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Peak ground acceleration 
prediction for on‑site earthquake 
early warning with deep learning
Yanqiong Liu 1, Qingxu Zhao 2* & Yanwei Wang 3*

Rapid and accurate prediction of peak ground acceleration (PGA) is an important basis for determining 
seismic damage through on‑site earthquake early warning (EEW). The current on‑site EEW uses 
the feature parameters of the first arrival P‑wave to predict PGA, but the selection of these feature 
parameters is limited by human experience, which limits the accuracy and timeliness of predicting 
peak ground acceleration (PGA). Therefore, an end‑to‑end deep learning model is proposed for 
predicting PGA (DLPGA) based on convolutional neural networks (CNNs). In DLPGA, the vertical 
initial arrival 3–6 s seismic wave from a single station is used as input, and PGA is used as output. 
Features are automatically extracted through a multilayer CNN to achieve rapid PGA prediction. The 
DLPGA is trained, verified, and tested using Japanese seismic records. It is shown that compared to 
the widely used peak displacement (Pd) method, the correlation coefficient of DLPGA for predicting 
PGA has increased by 12–23%, the standard deviation of error has decreased by 22–25%, and the 
error mean has decreased by 6.92–19.66% with the initial 3–6 s seismic waves. In particular, the 
accuracy of DLPGA for predicting PGA with the initial 3 s seismic wave is better than that of Pd for 
predicting PGA with the initial 6 s seismic wave. In addition, using the generalization test of Chilean 
seismic records, it is found that DLPGA has better generalization ability than Pd, and the accuracy of 
distinguishing ground motion destructiveness is improved by 35–150%. These results confirm that 
DLPGA has significant accuracy and timeliness advantages over artificially defined feature parameters 
in predicting PGA, which can greatly improve the effect of on‑site EEW in judging the destructiveness 
of ground motion.

Keywords On-site earthquake early warning, Ground motion, Peak ground acceleration, Deep learning, 
Convolution neural network

The Earthquake Early Warning (EEW) system is a seismic engineering system that plays an important role in 
earthquake emergency response. After an earthquake occurs, the EEW system can send an alarm within seconds 
to tens of seconds before the destructive seismic wave reaches the target area, allowing users in the target area to 
escape in time. At present, the EEW system has been established or is being established in countries with more 
active earthquakes in the  world1,2, such as  Japan3,4,  USA5,  China6,  Mexico7,  Italy8, and  India9. Moreover, the EEW 
system has successfully warned against multiple earthquakes and played a crucial role in disaster  reduction10–13. 
The key to the success or failure of the EEW system is whether it can quickly and accurately estimate the degree 
of damage to the target area. This is not only the basis for the EEW system to issue warning information but also 
the basis for users to take emergency measures.

Peak ground acceleration (PGA) is an important parameter used in EEW systems to estimate the damage level 
of the target area. PGA directly reflects the intensity of ground motion and has a good correlation with intensity 
and  disaster2,14,15, which is widely used to determine seismic damage, such as earthquake disaster  assessment16, 
probabilistic seismic disaster analysis (PSHA)17, and earthquake warning for high-speed  rail18. Unlike conven-
tional seismic monitoring, EEW systems need to predict the PGA before it is observed. After predicting PGA in 
EEW systems, PGA can be used to calculate intensity or compare thresholds to estimate the degree of earthquake 
 damage19–24. According to the different implementation methods, EEW systems can be divided into regional EEW 
and on-site EEW. Regional EEW monitors the initial seismic waves at multiple stations to estimate the earthquake 
magnitude and epicenter location and then further predicts the seismic intensity and damage level of the target 
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area. Onsite EEW predicts the seismic intensity and damage level at the location of a single station based only 
on the first arrival seismic wave monitored at that station, without determining the earthquake magnitude and 
epicenter location. The two EEW systems predict PGA in different ways. Regional EEW systems predict PGA by 
using ground motion prediction equations (GMPEs)25–30 or machine learning prediction  models31–33 after deter-
mining seismic source parameters such as magnitude and epicenter location. The disadvantage of this method 
lies in that the accuracy of the prediction results depends on the accuracy of the magnitude, epicenter location, 
and GMPEs or machine learning models. In addition, because the magnitude and epicenter location generally 
need to wait for multiple stations to trigger (more than three) to be determined, the timeliness of predicting 
seismic parameters is  limited34,35. The on-site EEW system predicts PGA based on the first arrival seismic wave 
at a single station. Compared with the regional EEW system, this method simplifies the calculation process 
because it does not require magnitude and epicenter location and has higher timeliness than the regional EEW 
method. However, the drawback of the on-site EEW system is the limited available information (only the initial 
few seconds of seismic waves from a single station), which makes it difficult to ensure the accuracy of predicting 
PGA and may lead to false alarms or missed alarms. Improving the accuracy of on-site EEW for predicting PGA 
has become an important research topic in the field of earthquake warning in recent years.

