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Sustainable power management 
in light electric vehicles with hybrid 
energy storage and machine 
learning control
R. Punyavathi 1, A. Pandian 1, Arvind R. Singh 2, Mohit Bajaj 3,4,5,6*, Milkias Berhanu Tuka 7* & 
Vojtech Blazek 8

This paper presents a cutting-edge Sustainable Power Management System for Light Electric 
Vehicles (LEVs) using a Hybrid Energy Storage Solution (HESS) integrated with Machine Learning 
(ML)-enhanced control. The system’s central feature is its ability to harness renewable energy 
sources, such as Photovoltaic (PV) panels and supercapacitors, which overcome traditional battery-
dependent constraints. The proposed control algorithm orchestrates power sharing among the 
battery, supercapacitor, and PV sources, optimizing the utilization of available renewable energy and 
ensuring stringent voltage regulation of the DC bus. Notably, the ML-based control ensures precise 
torque and speed regulation, resulting in significantly reduced torque ripple and transient response 
times. In practical terms, the system maintains the DC bus voltage within a mere 2.7% deviation 
from the nominal value under various operating conditions, a substantial improvement over existing 
systems. Furthermore, the supercapacitor excels at managing rapid variations in load power, while 
the battery adjusts smoothly to meet the demands. Simulation results confirm the system’s robust 
performance. The HESS effectively maintains voltage stability, even under the most challenging 
conditions. Additionally, its torque response is exceptionally robust, with negligible steady-state 
torque ripple and fast transient response times. The system also handles speed reversal commands 
efficiently, a vital feature for real-world applications. By showcasing these capabilities, the paper lays 
the groundwork for a more sustainable and efficient future for LEVs, suggesting pathways for scalable 
and advanced electric mobility solutions.

Keywords Solar electric vehicle, Sustainable power management, Light electric vehicles, Hybrid energy 
storage solution, Supercapacitors, PV-battery interface, SRM EV drive, Machine learning

The rising demand for environmentally sustainable transportation has led to a surge in the adoption of electric 
vehicles (EVs), particularly in urban  environments1. This trend is underpinned by advancements in battery 
technology, which have made EVs more viable and cost-effective2,3. However, while batteries are integral to EVs, 
their limitations in terms of energy density and charging times can be restrictive, especially in applications where 
frequent start-stop or acceleration and deceleration cycles are common, such as in light electric vehicles (LEVs)4. 
This limitation has prompted research into alternative energy storage solutions that can complement batteries, 
particularly in LEVs. One such solution is the integration of supercapacitors, known for their high power density 
and rapid charge–discharge  characteristics5,6. The combination of batteries and supercapacitors (known as a 
hybrid energy storage system or HESS) offers the potential to address the power and energy density requirements 
of LEVs more effectively, improving their performance and extending their  range7. Moreover, the integration of 
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renewable energy sources like photovoltaic (PV) panels offers an added sustainability dimension to LEVs. PV 
panels can harness solar energy to charge the energy storage system, reducing the reliance on grid electricity and 
further enhancing the environmental benefits of  LEVs8,9. Compact and efficient power trains are essential for light 
motor solar electric vehicles, significantly impacting their productivity. The size of the power electronic interface 
plays a pivotal role in determining the design of lighter power trains for photovoltaic (PV) assisted electric 
 vehicles10,11. This study aims to investigate two critical aspects of the power electronic interface: the development 
of a lighter hybrid PV, battery, and supercapacitor power supply (HPS) and a lighter SRM converter for electric 
vehicle (EV) power  trains12,13. Additionally, this study delves into the realm of efficient and coordinated control 
through machine learning, presenting a means of achieving an efficient drive  system14,15. Various hybrid power 
systems, including PV, battery, fuel cell, and  others16, have been extensively reviewed for their application in 
light solar EVs. To interface multiple sources to the DC bus, multi-input non-isolated converters have been 
 proposed17,18. These converters, integrated with fuzzy logic control, can dynamically determine the instantaneous 
power share among the various sources, contributing to an optimized power management  scheme19,20. 
Furthermore, a novel battery-super capacitor energy storage  system21 has been developed with a joint control 
strategy for average and ripple current sharing. This system addresses the dynamic energy storage and discharge 
requirements of light EVs, contributing to improved performance and efficiency. The development of a light 
and efficient power electronic interface, alongside intelligent and coordinated control strategies, is pivotal for 
the widespread adoption and success of PV-assisted light electric vehicles in the  future22,23. In the domain of 
power electronics, bi-directional power flow has emerged as a vital feature for facilitating regeneration during 
braking in light motor solar electric vehicles. For this purpose, interfacing converters have been equipped with 
bi-directional power flow capabilities, enabling the integration of hybrid power from photovoltaic (PV) and 
battery  sources24. Furthermore, an enhanced DC bus regulation has been achieved through the development 
of an additional stage for battery interfacing using three-level converters. This advancement not only reduces 
the size and stress of components but also facilitates battery charging while ensuring power factor correction 
during the charging process from the utility  grid25,26. The single-stage integration of hybrid power eliminates 
the need for a maximum power point converter at the PV interface, thereby simplifying the  topology27. Efforts 
have also been made towards optimizing the sizes of power sources according to specific applications, improving 
bi-directional power conversion capability, integrating various functions into a single converter, conducting 
thermal stability analysis, and integrating auxiliary functions into the interface  converter28–35. However, these 
advanced topologies, with their merits of multiple source interfaces, have also led to complex interfaces and an 
increased number of power converters and associated filter  components36,37.

