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Underwater image restoration 
based on dual information 
modulation network
Li Wang 1*, Xing Li 2, Ke Li 3, Yang Mu 3, Min Zhang 4 & Zhaoxin Yue 1

The presence of light absorption and scattering in underwater conditions results in underwater 
images with missing details, low contrast, and color bias. The current deep learning-based methods 
bring unlimited potential for underwater image restoration (UIR) tasks. These methods, however, 
do not adequately take into account the inconsistency of the attenuation of different color channels 
and spatial regions when performing image restoration. To solve these gaps, we propose a dual 
information modulation network (DIMN) for accurate UIR tasks. To be specific, we design a multi-
information enhancement module (MIEM), empowered by spatial-aware attention block (SAAB) and 
multi-scale structural Transformer block (MSTB), to guide the inductive bias of image degradation 
processes under nonhomogeneous media distributions. SAAB focuses on different spatial locations, 
capturing more spatial-aware cues to correct color deviations and recover details. MSTB utilizes the 
difference and complementarity between features at different scales to effectively complement the 
network’s structural and global perceptual capabilities, enhancing image sharpness and contrast 
further. Experimental results reveal that the proposed DIMN exceeds most state-of-the-art UIR 
methods. Our code and results are available at: https://​github.​com/​wwaan​nggll​ii/​DIMN.

Nowadays, the ocean is in the spotlight for its rich natural resources and great potential for applications. Due to 
the light interference in the underwater scene, the acquired underwater images are plagued with blurred details, 
distorted colors, and low contrast. Such adverse effects pose greater challenges for underwater vision tasks. As 
a result, underwater image restoration (UIR) technology has been implemented to boost the quality and clarity 
of underwater images. In our study, UIR encompasses two key aspects: super-resolution (SR) reconstruction 
and enhancement.

Image SR technology is designed to restore a high-resolution (HR) image from its corresponding low-reso-
lution (LR) counterpart, thereby enlarging the region of interest for better visual effects. In recent years, lever-
aging the powerful representational ability of the convolutional neural network (CNN), researchers have pro-
posed numerous image SR methods for real-world scenarios, achieving significantly improved performance1–6. 
Dong et al.7 pioneered a three-layer CNN for image SR, called SRCNN, outperforming traditional methods. 
Enlightened by this idea, plenty of tricks have emerged to further improve the network reconstruction accuracy, 
such as increasing the depth of the network5,8, widening the width of the network9,10, and introducing an atten-
tion mechanism6,11. Nevertheless, unlike natural scene images, the degradation of underwater images is more 
severe. To this end, researchers have also implemented some approaches for underwater SR tasks. Islam et al.12 
constructed deep residual network-based generative models, namely SRDRM and SRDRM-GAN, for underwater 
SR, which can enhance underwater image resolution efficiently. Chen et al.13 proposed progressive attentional 
learning (PAL), which employs CNN with channel-wise attention and progressive learning to jointly learn a map-
ping from LR image to HR image. Zhang et al.14 introduced a new attention-guided multi-path cross-convolution 
neural network (AMPCNet) that enhances the model’s learning and representation of abstract information, 
obtaining good SR performance. Similarly, Islam et al.15 constructed a deep simultaneous enhancement and SR, 
dubbed Deep SESR, which employs two-stage residual-in-residual learning to recover image qualities.

Image enhancement technology strives to acquire clear images from degraded images for improving visual 
quality. Currently, underwater enhancement tasks are driven by large-scale data and have gained extensive 
research16–19. For example, Fabbri et al.17 adopted generative adversarial network (GAN) to improve visual 
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quality in underwater scenes, termed underwater generative adversarial network (UGAN). Yang et al.20 presented 
a lightweight adaptive feature fusion network (LAFFNet) for underwater scenes with limited computational 
resources. Zhang et al.19 proposed a weighted wavelet visual perception fusion that corrects the color distortion 
of an underwater image. Huo et al.21 used wavelet boosting learning strategy to gradually refine underwater 
images in both spatial and frequency domains. It has been observed that both the above SR and enhancement 
methods provide better results in improving underwater image quality. However, several issues still require 
further attention. On the one hand, most UIR works tend to overlook the exploration of larger spatial contexts, 
which is directly linked to the accuracy of color correction. On the other hand, current CNN-based methods 
encounter challenges in establishing long-range dependencies on image features, resulting in less-than-optimal 
image restoration accuracy.