The key to predicting PGA in on-site EEW is to find characteristic parameters related to PGA from the first 
arrival seismic waves. Characteristic parameters such as peak displacement (Pd), peak velocity, peak accelera-
tion, and effective dominant period of first arrival seismic waves are widely used for predicting PGA. Hsu et al.36 
inputted the characteristic parameters of multiple first-arrival seismic waves into support vector regression 
(SVR) to predict PGA, which showed good results for multiple  earthquakes12,22,24. To consider the impact of site 
conditions on predicting PGA, Hsu et al.37 further proposed a method for predicting PGA by inputting 19 char-
acteristic parameters into a neural network. In addition, Wang et al.38 used 8 typical characteristic parameters of 
first arrival seismic waves as inputs to the long short-term memory neural network (LSTM), and the accuracy of 
predicting PGA was better than that of the peak displacement (Pd) method. However, these input characteristic 
parameters are all artificially defined, which cannot avoid human subjectivity and can only be related to PGA in 
certain aspects of the first arrival seismic wave, thereby affecting the accuracy of prediction. Compared to manu-
ally extracting features from first arrival seismic waves, deep learning methods can overcome human subjectivity 
and automatically extract more comprehensive features from first arrival waves. Deep learning is currently the 
most cutting-edge and popular type of machine learning algorithm and has achieved great success in fields such 
as speech recognition, image recognition, and  translation39. In particular, in recent years, deep learning repre-
sented by convolutional neural networks (CNNs) has achieved remarkable results in many aspects of seismic 
engineering. Scholars have used CNNs to automatically extract features from first-arrival seismic waves for phase 
 picking40–42, magnitude  estimation43–45, earthquake  positioning40,46, earthquake disaster  assessment47,48, and pre-
diction of ground motion  parameters49, among other aspects. In particular, in the past 2 years, deep learning has 
also been used to predict PGA. Jozinović et al.50 used seismic data from central Italy and successfully predicted 
PGA using the initial 7–15 s three-component seismic waves from multiple stations as inputs to CNN, indicating 
that this method has similar errors to the GMPE method developed by Bindi et al.26. To fully utilize the infor-
mation of initial P-waves, Hsu et al.51 proposed a method for predicting PGA by inputting P-waves into a CNN 
after multiscale and multidomain preprocessing and showed that the accuracy of this method exceeded that of 
the SVR method proposed in  201336. Chiang et al.52 inputted three-component first-arrival seismic waves into 
a CNN to predict whether the PGA exceeded the threshold in a classified form. From previous research, it can 
be seen that deep learning methods can automatically extract features related to PGA from first arrival seismic 
waves, and the accuracy of predicting PGA is much better than that based on manually defined characteristic 
parameters. However, the shortcomings of the methods proposed in these studies are that they require a longer 
first arrival seismic wave input and cannot meet the timeliness requirements of the onsite EEW system (usually 
starting to predict PGA at the first 3 s P wave)53–55. The complex manual preprocessing of the input first arrival 
seismic waves not only fails to overcome the subjective influence of humans but also increases the complexity of 
algorithm implementation. Therefore, it is necessary to develop a deep learning model that meets the timeliness 
requirements of earthquake warning and can avoid human interference to improve the prediction effect of PGA 
and improve the accuracy of the EEW system in identifying earthquake damage.

Herein, we propose a deep learning model (DLPGA) for predicting PGA in on-site EEW based on a mul-
tilayer CNN. DLPGA achieves PGA prediction in an end-to-end form by automatically extracting features 
from a single station’s initial 3–6 s vertical seismic wave. First, a training dataset, validation dataset, and testing 
dataset were established using Japan’s 31,300 sets of three-component surface acceleration records. A CNN 
model was designed, and its predictive performance was tested. Then, to evaluate the predictive performance of 
the trained CNN model in different regions, a generalization ability test was conducted using Chile’s 5053 sets 
of three-component acceleration records. The results show that the proposed DLPGA has a significantly better 
performance in predicting PGA than the commonly used Pd method, making on-site EEW more accurate in 
identifying seismic damage.

