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Climate change, thermal 
anomalies, and the recent 
progression of dengue in Brazil
Christovam Barcellos 1*, Vanderlei Matos 1, Raquel Martins Lana 2 & Rachel Lowe 2,3,4

Dengue is rapidly expanding its transmission area across Brazil and much of South America. In this 
study, data-mining techniques were used to identify climatic and demographic indicators that 
could explain the recent (2014–2020) and simultaneous trends of expansion and exacerbation of 
the incidence in some regions of Brazil. The previous circulation of the virus (dengue incidence rates 
between 2007 and 2013), urbanization, and the occurrence of temperature anomalies for a prolonged 
period were the main factors that led to increased incidence of dengue in the central region of Brazil. 
Regions with high altitudes, which previously acted as a barrier for dengue transmission, became 
areas of high incidence rates. The algorithm that was developed during this study can be utilized to 
assess future climate scenarios and plan preventive actions.

The distribution of dengue and other arboviruses has been changing in recent decades with the expansion of 
transmission areas towards zones of higher latitude and  altitude1,2. Part of the problem is due to the difficulties 
of controlling the  vector3z, and its ability to adapt to the built  environment3. Incomplete urbanization, that is, 
without promoting adequate infrastructure and services for the occupation of cities, is also an important socio-
environmental determinant of  dengue4. Although dengue occurs worldwide, the recent upward trend is more 
accelerated in Latin America and Asia, which has exposed an increasing amount of the world’s  population2. The 
rapid spread of Zika in tropical countries between 2013 and 2016 is an unequivocal demonstration of the pres-
ence of the Aedes vector in these parts of the world, as well as the ability of the virus to circulate through infected 
people, facilitated by air and ground  transport5,6. Several studies have also shown the influence of increased 
temperature and precipitation on the occurrence of dengue outbreaks as reviewed by  Damtew7, which may be 
related to global processes such as climate change.

In Brazil, a recent expansion of the dengue transmission area towards the south and center of the country 
has been  observed8,9. Among the socio-environmental factors implicated is the occurrence of extreme weather 
events, such as droughts and  floods10, and the expansion of the economic frontier towards the Amazon through 
the construction of roads and the degradation of pristine  forest11,12. However, few studies have focused on 
medium and long-term trends that explicitly demonstrate the influence of long-term temperature increases on 
the expansion of the transmission area and the sustainability of transmission over decades. The lack of historical 
and large-scale data constrains empirical studies of long-term trends and the attribution of any trends to climate 
change. Although there is a clear upward trend in the average global surface  temperature13, the distribution of 
heat in each region can vary strongly, depending on vegetation cover, the effect of ocean–atmosphere interac-
tions such as El Niño Southern Oscillation (ENSO) and natural forcings such as  volcanoes14. Thus, both the 
temperature and the incidence of dengue can suffer oscillations in space and time, which requires appropriate 
methods and approaches to disentangle climate and disease dynamics.