To alleviate the above issues, we present a new method named dual information modulation network (DIMN) 
for the UIR task. DIMN leverages a multi-information enhancement module (MIEM) as a backbone to progres-
sively extrapolate information from coarse-grained to fine-grained space. In MIEM, spatial-aware attention 
block (SAAB) can effectively model diverse spatial location relationships, thereby enlarging spatial regions to 
ameliorate color cast and preserve fine details. While multi-scale structural Transformer block (MSTB) explores 
multi-scale structure attention mechanism to enhance the image sharpness further. Experimental results reveal 
that our DIMN performs competitively with state-of-the-art (SOTA) algorithms for both underwater image SR 
and enhancement. In brief, this study offers the following contributions:

•	 We propose a DIMN for accurate UIR tasks, where chained stacking MIEM can better consider the consist-
ency of the attenuation of different color channels and spatial regions. Thanks to MIEM empowered by SAAB 
and MSTB, our DIMN achieves high-quality image restoration results.

•	 We design SAAB that explores different spatial location relationships to expand spatial-aware cues, helping 
to correct color deviation and enhance image details.

•	 We develop MSTB to generate more insightful semantic cues using a multi-scale structure attention strategy, 
thereby generating visually pleasing underwater results with fewer distortions and artifacts.

Related work
Deep learning‑based UIR
Typically, deep learning-based UIR tasks can be broadly categorized into two groups: CNN and GAN. 
Islam et al.12 implemented a novel residual-in-residual CNN for underwater SR, where SRDRM-GAN incorpo-
rates a Markovian PatchGAN22 as their discriminator. Cherian et al.23 constructed a GAN-based model, called 
AlphaSRGAN, which is based on an alpha generative adversarial network for adversarial training of underwater 
image pairs. In PAL13, the residual attention upsampling block consisted of different convolutions to deepen the 
network and make the training process easier. In a paper by Wang24, different distillation modules were designed 
to aggregate local distilled information from various stages so as to attain more robust feature representations. 
For the underwater enhancement task, Wang et al.25 developed a deep CNN approach for underwater enhance-
ment, learning strong feature representation to simultaneously achieve color rectification and haze removal. 
Li et al.26 trained the UIEB dataset using a CNN model called Water-Net for underwater image enhancement. 
FUnIE-GAN27 was a fully convolutional conditional GAN-based model for underwater image enhancement, 
which can enhance perceptual image quality. LAFFNet20 was an encoder–decoder architecture with multiple 
adaptive feature fusion modules, which can generate multi-scale features to recover rich image details. Apart 
from solving the underwater SR and enhancement tasks separately as described above, some researchers are 
committed to designing a unified model that can handle the UIR task in a more versatile and efficient manner. 
Deep SESR15 leveraged residual dense blocks as the backbone to facilitate improved hierarchical feature learning, 
obtaining good performance on underwater SR and enhancement. Sharma et al.28 proposed a multi-stage deep 
CNN for UIR, called Deep WaveNet, and proved its robustness in different tasks. Despite the promising outcomes 
obtained by CNN and GAN-based methods in UIR tasks, a common limitation of these methods is that they 
mainly emphasize on exploring local information, which may not be conducive to generating clearer images.

Transformer‑based UIR
In recent work, Transformer29 has gained increasing attention in UIR tasks, in particular the advantages of 
self-attention mechanisms in capturing long-distance dependencies and global features. Peng et al.30 employed 
U-shape Transformer network that effectively removes color artifacts and casts. Analogously, Shen et al.31 imple-
mented a novel dual attention Transformer-based approach in accordance with the properties of underwater 
image degradation. Huang et al.32 designed new adaptive group attention and embedded it in Swin Transformer? 
to focus on the dependencies between channels, showing outstanding effects in terms of color, brightness, and 
sharpness. Ren et al.33 constructed U-Net-based reinforced Swin-Convs Transformer dealing with underwa-
ter enhancement and SR, named URSCT. URSCT fused convolution to Swin Transformer to compensate for 
more local attention. Wang et al.34 constructed a novel underwater co-enhancement approach which is realized 
through physically guided Transformer interaction to excavate the rich semantic information. Inspired by Deep 
WaveNet, Wang et al.35 departed from the conventional CNN-based networks and instead adopted the Vision 
Transformer as a robust baseline for UIR, and proposed a new Transformer-based block termed URTB to solve 
the color degradation problem, particularly across different channels. Based on the description above, applying 
Transformer to the UIR task can well solve the problem of the CNN-based method’s lack of global information, 
while obtaining a significant improvement in recovery accuracy.
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Methods
Network framework
Figure 1 demonstrates that our DIMN consists of three stages. Stage 1 focuses on obtaining coarse-grained 
features, Stage 2 delves into more complex features, and Stage 3 is dedicated to restoring distorted images. Let 
X ∈ R

H×W×C be the distorted image, whereas S ∈ R
rH×rW×3 and E ∈ R

H×W×3 respectively belong to HR image 
and enhanced image. H and W represent the height and width of the image. r represent the scale factor, meaning 
that each pixel of an HR image is equivalent to the spatial extent of r2 pixels in an LR image.