In the realm of control strategies, various models, including model-based, predictive control, and heuristic 
approaches, have been developed for efficient power sharing and rapid dynamic responses in the switched 
reluctance motor (SRM)  drive38–40. These approaches encompass heuristic methods such as genetic  algorithms38, 
energy scheduling based on predictive  demand41, and hierarchical power allocation predicated on the C-rate 
of the battery and PV power  availability42,43, aimed at facilitating current sharing among the available sources 
in a hybrid power  supply44. Genetic algorithms, for instance, provide an approach to optimizing the current 
distribution among the different power sources to meet the load requirements, enhancing the overall efficiency 
and responsiveness of the  system38. Other strategies include model predictive current reference generation, 
which leverages mathematical models to predict future current  demands45, driving cycle-based power demand 
estimation and sharing function determination, which use historical data on driving patterns to estimate future 
power  requirements46, and anticipatory demand control, which anticipates future demand changes based on a 
range of inputs, such as weather conditions and driver  behavior47. Recent advancements in control coordination 
have introduced machine learning techniques such as artificial neural network (ANN) based deep reinforcement 
 learning48, ANN for system dynamics  estimation49, and virtual energy  hubs50,51, which are being utilized for the 
control of power conversion. ANN-based methods have the ability to learn from data and adjust control strategies 
accordingly, making them highly adaptable to varying conditions and requirements. Notable innovations in 
SRM current control involve the use of fuzzy logic to determine torque reference and instantaneous  current52, 
supervised learning for torque ripple  minimization53, and modified output voltage shape with multi-level 
converters for improved torque response . Fuzzy logic control provides a more intuitive way to control torque 
and current in an SRM, whereas supervised learning methods can be used to fine-tune control parameters 
based on real-world data, enhancing overall efficiency and performance. Modified output voltage shapes with 
multi-level converters, meanwhile, can provide better torque response and smoother operation by adjusting 
the voltage waveform to match the motor’s  requirements54. Additionally, dead-beat control based on the motor 
model has been employed to minimize torque  ripple55, and online learning techniques have been used for 
torque sharing function to enhance steady-state and dynamic drive response. Dead-beat control, for instance, 
uses a motor model to predict future torque demands and adjust control parameters accordingly, while online 
learning techniques enable the control system to adapt and improve its performance over time based on real-
time feedback.