Datasets
Surface acceleration records from the Kiban Kyoshin Network (KiK-net) database (National Research Institute 
for Earth Science and Disaster Resilience, 2019)56 in Japan are used to establish training, validation, and testing 
datasets in this article. The database includes 3271 earthquake events of magnitude 4–9 recorded at 650 stations 
from February 10, 1998, to December 18, 2021. All earthquake events have a latitude range of 29° N–47° N and 
a longitude range of 128° E–148° E. Figure 1a shows the distribution of KiK-net earthquake events and stations 
used in this article. When filtering acceleration records, to ensure that the first arrival seismic wave has at least 
a 3 s P  wave53–55 and includes offshore seismic events as much as possible, the epicentral distance is limited to 
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25 to 200 km. 25 km is to avoid the warning blind  zone53,64,65, while 200 km is to include seismic events near the 
coast. To reduce the impact of noise, seismic records with a signal-to-noise ratio (SNR) of no less than 10 dB 40 
were selected. Earthquake records with an SNR greater than 10 dB are common. If the SNR of a record is less 
than 10 dB, it is likely that there is a malfunction in the monitoring instrument or abnormal vibrations in the 
surrounding environment of the monitoring station. Additionally, considering the impact of site conditions on 
ground  motion57,59, it is ensured that the site data of the station includes Vs30 (average shear wave velocity at 30 m 
underground). Next, routine processing is performed on the filtered records, including checking the baseline, 
unifying the sampling rate to 100 Hz, automatically picking up P-waves and manually verifying them. Finally, the 
peak ground acceleration (PGA) calculated by synthesizing the three-component vectors is used as the final PGA 
of each group of records. The synthetic method is the square root of the sum of the squares. After the above data 
selection and processing, a total of 31,303 sets of three-component surface acceleration records were selected.

Considering the sequence of earthquake occurrence times, 17,817 records from 1998 to 2014 were selected as 
the training dataset for training the DLPGA, accounting for approximately 59.65% of the total records. The 5329 
records from 2015 to 2018 were used as a validation dataset to optimize the architecture and hyperparameters 
of DLPGA, accounting for approximately 17.02% of the total records. The 8157 records from 2019 to 2021 were 
used as test datasets to test the effect of the DLPGA model on predicting PGA, accounting for approximately 
26.05% of the total records. This method of dividing datasets according to the time of earthquake occurrence 
ensures the independence of seismic events (avoiding the division of records from a single earthquake event into 
the 3 datasets). The distribution of the number of records in each dataset with magnitude, source distance, and 
Vs30 is shown in Fig. 1b–d, and e shows the statistical distribution of PGA in each dataset.

Methodology
In this study, we constructed DLPGA based on a one-dimensional multilayer convolutional neural network 
(CNN). The architecture and hyperparameters of DLPGA determine its performance. The detailed settings of 
the DLPGA architecture and hyperparameters in this article are shown in Fig. 2. The DLPGA was divided into 
four parts, including the input layer, hidden layer, fully connected layer, and output layer. First, for the input 
layer, the input of DLPGA is the vertical first arrival seismic wave (acceleration record) of a single station. 

Figure 1.  Distribution of the selected Japan accelerograms. (a) Distribution of accelerograms with Mw 
and hypocentral distance. The maps are drawn using  M_map58. (b) Number of accelerograms with  Mw. (c) 
Number of accelerograms with hypocentral distance. (d) Number of accelerograms with Vs30. (e) Number of 
accelerograms with PGA.
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Accelerations with different first-arrival seismic wave durations will have different data lengths, such as 300 data 
points when inputting an initial 3 s seismic wave. Second, the hidden layer is used to extract the most relevant 
features of PGA in the first arrival seismic wave. The hidden layer consists of 7 convolutional layers (kernels of 
size 3; stride 2; padding: same), 7 maximum pooling layers (kernels of size 3; stride 1; padding: same), and 1 
dropout layer (dropout ratio: 0.3). Each convolutional layer is followed by a pooling layer, and the last pooling 
layer is followed by a dropout layer. The activation function of the convolution operation uses the rectified linear 
unit (ReLU) function to achieve  nonlinearization60. To prevent overfitting, the convolution operation also uses 
L2 norm regularization with a regularization rate of 0.000150. The role of the pooling layer is to downsample the 
features, and the dropout layer randomly discards some features to prevent  overfitting61. Third, there are 5 fully 
connected layers, and the output size of each fully connected layer is shown in Fig. 2. Its function is to perform 
regression calculations on the extracted features. Last, for the output layer, DLPGA uses regression output to 
calculate log10 (PGA). During the training of the DLPGA, the Adam (adaptive moment estimation) optimizer 
was used for optimization  training62. The initial learning rate is 0.0001, the number of batch samples is 512, and 
the root mean square error (RMSE) is used as the loss function in the training model. In the training model, 
RMSE is used as the loss function. When the number of training epochs reaches 200 or the loss of the validation 
dataset does not decrease for 10 consecutive rounds, the training is stopped.