Stage 1. We obtain coarse-grained features from degraded underwater images using a 3× 3 convolution, 
while expanding the number of channels:

where HSFE(·) is 3× 3 convolution operation. F0 ∈ R
H×W×C represent the extracted coarse-grained features, in 

which C is the number of channels.
Stage 2. Stage 2 is composed of T MIEMs, which extrapolate features from coarse-grained to fine-grained 

space for high-quality image restoration.

where HMIEM(·) denotes the operation of MIEM whose details are described in Section “Multi-information 
enhancement module (MIEM)”. Ft is extracted fine-grained features.

Stage 3. In the SR tasks, an upsampling operation that is necessary to scale fine-grained features to the desired 
HR size. In the enhancement task, a simple 3× 3 convolution is utilized to produce the final enhanced image. 
We define the process of Stage 3 as follows:

where DIMN(·) ∈ {S,E} indicates the output of recovered images. HUP(·) denotes the upsample operation, 
including a convolutional layer ( 3× 3 convolution for HUP0(·) and 5× 5 convolution for HUP1(·) ) and a sub-pixel 
convolutional layer. HEN (·) represents the enhancement operation, which is performed using a 3× 3 convolution.

We adopt L1 loss to minimize the L-norm distance between the restored image DIMN(X) and the ground 
truth Y. Given a training dataset {Xm,Ym}Nm=1 , here Xm denotes the m-th input image and Ym denotes the cor-
responding ground-truth image. L1 loss can be expressed as follows:

where � means the learnable parameters in DIMN.

Multi‑information Enhancement Module (MIEM)
As presented in Fig. 1, our proposed MIEM is driven by SAAB and MSTB, which respectively modulate spatial 
and global information to instruct the induction bias of the image degradation process under inhomogeneous 
media distribution. SAAB first extracts spatial perception information by modulating spatial location relation-
ships. Then MSTB receives spatial information to further complement the structural and global perception of 
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Figure 1.   Dataflow of the proposed DIMN for accurate UIR, which consists of three stages. MIEM is enabled 
by SAAB and MSTB to jointly deal with attenuation inconsistencies in color channels and focus on richer spatial 
regions.
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the network. SAAB and MSTB are specifically depicted in Sections “Spatial-aware attention block (SAAB)” 
and “Multi-scale structural transformer block (MSTB)”, respectively.

Spatial‑aware attention block (SAAB)
The scattering of underwater light and particles in the water causes more severe distortion in distant scenes and 
less distortion in nearby scenes31. Therefore, for non-uniformly degraded underwater imagery, it is critical to 
model the spatial location relationships of the images that extend the restoration of content-rich features. As 
displayed in Fig. 2, we devise a SAAB that explores spatial-aware information to improve the attention of spatial 
regions, resulting in better enhancement of target features and reduction of visual artifacts.

Given the input features Ft−1 ∈ R
H×W×C of the t-th MIEM, its output spatial-aware features 

FSAABt ∈ R
H×W×C after SAAB. To be specific, Ft−1 ∈ R

H×W×C is initially delivered into 1× 1 convolution and 
reshaped to acquire feature maps Ptq ∈ R

(H×W)×C and Pk ∈ R
C×(H×W) . Then we compute spatial affinity rt

i,j
 from 

i-th to j-th through matrix multiplication:

where Ptq,i and Ptk,j are the i-th and j-th deep pixel of local features. Similarly, we can get spatial affinity from j-th 
to i-th as rt

j,i
 . Therefore, we can get an affinity matrix Rt ∈ R

(H×W)×(H×W) among all positions.
For the purpose of learning the attention of the i-th feature position, we also include the feature itself to utilize 

the global information and local original information relative to that feature. On the one hand, Ft−1 ∈ R
H×W×C 

is first passed through another convolutional layer to obtain a feature map Ptv ∈ R
H×W×C and reshape it to 

Ptv ∈ R
(H×W)×C . Then we can attain spatial relation-aware features PtQ ∈ R

H×W×C through matrix multiplication:

Analogously, the spatial relation-aware features PtK ∈ R
H×W×C at the j-th feature position can be expressed as 

PtK ,j = Ptv,j · rtj,i . On the other hand, we leverage the global average pooling operation to suppress the feature map 
Ptv ∈ R

H×W×C along the channel dimension to 1 and obtain spatial features PtV ∈ R
H×W×1 . Considering these 

three types of information fall outside the same feature domain, we concatenate them and embed them to get 
spatial-aware modulation coefficients ̟ t ∈ R

H×W×1:

where �(·) indicates the embedding function, implemented by two 1× 1 convolutions, ReLU activation, and a 
Sigmoid function. Finally, we merge Ft−1 and ̟ t to output the final spatial-aware features FtSAAB ∈ R

H×W×C:

In this way, we can mine the non-local context to refine the features at each spatial position for inferring attention 
through a learnable model. The implementation of SAAB is depicted in Algorithm 1.