The research problem addressed in this paper is the optimization of power management in light electric 
vehicles (LEVs) through the integration of a hybrid energy storage solution (HESS) and machine learning-
enhanced control. Specifically, the focus is on achieving optimal power flow between batteries, supercapacitors, 
and photovoltaic (PV) panels to improve vehicle performance, extend battery life, and increase the sustainability 
of LEVs. Traditionally, LEVs have relied solely on batteries for energy storage, which can be limiting due to their 
energy density, charging times, and life cycle limitations. The integration of supercapacitors offers a solution to 
these limitations, as supercapacitors have high power density, rapid charge–discharge characteristics, and longer 
lifespans compared to batteries. Additionally, the use of renewable energy sources such as PV panels further 
enhances the sustainability of LEVs by reducing the reliance on grid electricity. However, effectively managing 
the power flow between batteries, supercapacitors, and PV panels is challenging, especially in dynamic and 
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nonlinear LEV systems. Traditional control strategies may struggle to optimize power flow in real-time, resulting 
in suboptimal performance and reduced battery life.

To address this challenge, this paper proposes a novel control strategy that integrates a HESS comprising 
batteries, supercapacitors, and PV panels with machine learning algorithms. By leveraging ML’s ability to learn 
and adapt to complex and changing systems, the proposed control strategy aims to optimize power flow in real-
time, ensuring optimal performance and efficiency.

The key contributions of this paper include:

• The development and implementation of a novel control strategy for LEVs that integrates a HESS with 
machine learning algorithms.

• The demonstration of the feasibility and effectiveness of the proposed control strategy in a real-world LEV 
application, showcasing its ability to optimize power flow, enhance vehicle performance, and extend battery 
life.

• The validation of the proposed control strategy’s ability to increase the sustainability of LEVs by reducing 
their reliance on grid electricity and enhancing their overall efficiency.

The findings of this research have significant implications for the design and operation of LEVs, as they offer 
a more sustainable and efficient alternative to traditional battery-powered vehicles. Additionally, the proposed 
control strategy has the potential to be applied to other types of electric vehicles, as well as other energy storage 
and renewable energy systems, further expanding its impact on the field of sustainable transportation.

The paper is organized as follows: In Section "System modelling", we detail the hybrid energy storage solution 
(HESS), outlining its integration of batteries, supercapacitors, and photovoltaic panels. In this section, we also 
present the mathematical models that describe the dynamics and behavior of the proposed drive system. Section 
"Controller modelling" covers the control structure for the proposed converters, including the machine learning-
enhanced control strategy designed to optimize power flow between the various energy storage elements. In 
Section "Simulation results and performance evaluation", we share the simulation setup, including performance 
metrics and results from the validation of the proposed system. We discuss improvements in power efficiency, 
battery life, and overall LEV performance. Finally, in Section "Conclusion and future research directions", we 
offer a summary of the key findings and contributions of the study, along with implications for future research 
and development in sustainable transportation and energy management.

System modelling
With the objective of reducing the size of the power conversion interface for electric vehicle drive firstly, a Hybrid 
Power Supply (HPS), which integrates battery power into a DC bus in two cascaded stages and PV power in one 
stage is developed as shown in Fig. 1 56,57. The power converter associated with PV source is a unidirectional 
converter which feeds PV power into DC bus through boost  converter58,59. The objective of control of the boost 
converter is necessarily maximum power absorption and transfer to the DC bus. The power converters associated 
with Battery and Supercapacitor is bi-directional converters. Switch  S1 facilitates the buck mode of operation 
for transferring power from DC bus to battery while switch  S3 facilitates the transfer of power from the Battery 
to the DC bus. Similar operation is achieved for supercapacitor with switches  S2 and  S4, respectively. LBat and Lsc 
serve as filter inductors for the transfer of power. The battery feeds the supercapacitor bus in the first stage, which 
feeds the DC bus in the second stage. The proposed topology has two advantages. First, the size of the inductor 
between the battery and supercapacitor interface, LBat, is reduced compared with conventional topology for the 
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Figure 1.  Schematic of HPS-fed SRM drive for light electric vehicle.
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same allowable current ripple. Second, the voltage stress on the power switches at the battery-supercapacitor 
interface is reduced as compared to conventional topology. Secondly, the number of power switches in the SRM 
power converter is also reduce to four by maintaining one switch common in commutation of each phase as 
shown in Fig. 1. The operation of this converter is like an asymmetric bridge converter with the duty cycle of 
common switch is thrice to that of other switches. Switch  G1 commutates in common to all three phases which is 
connected to high side of HPS. Switches  G2,  G3, and  G4 commutate, respectively for each phase connected to the 
low side of HPS. The 6/4 pole SRM is controlled through direct torque control scheme with reference generated 
through machine learning-based torque estimation, as seen from Fig. 1. Space vector modulation is utilized for 
the current control of the drive.