The above DLPGA architecture and hyperparameters determine its predictive performance. However, there 
is no rule or principle to determine the architecture and hyperparameters, which can only be determined by 
repeated trial-and-error of the training dataset and validation dataset. For example, when determining the archi-
tecture of the DLPGA, after fixing the hyperparameters to some conventional settings, some architectures are 
set for trial calculation (Table 1, only partial architectures), and the architecture with the minimum loss value is 
selected from the trial results (Fig. 3). It should be noted that the architecture and hyperparameter settings have 
infinite possibilities, and the optimal setting can only be selected in a finite number of trial-and-error attempts.

Test
To balance the timeliness and accuracy of early warning information, the EEW system generally starts calculat-
ing and publishing early warning information when the station monitors the first-arrival 3 s P  wave53,64–68. In 
addition, during the warning process, the EEW system will continuously update the warning information with 
the increase in the first-arrival seismic waves to ensure the accuracy of the warning information. Therefore, we 
use the test dataset to first test the effectiveness of DLPGA in predicting PGA with the initial 3 s P wave and 
then increase the duration of the first-arrival seismic wave from 3 to 6 s to test the effectiveness of DLPGA in 
continuously predicting PGA. The prediction effectiveness of the DLPGA is evaluated by comparison with the 
current commonly adopted Pd  method38. The empirical formula for the prediction of PGA by the Pd method 
is shown in Eq. (1):

where a and b are the fitting coefficients and Pd is the displacement amplitude of the first-arrival P wave. Pd is 
obtained through twice integration calculations, and after each integration, a 0.075 Hz high-pass Butterworth 

(1)log
10
(PGA) = a× log

10
(Pd)+ b

Figure 2.  Architecture and hyperparameters of DLPGA.
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filter is commonly used to avoid drift caused by low-frequency  noise55,64,66. For the first-arrival 3–6 s seismic 
waves, the fitting coefficients a and b in empirical Eq. (1) were determined from the training dataset and valida-
tion dataset, as shown in Table 2.

Prediction results of DLPGA with initial 3 s waves
Figure 4 shows the distribution of PGA predicted by DLPGA and Pd with the initial 3 s waves of the test dataset. 
According to the distribution of the predicted PGA, the PGA predicted by the DLPGA shows a good linear dis-
tribution with the actual PGA (observations), which is more uniformly distributed on both sides of the 1:1 line. 
The PGA predicted by Pd is generally more discrete and tends to be larger (overestimation of small values) when 
the actual PGA is small and smaller (underestimation of large values) when the actual PGA is large. Especially 
for earthquakes with magnitudes of 6 to 6.9, the PGA predicted by Pd is generally larger than the actual value. In 
addition, the correlation coefficient between the PGA predicted by DLPGA and the actual PGA increased by 23% 
compared to Pd, and the error standard deviation of the PGA predicted by DLPGA decreased by approximately 
25% compared to the Pd method.

To further analyze the influencing factors of the two methods for predicting PGA, the distribution of predic-
tion errors with magnitude, source distance and Vs30 and their error bar variations are plotted, as shown in Fig. 5. 
The magnitude is divided into 5 sections according to the interval of 0.5 magnitude units from magnitude 4 to 7.5. 
The epicentral distance is divided into 5 sections from 20 to 200 km at intervals of 30 km. Vs30 is divided into 5 

Table 1.  Adjustments of DLPGA architectures. a ELU is an exponential linear  unit63.

Number Number of convolutions Activation Pooling method Dropout ratio Number of full connections

DLPGA#1 5 ReLU Max pooling 0.1 1

DLPGA#2 5 ReLU Average pooling 0.1 1

DLPGA#3 5 ELUa Average pooling 0.1 1

DLPGA#4 5 ELU Max pooling 0.1 1

DLPGA#5 5 ReLU Max pooling 0.2 1

DLPGA#6 5 ReLU Max pooling 0.3 1

DLPGA#7 5 ReLU Max pooling 0.4 1

DLPGA#8 6 ReLU Max pooling 0.3 1

DLPGA#9 7 ReLU Max pooling 0.3 1

DLPGA#10 8 ReLU Max pooling 0.3 2

DLPGA#11 7 ReLU Max pooling 0.3 3

DLPGA#12 7 ReLU Max pooling 0.3 4

DLPGA#13 7 ReLU Max pooling 0.3 5

DLPGA#14 7 ReLU Max pooling 0.3 6

Figure 3.  Loss of PGA predicted by different architectures with initial 3 s waves of the validation dataset.

Table 2.  Fitting coefficients with initial 3–6 s waves.