(5)rt
i,j
= Ptq,i · P

t
k,j

(6)PtQ,i = Ptv,i · r
t
i,j

(7)̟ t = �
([

PtQ, P
t
K , P

t
V

])

(8)FtSAAB = ̟ t · Ft−1 =
H×W
∑

i=1

̟ t
i,jFt−1,j

1
×

1
 C

o
n

v

R
e
L

U

1
×

1
 C

o
n

v

R
e
L

U

1
×

1
 C

o
n

v

R
e
L

U

Reshape&Transpose

Reshape

R
e
s
h

a
p
e

Reshape

Transpose

A
V

G

R
e
s
h

a
p
e

1
×

1
 C

o
n

v

R
e
L

U

1
×

1
 C

o
n

v

S
ig

m
io

d

Affinity Matrix

H×W

H
×
W

H

H

H

W

W

W

C

C
W

H

C

C

H

W

H

W

Figure 2.   Diagram of our proposed SAAB, modeling spatial location relationships of the images to abstract 
richer content features.
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Algorithm 1.   The implementation of spatial-aware attention block.

Multi‑scale structural transformer block (MSTB)
Despite the prolific literature on Transfomer-based UIR methods, existing works suffer from severe color dis-
tortions and missing details. It is known that different dilated convolutions can provide different receptive 
field sizes, thereby extending global coherence to alleviate visual artifacts caused by color bias. As depicted in 
Fig. 3a, a standard Transformer with multi-head self-attention (MSA) mechanism can efficiently model long-
range dependence features to improve image sharpness. Enlightened by these works, we propose a MSTB that 
strengthens the focus on more severely attenuated spatial and color channels, improving recovery accuracy. As 
depicted in Fig. 3b, we commence by encoding multi-scale features through the utilization of different dilation 
convolutions. Following this, we apply asymmetric convolutions to extract structural information both horizon-
tally and vertically. Ultimately, these processed features are passed into the Transformer, enabling the capture of 
more profound semantic cues for enhanced image restoration.

Knowing that the input to the MSTB is FtSAAB , we define the multi-scale and structural feature extraction 
part as:

where Mt ∈ R
H×W×C indicates the extracted diversity features. HMS(·) indicates the embedding function, imple-

mented by 1 × 1 convolution, 3× 1convolution, and 1× 3 convolution followed by LReLU activation. f3×3(·) 
denotes 3× 3 convolution, where the superscript is the dilation rate. As shown in Fig. 3b, we unfold the diverse 
features Mt and compute query Q, key K, and value V using a fully connected layer, which can be expressed by:

The attention matrix Att(Q, K, V) is computed as:
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Figure 3.   (a) Standard Transformer; (b) Our proposed MSTB, which is equipped with MSSA to capture deeper 
semantic clues.
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where Wq , Wk , and Wv indicate the weight matrices of queries, keys, and values. 
√
dk  denotes normalization fac-

tor. We refer to the above operation as multi-scale structure attention (MSSA), and its pseudo-code is reported 
in Algorithm 2. The output of MSTB is defined as:

where MLP denotes multi-layer perceptron and LN is layer normalization operation.

Algorithm 2.   The implementation of multi-scale structure attention.

Experiments
Datasets and metrics
We adopt publicly available UIR datasets to train our proposed DIMN, including USR-24812, UFO-12015, EUVP27, 
and UIEB26. Specifically, we respectively use USR-248 and UFO-120 datasets to conduct underwater SR task. 
The USR-248 dataset comprises 1060 pairs for training and 248 pairs for testing. Among them, LR images are 
acquired by downsampling HR images using scale factors of × 2, × 4, and × 8 through bicubic interpolation, with 
the addition of 20% Gaussian noise. The UFO-120 dataset comprises 1500 pairs for training and 120 pairs for 
testing with scale factors of × 2, × 3, and × 4. In the underwater enhancement task, the EUVP dataset comprises 
11,435 paired images for training and 515 paired images for testing. The UIEB dataset comprises 890 pairs 
of images, with 800 pairs allocated for training and 90 pairs for testing. We employ reference metrics (mean-
squared error(MSE), peak signal-to-noise ratio(PSNR), structure similarity index(SSIM), underwater image 
quality measure(UIQM)36, natural image quality evaluator(NIQE)37) and non-reference metrics (patch-based 
contrast quality index(PCQI)38, underwater image sharpness measure(UISM)36, average entropy(E), and under-
water color image quality evaluation(UCIQE)39) to assess experimental results. Particularly, UIQM includes three 
underwater image attribute measures: underwater image colorfulness measure (UICM), UISM, and underwater 
image contrast measure (UIConM), which provide a comprehensive assessment of restoration images. UIQM 
can be calculated as follows:

