provide good performance by selecting only a few of 
the most relevant explanatory variables.

While this article focuses on the mapping of existing digital geomorphological maps using automatic clas-
sification on a regional scale, a further question arises: Do the methods and dataset used allow extrapolation 
of results for the entire country? In order to answer the question, we attempted to use the XGBoost classifier, 
which was trained on a large sample of over 3 million observations and has previously provided promising results 
(Table 2). Based on the experiment, we conclude that at this point the results are unsatisfactory and do not meet 
mapping standards. The main limitation in this case is the insufficient amount of reference materials, as they 
constitute approximately 3% of the country’s coverage (over 9,000  km2), thus causing the trained model to be 
unable to recognize the same landforms in areas with different geomorphological characteristics. This issue was 
discussed more extensively by Bouasria et al.61 in the context of spatial extrapolation, where authors concluded 
that increasing the size of the spatial extent of the survey reduces the accuracy of the model. Therefore, we recom-
mend further work to increase coverage by digital geomorphological maps at a scale of 1:100,000.

Conclusions
In this article, we evaluated the potential of applying machine learning models and convolutional neural network 
to automatic geomorphological mapping and examined the usefulness and impact of selected geomorphomet-
ric variables on the results of landform classifications. Based on the results of this study, we can conclude that 
supervised learning methods are effective for mapping known sheets (Fig. 6), but ineffective for extrapolation to 
new areas, especially when the catalog of landforms is very extensive. Therefore, at this point, we can state that 
automatic methods cannot replace the traditional approach, but they can support mapping if the geomorpho-
logical characteristics in the predicted area are similar to those in the training dataset.

We used diagnostic techniques based on the analysis of the importance of geomorphometric variables to 
indicate the most useful variables for geomorphological mapping, and accumulated local effects plots to precisely 
examine how their values influence the model’s classification decisions. This made the obscure and complicated 
classification mechanisms of the black box model more explicit and open to human interpretation.

The topic of automatic mapping remains unsolved, and further research is required. Further work should 
primarily focus on developing better geomorphometric variables for machine learning models and improving the 
architecture of the convolutional neural network to detect rarer landforms. In addition, future work should also 
address the issue of spatial validation at the model training and testing stages. Regarding the issue of explaining 
the decisions made by classification models, it would be useful to check the differences and similarities in the 
method inspired by game theory, i.e., shapley additive explanation proposed by Lundberg et al.62.

Data availability
The programming scripts used for this analysis and to generate the figures are available in the following GitHub 
repository: https:// github. com/ kadyb/ geomo rph_ class ifica tion. The reference geomorphological maps are avail-
able from the Head Office of Geodesy and Cartography in Poland, but restrictions apply to the availability of 
these data, which were used under license for the current study, and so are not publicly available.
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