Time (s) a b

3 0.6874 2.5649

4 0.7265 2.7684

5 0.7591 3.0853

6 0.7923 3.2985
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sections from 0 to 3000 m/s at intervals of 500 m/s. The yellow square in the error bar represents the error mean 
of each section, reflecting the overall trend of the error. The length of the two short columns above and below is 
the standard deviation of the error for each section, reflecting the degree of dispersion of the error with changes 
in magnitude, source distance, and Vs30. From the distribution of errors in predicting PGA with magnitude 
changes and the variation in error bars (Fig. 5a,b), it can be seen that the prediction errors of the DLPGA are 
evenly distributed with magnitude changes, and the overall trend is relatively flat. After the magnitude is greater 
than 6, the error tends to gradually decrease, the position of the error bars is near 0 error, and the trend of change 
is relatively flat. The overall dispersion of the prediction errors of Pd is large and unevenly distributed, with a 
large overall variation. For magnitudes 4–5.5, the error bars are increasing, and for magnitudes greater than 6, 
the error bars are decreasing. The error standard deviation of the DLPGA in each magnitude band is smaller 
than that of Pd. From the distribution of the errors with the epicentral distance (Fig. 5c,d), it can be seen that 
when the epicentral distance is greater than approximately 110 km, the errors of DLPGA have a slightly larger 
trend, but the overall dispersion is smaller. The error of Pd tends to be significantly larger when the epicentral 
distance is greater than approximately 110 km, and the degree of dispersion is greater than that of DLPGA. 
Moreover, within each epicentral distance range, the error standard deviation of DLPGA in predicting PGA is 
smaller than that of Pd. From the distribution of error with Vs30 (Fig. 5e,f), it can be seen that the distribution 
of DLPGA prediction errors is more centrally distributed near the value of 0, and the overall trend of change 
does not show significant fluctuations. The prediction errors of Pd have a tendency to be smaller when Vs30 is 
larger than approximately 1000 m/s, and the distribution of errors is more discrete. The standard deviation of 
the prediction errors of the DLPGA is smaller than that of Pd within each Vs30 band.

Prediction results of DLPGA with initial 4–6 s waves of the test dataset
Figure 6 shows the linear relationship between the PGA predicted by DLPGA and Pd and the actual PGA with 
initial 4–6 s waves in the test dataset. From the distribution of the predicted PGA, as the initial wave increases 
from 4 to 6 s, the PGA predicted by the DLPGA can be more concentrated on both sides of the 1:1 line. The PGA 
predicted by Pd is constantly improving, but the phenomenon of “small value overestimation” and “large value 
underestimation” has not been significantly improved.

Figure 7 further demonstrates the variation in the correlation coefficients, error standard deviation and error 
mean of the prediction results of the DLPGA and Pd with the increase in the duration of the first-arrival seismic 
wave. From the correlation coefficients between the predicted PGA and the actual PGA (Fig. 7a), it can be seen 
that the correlation coefficients obtained by the two methods increase with the increase in the duration of the 
first-arrival seismic wave, the correlation coefficient of the DLPGA increases from 0.8361 to 0.8731, the correla-
tion coefficient of Pd increases from 0.6783 to 0.7791, and the correlation coefficient of the DLPGA is always 
larger than that of Pd and is approximately 12–23% higher than that of Pd. In the results of the error standard 
deviation (Fig. 7b), the error standard deviation of the PGA predicted by both methods decreases with the 
increase in the duration of the first-arrival seismic wave, the error standard deviation of the DLPGA decreases 
from 0.2885 to 0.2565, that of Pd decreases from 0.3863 to 0.3309, and that of the DLPGA is consistently smaller 
than that of Pd and approximately 22–25% lower than that of Pd. In the results of the error mean (Fig. 7c), the 
error mean of the PGA predicted by the two methods is close to zero with the increase in the duration of the 
first-arrival seismic wave, the error mean of the DLPGA decreases from 0.0982 to 0.0380, that of Pd decreases 
from 0.1055 to 0.0473, and the error mean of the DLPGA is always smaller than that of Pd and approximately 

Figure 4.  The distribution of PGAs predicted by the DLPGA (a) and Pd (b) with the initial 3 s waves of the test 
dataset. Different colored circles represent different magnitudes of PGA prediction. The black solid line is the 1:1 
line showing perfect agreement between the predicted and observed values. The two blue dashed lines represent 
the range of ± 1 standard deviation. R is the correlation coefficient. pre is the predicted PGA  (PGApre), and obs is 
the observed PGA  (PGAobs).
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6.92–19.66% lower than that of Pd. Notably, combining the results of Figs. 4, 6 and 7, it can be seen that the 
accuracy of the DLPGA in predicting the PGA with an initial 3 s wave is already better than that of Pd with an 
initial 6 s wave.