Mathematical model of the system
Hybrid power supply dynamics
The differential equations governing the switching of PV converter are given in (1) and (2), where iPV and VPV 
are the instantaneous current and voltage of PV source, dPV is the duty cycle of converter, VBus is the DC bus 
voltage, LPV is the filter inductor in interface, A is the material constant of PV array.

Now, the maximum power condition is achieved at the instant where.

Now at maximum power point, according to Eq. (3) dPPVdiPV
= 0 which implies

Discretizing Eqs. (1) and (5), we get

where ts is the sampling time and is the reciprocal of switching frequency.
dPV (k + 1) is thus calculated from (6) with sampled values satisfying Eq. (7) which corresponds to maximum 

power point operation.
The differential equation governing the switching of supercapacitor interface converter is given in (8) , where 

isc and Vsc are the instantaneous current and voltage of Battery, d1 is the duty cycle of battery interface converter, 
VBus is the DC bus voltage, Lsc is the filter inductor in interface.

Discretizing the differential equation,

Now, the current to be generated in the next sample being the reference value of current isc
*, duty cycle for 

the next sample is estimated as follows:

The differential equation governing the switching of battery-supercapacitor interface converter is given in 
(11), where iBat and VBat are the instantaneous current and voltage of Battery, d2 is the duty cycle of battery 
interface converter, Vsc is the supercapacitor bus voltage, LBat is the filter inductor in interface.

(1)
diPV

dt
=

VPV − (1− dPV )VBus

LPV

(2)iPV = iSC(e
AVPV − 1)

(3)
dPPV

diPV
= 0 and

dPPV

dVPV

= 0

(4)Considering PPV = VPV .iPV ,
dPPV

diPV
=

d

dt
(VPV iPV ) = VPV + iPV

d

diPV
VPV

(5)VPV + iPV
d

diPV
VPV = 0 implies

dVPV

diPV
+

VPV

iPV
= 0

(6)
iPV (k + 1)− iPV (k)

ts
=

VPV (k)− (1− dPV (k + 1))VBus(k)

LPV

(7)
VPV (k + 1)− VPV (k)

iPV (k + 1)− iPV (k))
+

VPV (k)

iPV (k)
= 0

(8)Lsc
disc(t)

dt
= Vsc(t)− d1(t)VBus(t)

(9)Lsc
isc(k + 1)− isc(k)

ts
= Vsc(k)− d1(k + 1)VBus(k)

(10)d1(k + 1) =
Vsc(k)

VBus(k)
−

Lsci
∗
sc

tsVBus(k)
+

Lscisc(k)

tsVBus(k)

(11)LBat
diBat(t)

dt
= VBat(t)− d2(t)VBus(t)
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Discretizing the differential equation,

Now, the current to be generated in the next sample is the reference value of current iBat
*, duty cycle for the 

next sample is estimated as follows:

SRM Converter dynamics
The switches  G1 and  G2 are turned ON as shown in Fig. 1, which results in + VBus voltage level at Phase A output 
terminals.

The switches  G1 and  G2 are turned OFF, the complementary action of turned OFF  G1 and  G2 force diode  D1 
and  D2 to turn ON, which results in − VBus voltage level at Phase A output terminals and the energy in phase A 
winding is freewheeled into source. During this interval,

Similar dynamics for other phases shall be provided as follows:

during energizing phase B, and

during de-energizing phase B.

during energizing phase C, and

during de-energizing phase C.