where c1 , c2 , and c3 denote scale parameters that are set to 0.0282, 0.2953, and 3.5753.
We utilize the Adam optimizer to minimize the objective function, with optimizer parameters set as β1 = 0.9 , 

β2 = 0.999 , and ε = 10−8 . The initial learning rate is fixed at 1e−3 and is halved every 100 epochs. To accom-
modate memory constraints, each batch comprises 32 LR patches of size 50× 50 for the SR task and 16 patches 
of size 100× 100 for the enhancement task. The implementation of our model utilizes the PyTorch framework 
and is executed on NVIDIA TESLA V100 GPU.

Ablation study
In this section, two full-reference image quality assessment indexes (PSNR and SSIM) and four reference-free 
image quality assessment indexes (UIQM, NIQE, MA40, and PI41) are employed to quantitatively compare the 
restoration results of different models. To explicitly demonstrate how our proposed components enhance the 
restoration results, four experiments of the relevant components are performed. We first get rid of SAAB and 
MSTB in turn, which are respectively called DIMN w/o SAAB and DIMN w/o MSTB. Then, we remove the MSSA 
in MSTB, making MSTB a standard Transformer (Fig. 3a) and naming it DIMN w/o M. Finally, we substitute 
3× 3 and 5× 5 convolutions for the multi-scale part and designated it DIMN w P. Here, FLOPs is computed at 
a 640× 480 HR image.

Impact of SAAB and MSTB
The experimental results are reported in Table 1. One can see that the model enabled by SAAB and MSTB attains 
favorable performance, which improves 0.05 dB and 0.0043 over DIMN w/o SAAB, as well as 0.37 dB and 0.0139 
over DIMN w/o MSTB. On the one hand, the absence of SAAB makes it difficult to provide sufficient spatial 
information, which is detrimental to producing high-quality and high-resolution images. On the other hand, the 

(12)
F̄t = MSSA

(

FtSAAB
)

+ LN
(

FtSAAB
)

Ft = MLP
(

LN
(

F̄t
))

+ F̄t

(13)UIQM = c1 × UICM + c2 × UISM + c3 × UIConM
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introduction of MSTB can provide large gains in expanding the receptive field, preserving structural information, 
and modeling global features, thus effectively addressing the negative effects of color bias and distortion. Also, 
Fig. 4 depicts the convergence results for different components, we can observe that the aggregation of SAAB 
and MSTB contributes to stable network convergence.

Impact of components in MSTB
Compared to DIMN, DIMN w/o M is severely degraded in all metrics, with NIQE decreasing from 64.013 to 
66.116, MA decreasing from 3.8571 to 3.7188, and PI decreasing from 62.721 to 64.464. This is because the 
multi-scale and structural feature extraction part can leverage different scale and structural cues to modulate 
more delicate features for subsequent Transformer operations. When compared to DIMN w/P, DIMN holds a 
notably more substantial advantage. Although DIMN is slightly behind in MA score, the difference is only 0.0243. 
Figure 5 illustrates the feature heatmap of different methods, visualizing how they retain the detailed features of 
the underwater image. In the feature heatmap, the red color indicates that the network is paying more attention 
to the target area. Without the support of the multi-scale and structural feature extraction component (DIMN 
w/o M), the attention on the discriminant region is also significantly reduced. Compared to DIMN, DIMN w P 

Table 1.   Ablation studies of proposed components on UFO-120 dataset with scale factor ×4. Significant values 
are in bold.

Methods Params FLOPs PNSR SSIM UIQM NIQE∇ MA PI∇

DIMN w/o SAAB 841K 16.1G 25.30 0.7037 2.9533 66.454 3.8503 6.3976

DIMN w/o MSTB 135K 2.60G 24.98 0.6941 2.8243 65.611 3.7698 6.3956

DIMN w/o M 352K 6.70G 25.17 0.7023 2.8691 66.116 3.7188 6.4464

DIMN w P 942K 18.1G 25.34 0.7032 2.9362 66.971 3.8814 6.4079

DIMN 942K 18.1G 25.35 0.7080 2.9587 64.013 3.8571 6.2721

Figure 4.   Convergence results for different models on UFO-120 dataset with scale factor ×4.