Generalization test
Generalization dataset
In the aforementioned tests, Japanese earthquake records are used in the training dataset, validation dataset, 
and test dataset. All three datasets contain some similar regional information, such as similar seismic sources, 
propagation paths, site conditions, and monitoring instruments, making it difficult to assess the prediction 
effectiveness of the DLPGA in non-Japanese regions. To test the effectiveness of DLPGA trained with Japanese 
earthquake records in other regions, the generalization ability of DLPGA was tested using Chilean earthquake 
records. Generalization ability refers to the ability of machine learning algorithms to adapt to new samples. A total 
of 5053 sets of three-component acceleration records were screened from the Chilean SIBER-RISK database using 
the same screening and processing methods as the Japanese records. A total of 1617 seismic events of magnitude 
4–9 recorded at 229 stations from 3 March 1985 to 21 July 2021 were included, with latitudes ranging from 18° 
to 42° S and longitudes from 67° to 74° W. A generalization dataset was created based on strong motion data 
from Chile. The generalization dataset was not involved in training the DLPGA and was not used to fit empirical 
formulas of Pd versus PGA. The distribution of seismic events and stations in the generalization dataset, as well 
as the magnitude, epicentral distance, Vs30 and PGA, are shown in Fig. 8.

Figure 5.  Distributions of DLPGA and Pd prediction error with magnitude (a,b), epicentral distance (c,d) and 
Vs30 (e,f) with initial 3 s waves of the test dataset. Blue circles represent error values, yellow squares represent 
the mean error value and red error lines indicate the standard deviation of the error.
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Prediction results of DLPGA with initial 3–6 s waves
The linear relationship between the PGA predicted by the DLPGA and Pd and the actual PGA is shown in Fig. 9 
when the initial 3–6 s vertical seismic waves are taken as inputs from the generalization dataset. From the distri-
bution of the predicted PGA, the PGA predicted by the DLPGA is uniformly and centrally distributed on both 
sides of the 1:1 line, and the PGA predicted for all magnitude ranges has similar distributions. The dispersion of 

Figure 6.  The distribution of PGA predicted by DLPGA with initial 4–6 s waves of the test dataset. Different 
colored circles represent different magnitudes of PGA prediction. The black solid line is the 1:1 line showing 
perfect agreement between the predicted and observed values. The two blue dashed lines represent the range 
of ± 1 standard deviation. R is the correlation coefficient. pre is the predicted PGA  (PGApre), and obs is the 
observed PGA  (PGAobs).

Figure 7.  Correlation coefficient (a), standard deviation of error (b) and mean of the errors (c) of PGA 
predicted by DLPGA and Pd with initial 3–6 s waves of the test dataset.



9

Vol.:(0123456789)

Scientific Reports |         (2024) 14:5485  | https://doi.org/10.1038/s41598-024-56004-6

www.nature.com/scientificreports/

the PGA predicted by Pd is large, and the phenomena of "overestimation of small values" and "underestimation 
of large values" are obvious. The PGA predicted by Pd is large for earthquakes of magnitude 6–6.9. Generally, 
with the increase in the duration of the first-arrival seismic wave, the effect of the two methods in predicting the 
PGA is continuously improved, and the DLPGA is always significantly better than Pd.

Figure 10 further illustrates the variation in the correlation coefficients, standard deviation of error and error 
mean of PGA predicted by DLPGA and Pd with increasing first-arrival seismic wave duration. From the results 
of the correlation coefficients between the predicted PGA and the actual PGA (Fig. 10a), it can be seen that the 
correlation coefficients obtained by both methods increase with the increase in the first-arrival seismic wave 
duration. The correlation coefficient of DLPGA increases from 0.8282 to 0.8746 and that of Pd increases from 
0.6615 to 0.7682. The correlation coefficient of DLPGA is always greater than that of Pd and is approximately 
15.60–25.20% higher than that of Pd. From the results of the error standard deviation (Fig. 10b), it can be seen 
that the error standard deviation of the PGA predicted by both methods decreases with increasing first-arrival 
seismic wave duration. The error standard deviation of the DLPGA decreases from 0.2547 to 0.2133 and that of 
Pd decreases from 0.3605 to 0.2864. The error standard deviation of the DLPGA is always smaller than that of 
Pd and is approximately 25.52–29.35% lower than that of Pd. Combining the results of Fig. 9 and 10, it can be 
seen that the accuracy of DLPGA in predicting PGA with initial 3 s waves is already better than that of Pd with 
initial 6 s waves.

Comparing the generalization test results of the Chilean data (Figs. 9 and 10) and those of the Japanese data 
(Figs. 4, 6 and 7), it can be seen that the distribution, correlation coefficient, error standard deviation and error 
mean of the PGA predicted by the DLPGA are relatively close in both datasets, which can be continuously 
improved with increasing seismic wave duration and are always far better than those of Pd.