Temperature is a key environmental factor that regulates mosquito infestation and therefore dengue trans-
mission. The reproduction of the Aedes mosquito is viable between 18 and 33 °C15, and the optimal range for 
maintaining arbovirus transmission is 21–30 °C16, a pattern that occurs in most of Brazil. However, in some high 
areas of the Central Plateau and the Southern region, average temperatures below 18 °C are observed, mainly dur-
ing the winter. The increase in temperature above this value in winters in zones previously considered temperate 
can maintain the vector reproduction cycle and allow the sustainability of disease transmission throughout the 
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year, not only the occurrence of outbreaks. This pattern change may occur in other regions of the world that are 
experiencing climate change, which may be more long-lasting and pose a risk of arbovirus transmission in new 
areas, such as southern Europe, North America, and Northeast Asia, among  others2,3. Brazil, due to its climatic 
diversity and territorial extension (latitudes ranging from 1° North to 30° South), can be taken as an example of 
these climatic and demographic processes that are underway in the world. The  CDC17 classifies the risk of den-
gue in countries according to three categories: "Frequent or continuous risk", which means that either frequent 
outbreaks occur or transmission is ongoing; "Sporadic or uncertain risk", which means that the risk varies and is 
unpredictable"; and "no evidence of risk". The distinction between these categories is fundamental for establishing 
appropriate strategies for vector and disease  monitoring18, control and care, depending on the cases are sporadic 
and imported emerging and increasing, or endemic. There are multiple ways to model dengue dynamics and its 
climatic and environmental determinants. Depending on the research question, the outcome of interest might be 
incidence rates interannual variability, seasonality, intensity, the occurrence of outbreaks, etc. Climatic variables 
might include rainfall, humidity, temperature, or their interactions, which can be synthesized as averages, medi-
ans, frequency, and probability of occurrence of extreme events. To address this variable selection challenge, data 
mining techniques are a useful tool to identify the most suitable variables to describe the disease transmission 
process. To date, this kind of technique has been scarcely employed in the analysis of complex problems, such as 
the impact of climate variability and climate change on the transmission of  arboviruses19,20. In this context, this 
study evaluates the climatic and demographic factors that contribute to the spread of dengue and its establish-
ment as an endemic disease with persistent transmission. We use data mining techniques to evaluate association 
between thermal anomalies, demographic factors and changing dengue incidence patterns over a 21-year period 
(2000–2020) across the microregions of Brazil. Recent reports made public by the press and epidemiological 
bulletins claim that dengue was showing wider spatial dispersion, a record numbers of cases, and reaching new 
areas that were previously transmission-free. This study was designed to respond to these hypotheses, and as an 
approach to compliment long-term monitoring of climate-sensitive diseases.

Material and methods
Study area
Dengue notification, population, and climate data were collected and aggregated according to the 553 micro-
regions (MRG) of the country (see supplementary files). The microregions represent aggregations of the 5568 
municipalities in the country, according to the homogeneity of socioeconomic characteristics and the existence 
of a network of small to medium-sized  cities21. Figure 1 shows the boundaries of microregions, states and regions 
in Brazil. By constructing indicators in larger and more uniform areas than the administrative divisions, the 
statistical instability of spatial units with a small population is reduced, as well as the effect of mixing heteroge-
neous  municipalities22.

Data
Dengue case data, confirmed by clinical or laboratory tests, were obtained from SINAN between 2000 and 2020 
and aggregated over 7-year periods (2000–2006, 2007–2013, and 2014–2020). These longer intervals allow the 
evaluation of long-term trends without the interference of specific outbreaks, and low incidence years follow-
ing large  epidemics23. The division of the time series into three periods sought to separate the phases of the 

Figure 1.  Boundary limits of Brazilian territories: 5 regions, 26 states and 1 federal district, and 553 
microregions.
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space–time progression of dengue in Brazil, which is marked by periods of more rapid expansion and the occur-
rence of major epidemics (see Fig. S1 in the supplementary material for details).

Dengue incidence rates (DIR) were calculated for each microregion (see Table 1 in supplementary material) 
summing the number of notified cases and dividing by the estimated population per 100,000 for the 3 time 
periods. Dengue transmission was classified into three bands that are used by the Brazilian unified health sys-
tem (SUS) as references for identifying outbreaks and issuing alerts: no incidence (zero rate), low-to-medium 
incidence (rate between 1 and 300 cases per 100,000 inhabitants); and high incidence (rate greater than 300 
cases per 100,000 inhabitants).

The total population of each period was obtained from the demographic census 2000 and 2023 and estimates 
for the intermediate years were carried out by the Ministry of Health (DATASUS). The proportion of residents 
living in urban areas and the population growth rate in each period was also calculated.

The occurrence of temperature anomalies was evaluated according to an algorithm that calculates the dif-
ference between the observed temperature and the mean of the historical series, considering its seasonality. 
Figure 2 outlines the treatment of the variables for the production of the thermal anomaly indicator. We con-
sider a climatic anomaly when the temperature of a place exceeds the maximum temperature of the reference 
climatological normal (1981–2010).