(e)DIMN(a)DIMN w/o SAAB (b)DIMN w/o MSTB (c)DIMN w/o M (d)DIMN w PInput LR

Figure 5.   Visualization results of average feature maps on different methods.
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can focus on the target area better, but at a lower intensity. Importantly, DIMN supported by SAAB and MSTB 
responds more positively to the target object, allowing more effort to be allocated to modulating these areas, 
thus resulting in richer texture detail for high-quality image restoration.

Impact of number of MIEMs
In Table 2, we verify the selection of the number of MIEM, in which the numbers are set to T = 2 , 4, and 6, 
respectively. Obviously, the improvement in recovery accuracy becomes small when the value of T exceeds 4. 
Taking into account the trade-off between network complexity and restoration performance, we have opted for 
T = 4 as the number of MIEMs.

Overall, the ablation studies reveal the effectiveness and robustness of our proposed MIEM incorporating 
SAAB and MSTB.

Comparison with underwater SR methods
Evaluation on USR‑248 dataset
We compare the proposed DIMN with some SOTA methods on the USR-248 dataset, including SRCNN7, VDSR5, 
EDSRGAN42, SRGAN43, SRResNet43, ESRGAN44, SRDRM12, SRDRM-GAN12, PAL13, and AMPCNet14. As Table 3 
reports, our DIMN exhibits competitive advantages across all image quality indexes with lower model complexity. 
Compared to AMPCNet, our DIMN has demonstrated a distinct improvement of 0.27 dB, 0.36 dB, and 0.16 dB 
on PSNR. More importantly, the superiority of our proposed method becomes more obvious as the scale factor 
increases.

Figure 6 exhibits a selection of SR results on USR-248 dataset. It is evident that our method produces more 
favorable results, with visual effects that closely resemble HR images. Clearly, SRDRM, SRDRM-GAN, and PAL 
exhibit substantial blurring and distortion, while our DIMN outperforms them by recovering superior edge 
and texture details. This is attributed to the ability of our approach to effectively integrate both local and global 
information, resulting in higher resolution and sharper images.

Evaluation on UFO‑120 dataset
We carry out a comparison of our DIMN with SRCNN7, SRGAN43, SRDRM12, SRDRM-GAN12, Deep SESR15, 
Deep WaveNet28, AMPCNet14, and URSCT33 using both quantitative and qualitative metrics. Quantitative and 
qualitative results are respectively presented in Table 4 and Fig. 7.

Table 4 reveals that our DIMN consistently delivers both optimal and sub-optimal performance when com-
pared to well-established underwater SR methods. Despite a marginal underperformance in UIQM, noteworthy 
improvements have been observed in terms of both PSNR and SSIM. Accordingly, in the case of × 4, our proposed 
method has outperformed Deep SESR and Deep WaveNet by an improvement of 2.95% and 1.59% in PSNR. In 
comparison to Transformer-based methods like URSCT, our work has demonstrated a notable improvement, 
with an increase of 8.01% in PSNR and 7.58% in SSIM. Figure 7 further demonstrates that our method success-
fully rectifies color deviations, enhances detail information, and improves image contrast. SRDRM-GAN and 
AMPCNet fail to remove color casts and reconstruct texture detail.

Comparison with underwater enhancement methods
Evaluation on EUVP dataset
For the underwater enhancement task, we perform a comparison of our DIMN against some of the best-pub-
lished methods on the EUVP dataset. The corresponding quantitative outcomes are presented in Table 5, while 
the qualitative results are depicted in Fig. 8, respectively. As can be seen from Table 5, our proposed method 
demonstrates superior performance across the majority of quantitative metrics. For instance, our DIMN achieves 
improvements of no less than 5.96% and 2.38% in PSNR and SSIM, respectively. Even though UIQM, NIQE, 
PCQI, and E lag behind URTB, they still demonstrate competitive performance. Our method mainly employs 
spatial-aware and multi-scale structural features to deal with detail blurring and color casts, thus better restora-
tion accuracy can be obtained.