Discrimination of destructive ground motion
In the practical application of EEW, the threshold of ground motion parameters is mainly used in EEW systems 
to determine whether the ground motion is  destructive2,12,69,70. Therefore, it is necessary to evaluate the effec-
tiveness of the DLPGA in discriminating destructive earthquakes for the practical application of EEW. In this 
paper, 25 cm/s2 is used as the PGA threshold to distinguish seismic destructiveness. Because PGA = 25 cm/s2 
is equivalent to Modified Mercalli Intensity (MMI)  IV14, the earthquake waves have a slight destructive effect, 
requiring the issuance of warning  messages14,51,71, In the generalization dataset, there are 4310 nondestructive 
earthquake records and 743 destructive earthquake records. Using thresholds to discriminate the destructiveness 

Figure 8.  Distribution of the selected Chile accelerograms. (a) Distribution of accelerograms with Mw and 
epicentral distance. The maps are drawn using  M_map58. (b) Number of accelerograms with  Mw. (c) Number of 
accelerograms with epicentral distance. (d) Number of accelerograms with Vs30. (e) Number of accelerograms 
with PGA.
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of earthquakes is a binary classification problem. Therefore, a confusion matrix can be used to evaluate the 
destructiveness of earthquakes. The four basic evaluation indexes of the confusion matrix are defined as follows:

• True Positive (TP): When the actual log10(PGA) is less than log10(25), the predicted log10(PGA) is less than 
log10(25);

• True Negative (TN): When the actual log10(PGA) is greater than or equal to log10(25), the predicted 
log10(PGA) is greater than or equal to log10(25);

Figure 9.  The distribution of PGA predicted by DLPGA and Pd with initial 3–6 s waves of the generalization 
dataset. Different colored circles represent different magnitudes of PGA prediction. The black solid line is the 1:1 
line showing perfect agreement between the predicted and observed values. The two blue dashed lines represent 
the range of ± 1 standard deviation. R is the correlation coefficient. pre is the predicted PGA  (PGApre), and obs is 
the observed PGA  (PGAobs).

Figure 10.  Correlation coefficient (a), standard deviation of error (b) and mean of the errors (c) of PGA 
predicted by the DLPGA and Pd with the initial 3–6 s waves of the generalization dataset.
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• False Positive (FP): When the actual log10(PGA) is less than log10(25), the predicted log10(PGA) is greater 
than or equal to log10(25);

• False Negative (FN): When the actual log10(PGA) is greater than or equal to log10(25), the predicted 
log10(PGA) is less than log10(25).

Figure 11 shows the confusion matrices of the DLPGA and Pd methods with seismic waves of different initial 
lengths in the generalization dataset. In general, the TP and TN of the DLPGA are always larger than those of 
Pd, while the FP and FN of the DLPGA are always smaller than those of Pd, which indicates that the prediction 
effectiveness of the DLPGA is better than that of Pd. It should be noted that more records are determined as FN in 
both DLPGA and Pd, which, together with Fig. 9, is mainly due to the problem of "large value underestimation".

To integrate the four indicators of the confusion matrix (FP, TN, TP, and FN) for a more intuitive comparison, 
the Matthews correlation coefficient (MCC) was  calculated72. The MCC is a correlation coefficient that describes 
the relationship between actual classification and predicted classification, taking into account the four basic 
evaluation indicators in the confusion matrix. The value range of MCC is [− 1,1], and the higher the value of 
MCC is, the higher the discrimination accuracy, as calculated by formula (2).

Figure 12 gives the variation in MCC with the duration of the first-arrival seismic wave of the DLPGA and Pd 
methods. From the figure, it can be seen that the MCC of the DLPGA is much better than that of Pd; when the 
duration of the first arrival seismic wave increases from 3 to 6 s, the MCC of the DLPGA increases from 0.6552 
to 0.8384, and the MCC of Pd increases from 0.2609 to 0.6195. The MCC of DLPGA is 35–150% higher than that 
of Pd. The MCC of the DLPGA with the initial 3 s wave is larger than that of Pd with the initial 6 s. The results 
of the MCC indicate that the DLPGA can more quickly identify the destructiveness of ground motion than Pd, 
and the accuracy is improved by 35–150%.

Discussion
In this study, a deep learning model (DLPGA) based on a multilayer CNN is proposed to improve the accuracy 
of an on-site EEW system in predicting PGA. The training, verification and testing of DLPGA are completed 
by using the surface acceleration records of the KiK-net database in Japan. In the test results of the initial 3–6 s 
waves, the error standard deviation and error mean of the DLPGA in predicting PGA are always smaller than 
those of Pd, and the correlation coefficient is always larger than that of Pd. Moreover, the accuracy of DLPGA 

(2)MCC =
TP× TN− FP× FN

√
(TP+ FP)× (TP+ FN)× (TN+ FP)× (TN+ FN)