Figure 2 illustrates the steps used to calculate anomalies for October 2008: First, a pre-processing the different 
raster files containing daily temperature were merged into a unique file. The daily temperature (obtained from the 
Copernicus service catalog in the ERA Land5 system)24 and the raster files with normal climatological reference 
data (obtained from the World Meteorological Organization available at https:// www. ncei. noaa. gov/ pub/ data/ 
norma ls/ WMO/ 1981- 2010/ RA- III/) were geoprocessed by clipping each file by a grid layer spacing 0.5° latitude 
and longitude. Then, in the indicator calculation stage, the value of the maximum daily temperature was related 
to each cell in the grid and the frequency that the maximum daily temperature exceeds its reference value of the 
climatological normal was recorded. In this way, the number of days in which the observed temperature exceeds 
the maximum of the normal climate of the place is found, and after a few cycles of repetition of the same process, 
we obtain the changes in climate patterns for each cell of the grid, at the end the result was aggregated by the 
average for the microregions in which they are contained using QGis software (version 3.30). GIS was also used 
to produce visualizations of the calculated thermal and dengue incidence.

The number of days with maximum and minimum temperature anomalies was calculated for the three peri-
ods, during the whole years and for the summer months (January–March) in order to identify whether summer 
anomalies influence higher dengue incidence and whether low temperature anomalies can reduce incidence. In 
addition, altitude values were collected from the average altitude of the center of the municipalities, since this 
factor has been pointed out as limiting dengue transmission in other  studies25.

Population increase during the last period (2014–2020) was calculated in order to assess the recent changes 
in demography. Rapid population growth in some areas can cause difficulties in accessing urban services such as 
water supply, waste collection and adequate housing, as well as the qualification of health services itself that can 
have difficulties in the diagnose and notification of dengue cases. Population density (in inhabitants per  km2) 
and the proportion of urban population, were also calculated since it affects the ecology of mosquitos and urban 
infrastructure. Data sources and mean values are shown in supplementary material (Table S1).

Statistical analysis
The epidemiological, climatic and demographic indicators aggregated by microregion were organized in a single 
dataset and explored using univariate and multivariate statistical analysis. Multiple linear regression analysis 
having as the outcome variable (dependent) the dengue incidence rate (DIR) from 2014 to 2020 was employed 
to verify the most important variables and their collinearity, by applying the stepward method with the removal 
of non-significant variables in the model (α > 0.05).

Figure 2.  Approach for calculating the thermal anomalies climate indicator for dengue.

https://www.ncei.noaa.gov/pub/data/normals/WMO/1981-2010/RA-III/
https://www.ncei.noaa.gov/pub/data/normals/WMO/1981-2010/RA-III/
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The second phase consisted of analysing a selected number of variables using data mining techniques. The 
main advantage of this approach is the discovery of patterns using large data sets with many different possible 
explanatory variables. Regression trees were generated using the CHAID method to identify the main indicators 
of climate and demography that may explain the spatial patterns of dengue incidence. The regression tree seeks 
to classify groups of microregions based on independent variables, and along this tree establishes cutoff points 
of these variables—which are not necessarily normally distributed—that better distinguish regions of greater or 
lesser value from the dependent  variable26. The data mining approach effectively identifies complex interactions 
between contextual variables without a priori specification of interaction terms.

Results
The following maps (Fig. 3) show the evolution of dengue distribution in the study periods.

Both the spread of the disease throughout the territory, as well as the worsening of dengue in some regions of 
the country is observed over time. The central portion of the country (Centre West region, with a predominant 
savanna like biome), for example, has reported dengue cases since the beginning of the historical series, and 
the highest incidence rates of the country since 2014. The North region (Amazon biome) has become an area 
of permanent transmission, even with low incidence rates and the emergence of some microregions of high 
risk of transmission, located at the edges of recent occupation of the region. There is an alarming number of 
microregions in the more recent period (2014–2020) with very high rates (DIR > 300) in an area that covers the 
western part of the Southeastern region, as well as the south of the Centre West region, which were areas of low 
incidence in previous periods. This area largely coincides with the Paraná River basin.

Table 1 shows the categories of dengue incidence and the category transition from 2000 to 2006 to 2007 to 
2013. Table 2 shows the changes between 2007 to 2013 and 2014 to 2020.