In Fig. 8, we can notice that Funie-GAN and URTB result in over-saturation, while Funie-GAN-UP and Deep 
SESR struggle to remove color casts. Contrastingly, the proposed DIMN excels in color restoration and contrast 
enhancement. This can be attributed to the network’s robust local and global learning capabilities, allowing it to 
address the variation in attenuation in different color channels and spatial areas. Additionally, we have incorpo-
rated the Canny45 algorithm in Fig. 9 to evaluate the extent of improvement in image clarity. Figure 9 depicts the 
enhanced results and their corresponding edge maps. We can see that the edges of distorted images are difficult 
to detect due to strong scattering. Observing from Fig. 9j, the proposed DIMN reproduces more edge detection 

Table 2.   Results for different numbers of MIEM on USR-248 dataset with scale factor ×2. Significant values 
are in bold.

T Params FLOPs PNSR SSIM UIQM

2 464K 35.6G 29.68 0.8224 2.7400

4 919K 70.5G 29.96 0.8327 2.7829

6 1.37M 105.3G 29.96 0.8318 2.7835
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features and contains almost all contours. This reveals that the proposed method can effectively eliminate color 
artifacts and recover more structural information, which is advantageous for producing visually satisfying results.

Evaluation on UIEB dataset
For a fair comparison, we train and test the UIEB following the setup described in28. Quantitative and qualitative 
results are listed in Table 6 and Fig. 10, respectively. According to Table 6, it is evident that our proposed scheme 
harvests the best performance. Particularly in the PSNR metric, compared with prevailing UIR methods such 
as Deep SESR, Deep WaveNet, and URTB, our DIMN demonstrates significant improvements of 31%, 1.15% 
and 0.51%, respectively.

Table 3.   Quantitative comparison with the best-published methods on USR-248 dataset. Significant values are 
in bold.

Scale Method FLOPs (G) Params (M) PSNR (dB) SSIM UIQM

×2

SRCNN7 21.30 0.06 26.81 0.76 2.74

VDSR5 205.28 0.67 28.98 0.79 2.57

EDSRGAN42 273.34 1.38 27.12 0.77 2.67

SRGAN43 377.76 5.95 28.05 0.78 2.74

SRResNet43 222.37 1.59 25.98 0.72 –

ESRGAN44 4274.68 16.70 26.66 0.75 2.70

SRDRM12 203.91 0.83 28.36 0.80 2.78

SRDRM-GAN12 289.38 11.31 28.55 0.81 2.77

PAL13 203.82 0.83 28.41 0.80 –

AMPCNet14 – 1.15 29.54 0.80 2.77

DIMN (Ours) 70.50 0.92 29.81 0.81 2.71

×4

SRCNN7 21.30 0.06 23.38 0.67 2.38

VDSR5 205.28 0.67 25.70 0.68 2.44

EDSRGAN42 206.42 1.97 21.65 0.65 2.40

SRGAN43 529.86 5.95 24.76 0.69 2.42

SRResNet43 85.49 1.59 24.15 0.66 –

ESRGAN44 1504.09 16.70 23.79 0.66 2.38

SRDRM12 291.73 1.90 24.64 0.68 2.46

SRDRM-GAN12 377.20 12.38 24.62 0.69 2.48

PAL13 303.42 1.92 24.89 0.69 –

AMPCNet14 – 1.17 25.90 0.66 2.58

DIMN (Ours) 18.07 0.94 26.26 0.70 2.50

×8

SRCNN7 21.30 0.06 19.97 0.57 2.01

VDSR5 205.28 0.67 23.58 0.63 2.17

EDSRGAN42 189.69 2.56 19.87 0.58 2.12

SRGAN43 567.88 5.95 20.14 0.60 2.10

SRResNet43 51.28 1.59 19.26 0.55 –

ESRGAN44 811.44 16.70 19.75 0.58 2.05

SRDRM12 313.68 2.97 21.20 0.60 2.18

SRDRM-GAN12 399.15 13.45 20.25 0.61 2.17

PAL13 325.51 2.99 22.51 0.63 –

AMPCNet14 – 1.25 23.83 0.62 2.25

DIMN (Ours) 4.97 1.03 24.00 0.64 2.18
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In Fig. 10, one can see that the Retinex-based method exhibits color oversaturation in the enhanced images. 
Fusion-based and Deep WaveNet fail to remove color casts and have poor visual effects. In contrast, the results 
enhanced by our method are more faithful to the original image, benefitting from the joint learning of spatial 
location and global cues by SAAB and MSTB.

Conclusion
In this study, we present an accurate and efficient DIMN, empowered by a sequence of MIEMs, for the UIR 
task. MIEM serves as the backbone of the network that effectively handles attenuation inconsistencies across 
color channels and spatial regions, thereby removing color artifacts, enhancing contrast, and restoring detail. In 
MIEM, SAAB can model different spatial location relationships to explore content-rich features, while MSTB 
utilizing multi-scale structure attention scheme strengthens the focus on more severely attenuated spatial and 
color channels to boost recovery accuracy further. Experimental results reveal that the competitiveness of our 
DIMN when compared to SOTA approaches, and ablation studies confirm the contributions of our proposed 
MIEM comprising SAAB and MSTB.