Figure 11.  Confusion matrices for PGA threshold for generalization dataset.
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in predicting PGA with initial 3 s waves is better than that of Pd with initial 6 s waves, indicating that PGA is 
predicted by DLPGA faster and more accurately than Pd. In addition, the accuracy of DLPGA in predicting 
PGA is less affected by magnitude, epicentre distance, and Vs30 than Pd, indicating that DLPGA has better 
applicability than Pd. To further evaluate the effectiveness of DLPGA trained with Japanese data in predicting 
PGA in other regions, a generalization test was conducted using Chilean surface acceleration records. In the 
results of the generalization test for the initial 3–6 s, the distribution, correlation coefficient, standard deviation 
of error, and error mean of the PGA predicted by the DLPGA are close to the results of the Japanese data and 
are much better than those of Pd, which indicates that the DLPGA has a better generalization ability than Pd. 
The accuracy of the DLPGA in determining the destructiveness of ground motion is significantly higher than 
that of Pd. The DLPGA is more accurate with an initial 3 s seismic wave than Pd with an initial 6 s seismic wave, 
which indicates that the DLPGA is faster and more accurate in determining the destructiveness of earthquakes 
than Pd. The DLPGA is significantly better than Pd in terms of accuracy and timeliness. The main reason is that 
the DLPGA avoids human empirical interference by automatically extracting information related to the PGA 
and maximizes the retention of important information related to the PGA in the initial wave. Pd is a feature 
parameter based on empirical definitions. The larger the PGA is, the larger the surface deformation is, and Pd 
can only represent a certain aspect of the information related to PGA in the initial wave.

Compared with the PGA prediction method proposed by Jozinovi ’c et al.50, Hsu et al.51 and Chiang et al.52, 
DLPGA has the following four advantages in the advancement of the algorithm: (1) DLPGA uses the initial 3–6 s 
waves as inputs, while the CNN model of Jozinovi´ c et al. requires at least initial 10 s waves as inputs; thus, 
DLPGA has better timeliness. (2) The DLPGA only uses initial vertical seismic waves, while Jozinovi ’c et al.50, 
Hsu et al.51 and Chiang et al.52 all use three-component initial seismic waves. The initial vertical seismic waves 
have a better signal-to-noise ratio than the two horizontal seismic waves and have more advantages in data qual-
ity. (3) DLPGA does not preprocess the input data, whereas Hsu et al. preprocess the input data in both the time 
domain and the frequency domain, which increases the algorithm implementation difficulty as well as the risk 
of input data distortion. (4) DLPGA directly outputs PGA in the form of regression calculations, and Chiang 
et al.52 are only able to predict whether the PGA exceeded a preset threshold.

Although the DLPGA shows good prediction results, there are still some problems with the DLPGA, which 
need to be improved in subsequent studies. First, the PGA predicted by DLPGA has a certain degree of "under-
estimation of large values", which can lead to the identification of destructive earthquakes as nondestructive 
earthquakes. Although increasing the duration of the initial wave can improve the underestimation of large val-
ues, it will reduce the timeliness of EEW. Second, the number of seismic records with larger PGAs in the training 
dataset is much less than that with smaller PGAs, and the impact of data imbalance on prediction performance is 
unknown. Furthermore, in addition to the influence of magnitude, distance and Vs30 on the DLPGA prediction 
results, more complex source and site factors, such as fault rupture, soil layer and topography of the site, need 
to be further studied. Finally, DLPGA is implemented based on a standard CNN model, and it is necessary to 
optimize DLPGA in terms of the model design by adopting other strategies (e.g., the attention mechanism) to 
improve the prediction accuracy of PGA.

Conclusions
We propose a PGA prediction method, DLPGA, based on CNN in deep learning. DLPGA realizes end-to-end 
prediction of PGA using vertical initial seismic waves as input and PGA as output. DLPGA avoids the subjectiv-
ity and one-sidedness of human-selected feature parameters by automatically extracting features from initial 
seismic waves. The effectiveness of DLPGA in predicting PGA is tested using Japanese seismic records, and 
the generalization ability of DLPGA is tested using Chilean seismic records. For initial 3–6 s seismic waves, 
DLPGA predicts PGA with better accuracy and timeliness than the widely used Pd. The DLPGA has a better 
generalization ability than Pd, and the DLPGA is able to discriminate ground motion damage faster and more 

Figure 12.  MCC of DLPGA and Pd with initial 3–6 s waves.
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accurately. This indicates that the DLPGA can replace Pd to predict PGA for on-site EEW, achieving more reli-
able discrimination of ground motion destructiveness.

Data availability
The data that support the findings of this study are available from NIED K-NET, KiK-net, National Research 
Institute for Earth Science and Disaster Resilience but restrictions apply to the availability of these data, which 
were used under license for the current study, and so are not publicly available. Data are however available from 
the authors upon reasonable request and with permission of NIED K-NET, KiK-net, National Research Institute 
for Earth Science and Disaster Resilience.
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