There was a small but relevant change in the classification of microregions in relation to dengue incidence. 
From 2007 to 2013, a total of 13 (2.3%) microregions which had not reported cases (zero rates) transitioned to a 
low incidence range of 1–300 cases per 100,000 inhabitants.). Only ten (1.8%) microregions remained without 
cases. In the same period, 138 (24.9%) microregions jumped from the low range to the highest (epidemic) level 
of dengue incidence.

In the last period (2014–2020), only two (0.3%) microregions remained without cases. Eleven microregions 
with no cases between 2007 and 2013 moved into the low incidence category (1.9%). Of the 317 microregions in 
the low range, 118 (21.3%) jumped to the epidemic level, and only one microregion returned to zero incidence 
values. Of the 223 microregions in the high incidence category (more than 300 cases per 100,000 inhabitants), 
only 49 (8.9%) returned to low values (1–300 cases per 100,000 inhabitants).

What emerges from Table 2 and the maps (Fig. 3) is that the process of expansion of the dengue transmis-
sion area appears to be irreversible. Once the virus and the vector are introduced, it is unlikely to return to a 
zero-transmission scenario. This situation is even more serious in microregions with higher incidence rates 
(more than 300 cases per 100,000 inhabitants), in which about 77% of the microregions tended to remain with 

Figure 3.  Dengue incidence rates in microregions of Brazil between 2000 to 2006, 2007 to 2013 and 2014 to 
2020 per 100,000 inhabitants.

Table 1.  Number of microregions classifications according to dengue incidence in the period from 2007 to 
2013 in relation to the previous period from 2000 to 2006.

Dengue Incidence rate 2007–
2013 (per 100,000 inhab.)

Total0 1 to 300 More than 300

Dengue incidence rate 2000–2006 (per 100,000 inhab.)

0 10 13 0 23

1–300 3 279 138 420

More than 300 0 25 85 110

Total 13 317 223 553
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rates considered epidemic from 2007 to 2013 and 2014 to 2020. Currently, 52% of the country’s microregions 
(292/553) are in the dengue epidemic range, and 46% (258/553) are in the medium to low incidence range, in 
which "sporadic or uncertain risk" can be  observed17. During the last period, only three microregions remain 
with no dengue cases, all located in the extreme South of the country.

Figure 4 compares the occurrence of temperature anomalies in microregions of the five Brazilian regions 
between 2007 to 2013 and 2014 to 2020.

The Southeast region, which had already been presenting recurrent thermal anomalies, has had the largest 
increase in the occurrence of 10–24 days of temperature anomalies per month. The South region, which had a 
low frequency of anomalies, began to have up to 10 days of temperature anomalies per month in recent years. 
The Northeast region presents the highest frequency of temperature anomalies, with at least 5 days of the month 
with thermal anomalies, however, without marked changes. The North region has not experienced anomalously 
high temperatures throughout the period. Figure 5 shows the frequency of warm days, measured according to 
the algorithm for calculating maximum thermal anomalies.

Between 2007 and 2013, most of the central regions of Brazil suffered anonymously warm temperatures, 
more frequent in the Northeast and Southeast regions and less frequent in the South and Centre West. In the 
following period, from 2014 to 2020, anomalies increased throughout the country, with greater frequency in 
the South and Centre West. Most coastal areas and the Amazon had a low frequency of temperature anomalies 
throughout the period of 2007–2020.

Table 3 shows the results of multiple linear regression analysis of dengue incidence rate from 2014 to 2020 as 
response variable and different combinations of demographic and climatic indicators as the explanatory variables.

The most important variables, according to the model, were the incidence rate in the previous period 
(2007–2013), the average altitude and the occurrence of maximum temperature anomalies in the same period 
(2014–2020). During this period, the expansion of areas with high DIR in microregions located in the Central 
Plateau of the country was also observed, reaching higher altitudes of the South and Southeastern regions, which 
is demonstrated by the significant weight of altitude variable in the final regression model. For every 100 m, 
there is an increase in the incidence of about 50 dengue cases per 100,000 inhabitants. The regression analysis 

Table 2.  Number of microregions per classification according to dengue incidence in the period from 2014 to 
2020 in relation to the previous period from 2007 to 2013.