(a)HR (b)SRCNN (c)VDSR (d)EDSRGAN (e)SRGAN (f)ESRGAN (g)SRDRM (h)SRDRM-
GAN

(i)PAL (j)DIMN(Ours)

×2

×4

×8

Figure 6.   Visual comparison of our proposed DIMN against popular works on USR-248 dataset.

Table 4.   Quantitative comparison with the best-published methods on UFO-120 dataset. Significant values 
are in bold.

Method

PSNR (dB) SSIM UIQM

×2 ×3 ×4 ×2 ×3 ×4 ×2 ×3 ×4

SRCNN7 24.75 22.22 19.05 0.72 0.65 0.56 2.39 2.24 2.02

SRGAN43 26.11 23.87 21.08 0.75 0.70 0.58 2.44 2.39 2.56

SRDRM12 24.62 – 23.15 0.72 – 0.67 2.59 – 2.57

SRDRM-GAN12 24.61 – 23.26 0.72 – 0.67 2.59 – 2.55

Deep SESR15 25.70 26.86 24.75 0.75 0.75 0.66 3.15 2.87 2.55

Deep WaveNet28 25.71 25.23 25.08 0.77 0.76 0.74 2.99 2.96 2.97

AMPCNet14 25.24 25.73 24.70 0.71 0.70 0.70 2.93 2.85 2.88

URSCT33 25.96 – 23.59 0.80 – 0.66 – – –

DIMN (Ours) 25.96 26.60 25.48 0.75 0.76 0.71 3.02 2.92 2.92
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(a)HR (b)SRCNN (c)SRGAN (d)SRDRM (e)SRDRM-
GAN

(f)Deep 
WaveNet

(g)AMPCNet (h)DIMN(Ours)

×2

×3

×4

Figure 7.   Visual comparison of our proposed DIMN against popular works on UFO-120 dataset.

Table 5.   Quantitative comparison against the best-published methods on EUVP dataset. ∇ denotes lower is 
better. Significant values are in bold.

Methods PSNR SSIM UIQM NIQE∇ PCQI UISM VIF E∇

UGAN17 26.55 0.80 2.89 49.90 0.700 6.84 0.402 7.52

UGAN-P17 26.54 0.80 2.93 50.17 0.704 6.83 0.400 7.54

Funie-GAN27 26.22 0.79 2.97 50.51 0.706 6.90 0.384 7.55

Funie-GAN-UP27 25.22 0.78 2.93 52.87 0.702 6.86 0.394 7.50

Deep SESR15 27.08 0.80 3.09 55.68 0.679 7.06 0.384 7.40

Deep WaveNet28 28.62 0.83 3.04 44.89 0.694 7.06 0.438 7.38

URTB35 29.02 0.84 2.98 43.75 0.849 6.57 0.651 7.14

DIMN (Ours) 30.75 0.86 2.74 48.59 0.835 7.06 0.750 7.45
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(a)Ori (b) Dis (c)UGAN (d)UGAN-P (e)Funie-GAN (f)Funie-GAN-UP (g)Deep SESR (h)Deep WaveNet (j)DIMN(Ours)(i)URTB

Figure 8.   Visual comparison of the proposed DIMN against popular works on EUVP dataset.

(a)Ori (c)UGAN (d)UGAN-P (i)URTB(f)Funie-GAN-UP (g)Deep SESR (h)Deep WaveNet (j)DIMN(Ours)(b) Dis (e)Funie-GAN

Figure 9.   Canny edge detection on EUVP dataset.

Table 6.   Quantitative comparison against the best-published methods on UIEB dataset. Significant values are 
in bold.

Methods MSE PSNR SSIM

Fusion-based46 0.91 21.23 0.78

Retinex-based47 1.34 17.66 0.61

GDCP48 3.33 13.86 0.55

Water CycleGAN49 1.72 15.75 0.52

DenseGAN50 1.21 17.28 0.44

WaterNet26 0.79 19.11 0.79

Deep SESR15 1.70 16.65 0.57

Deep WaveNet28 0.60 21.57 0.80

URTB35 – 21.71 0.83

DIMN (Ours) 0.56 21.82 0.84
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Data availability
USR-248, UFO-120, and EUVP datasets are available from: https://​irvlab.​cs.​umn.​edu/​resou​rces. UIEB dataset 
is available from: https://​li-​chong​yi.​github.​io/​proj_​bench​mark.​html.
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