Dengue incidence rate 
2014–2020 (per 100,000 
inhab.)

Total0 1–300 More than 300

Dengue Incidence rate 2007 to 2013 (per 100,000 inhab.)

0 2 11 0 13

1–300 1 198 118 317

More than 300 0 49 174 223

Total 3 258 292 553

Figure 4.  Relationship between temperature anomalies, in days per month of the summer period, in 
microregions of the Brazilian regions between the periods of 2007 to 2013 and 2014 to 2020.
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using all the variables collected for this study, is presented in the annex. Figure 6 shows a shift in the pattern of 
dengue incidence along altitude gradients in Brazil.

In the first period (dots and line in green), there is a sharp decrease in DIR with increasing altitude. In line 
with other  studies25, the almost absence of areas with cases above 1000 m of altitude is observed. In the most 
recent period (2014–2020), the incidence of dengue even tends to increase with altitude up to the range of 600 m, 
falling towards higher altitudes. This new pattern of dengue distribution in Brazil may reveal the recent expansion 

Figure 5.  Number of days per month with maximum temperature anomalies during the summers from 2007 to 
2013 and from 2014 to 2020.

Table 3.  Regression coefficients (crude and standardized) selected in the multiple regression analysis for 
dengue incidence rate in the period from 2014 to 2020: incidence rate in the previous period, between 2007 
and 2013; altitude; and number of maximum temperature anomalies during summers between 2014 and 2020.

Unstandardized 
Coefficients

Standardized Coefficients t αValue Std. Error

(Constant) 30.72 48.72 0.63 0.52

Dengue incidence rate (per 100,000 inhab.) between 2007 and 2013 0.56 0.06 0.38 10.06  < 0.001

Altitude (m) 0.51 0.08 0.25 6.68  < 0.001

Number of days with thermal anomalies during summers 
(2014–2020) 15.84 3.67 0.16 4.31  < 0.001

Figure 6.  Variation of mean and standard deviation dengue incidence rate (cases per 100,000 inhabitants) in 
two periods:2007–2013 in green and 2014–2020 in red, and the altitude ranges of the microregions (in meters).
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of transmission areas towards the plateaus and mountains. The effect of these temperature anomalies and other 
demographic factors can be seen in the regression tree (Fig. 7).

Microregions with greater urbanization (urban population greater than 72% of the total) was positively 
associated with dengue incidence rate (DIR). Of these more urbanized microregions, there was an increase in 
the dengue incidence rate in those microregions that already had high incidence rates (more than 225 cases per 
100,000 inhabitants) in the previous period (2007–2013), while the incidence rate in microregions with lower 
rates further declines in the more recent period. Among the microregions with low incidence rates (less than 
225 cases per 100,000 inhabitants), there was an increase in the incidence in microregions that were subjected 
to positive thermal anomalies for a period longer than 13 days a month during the summer. On the other hand, 
among the microregions with the highest incidence rates (more than 225 cases per 100,000 inhabitants), there 
was an even more significant increase in microregions of higher altitudes (more than 354 m).

Discussion and conclusion
The groups of microregions that presented the highest dengue incidence rates in the more recent years were 
those with a previous base level of dengue transmission and a high degree of urbanization. In addition, climatic 
conditions, such as the occurrence of positive thermal anomalies, have aggravated dengue incidence rates, even in 
areas with historically low incidence rates. In recent decades, the expansion of dengue fever towards the Central 
Plateau has been observed in the western areas of the South and Centre West regions, as well as inner regions of 
Northeast region, along the Borborema Plateau. Higher altitude areas, previously considered a limiting factor 
in the transmission of dengue, now represents a geographical zone susceptible to the expansion of the area of 
transmission of dengue and other arboviruses. In this case, the effect of the first epidemic waves of the disease, 
after the proliferation of Aedes vector and the introduction of the virus and when encountering a large part of the 
susceptible population, should be  considered27. The corridor that is now consolidating in the southern hinterland 
of Brazil, marked here by the occurrence of thermal anomalies and increase in the incidence of dengue, extends 
into northern Argentina, Uruguay and  Paraguay28.

The period of 2–3 weeks, which approaches the cutoff points of 11–13 days observed for the indicator of ther-
mal anomalies in this study, may indicate that there is a minimum duration of warm periods capable of sustaining 
and even accelerating the reproduction of the  vector9. According to the results of this study, the frequency of 
thermal anomalies during the summer is the most explanatory climatic indicator of the increase in dengue inci-
dence rates in the long term. A recent study carried out in Argentina showed that temperature anomalies played 
a more important role in the spread of the epidemic than the increase in average temperature or total  rainfall28. 
Other indicators were tested, such as the occurrence of anomalies of maximum temperatures throughout the 
year and the anomalies of minimum temperatures in the summer and throughout the year, without significant 
results, both in the linear regression model and in the regression tree. This indicator can be easily incorporated 
into epidemic warning systems since it is easily accessible and interpreted. The methodology adopted allowed 
the identification of cutoff points (the duration of anomalies, on days of the month with temperatures above 
the historical level) that can serve as an input for early warning and response  systems29. The Brazilian Climate 
and Health Observatory will implement this and other indicators in its data platform to improve surveillance of 
vector-borne diseases at the national and regional levels.

Figure 7.  Decision tree explaining the dengue incidence rate (DIR) in the period from 2014 to 2020, 
highlighting the branches established by the variables: proportion of people living in urban areas; dengue 
incidence rate in the previous period, from 2007 to 2013; the number of maximum temperature anomalies in 
summer in the same period (2014–2020); and altitude in meters. Mean of DIR and the number of microregions 
is shown for each tree branch.
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Areas of Brazil with higher rates in the last period (2014–2020) were more urbanized, with incidence rates 
high enough for sustained transmission throughout the year, higher altitudes or areas subjected to high tem-
peratures for a prolonged period of time. This points to the medium and long-term effects of global warming 
and its possible effects on regional climates.

Among the limitations of this study are issues inherent to the scale and the temporal and spatial aggregations 
of climatic and epidemiological variables. The variables and parameters identified in this space and time study 
frame may not be suitable for a single city, that is, dengue outbreaks are not always a result of local tempera-
ture anomalies. This study shows that the geographic position and other demographic characteristics of cities 
potentiate the effect of thermal anomalies. However, the variables adopted in this study, such as the degree of 
urbanization, altitude, dengue incidence in the previous period and the occurrence of temperature anomalies, 
may be good predictors of the expansion of the transmission areas in the near future. In this study, the number 
of days with maximum temperature above the historical level was used to distinguish climate change trends, as 
suggested by Lins et al.30. New climatological indicators should be sought, such as the maximum annual value 
of the minimum daily temperature, the minimum annual value of the maximum daily temperature, and daily 
temperature variability, always in a manner consistent with the biological parameters that regulate the intrinsic 
and extrinsic cycle of the virus and the reproduction speed of the Aedes mosquito, which are strongly influenced 
by  temperature31. Not only that, but temperatures above normal influence human behavior and can promote 
exposure to the vector in open places, houses without air conditioning and the change of clothing in periods of 
extreme  heat32.

Whatever the mechanisms that explain the higher incidence in areas that have suffered temperature anoma-
lies, this work demonstrates the possible medium-term effects of thermal anomalies on the increase of dengue 
transmission, as well as its expansion towards previously unaffected areas of higher altitude and latitude, which 
have been undergoing warming and changes in the rainfall regime. With the development of seasonal climate 
forecasting systems, the patterns discovered in this study can serve as early indicators for generating alerts of 
dengue epidemics to allow for anticipatory actions.

Data availability
The datasets generated during the current study were collected from open and free data platforms and are avail-
able on Zenodo repository under https:// doi. org/https:// doi. org/ 10. 5281/ zenodo. 10404 906. The algorithm code 
developed to generate indicators of climate anomalies is available at https:// doi. org/https:// doi. org/ 10. 5281/ 
zenodo. 10592 772 and https:// github. com/ vande rpasc oal/ Clima teCorr.
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