Dynamics of SRM:
The magnitude of the rotor flux space vector and its position are very important aspects in designing DTC. The 
rotational d-q coordinated system can easily be designed with the help of rotor magnetic flux space  vector60–62. 
In many existing methods, the flux model has been implemented in this paper by utilizing monitored rotor speed 
and stator voltages along with currents. It is obtained from basic stationary reference frames (α, β) associated with 
the stator. The rotor flux space vector is achieved and are resolved into the α and β components as  follows63,64.

(12)LBat
iBat(k + 1)− iBat(k)

ts
= VBat(k)− d2(t)VBus(k)

(13)d2(k + 1) =
VBat(k)

Vsc(k)
−

LBat i
∗

Bat

tsVsc(k)
+

LBat iBat(k)

tsVsc(k)

(14)VA = VBus = riA +
dϕ(θ , iA)

dt

(15)iA = iBus

(16)VA = −VBus = riA +
dϕ(θ , iA)

dt

(17)iA = −iBus

(18)VB = VBus = riB +
dϕ(θ , iB)

dt

(19)iB = iBus

(20)VB = −VBus = riB +
dϕ(θ , iB)

dt

(21)iB = −iBus

(22)VC = VBus = riC +
dϕ(θ , iC)

dt

(23)iC = iBus

(24)VC = −VBus = riC +
dϕ(θ , iC)

dt

(25)iC = −iBus

(26)[(1− σ)Ts + Tr]
d

dt
ϕrα =

Lm

Rs
usα − ϕrα − ωTrϕrβ − σLmTs

d

dt
isα
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With Tr =
Lr
Rr

 and  Ts =
Ls
Rs

 and σ = 1− Lm
2

LsLrWhere Ls and Lr are stator and rotor self-inductance, Lm is motor magnetizing inductance, Rr and Rs are 
denoted for rotor and stator Resistance, ω is the angular speed of the rotor, Pp is pole pairs in SRM, Tris rotor 
time constant, Tsis stator time constant, and σ is used for leakage constant.

Controller modelling
The control strategy of the proposed system is sophisticated and involves several interconnected layers, each 
serving specific purposes to ensure the efficient operation of the PV-assisted EV  drive65,66. The first layer, which 
is akin to a pattern recognition machine learning algorithm, is responsible for setting the instantaneous torque 
based on the detected driving pattern, estimating the PV power output, and tracking the maximum available 
power from the PV  system67,68. This layer relies on historical data and real-time inputs to make accurate 
predictions and optimize torque and power output. The second layer operates using mathematical models of 
the system and the motor itself. It employs these models to estimate the speed of the motor without relying on 
traditional speed sensors, thereby reducing cost and complexity. Additionally, it controls the hybrid power supply, 
adjusting the flow of power from the PV, battery, and supercapacitor to meet the instantaneous power demand of 
the  drive69,70. The final layer is focused on coordinating the power flow throughout the entire interface. It ensures 
that power is distributed optimally among the different sources to maintain a stable DC bus voltage, regulate the 
system’s response to load changes, and ensure efficient utilization of all available energy sources. This coordination 
is vital for the overall performance and reliability of the PV-assisted EV drive, as it ensures that the drive system 
operates efficiently and reliably under various operating conditions.

Machine learning for torque and PV power estimation, MPP tracking
The machine learning algorithm in the proposed system is fed with three main types of input data: the difference 
between the actual motor speed and the reference speed for torque reference generation, the irradiance level for 
PV power estimation, and the error in the conductance for maximum power point (MPP)  determination71–73. 
The algorithm employs a multi-layered approach, consisting of two inner layers, to establish a relationship 
between the input data and the desired output values. In the first inner layer, pattern recognition techniques are 
used to identify the appropriate torque reference, PV power level, or MPP reference. This process is illustrated in 
Fig. 2, which outlines the implementation of pattern recognition for each of these outputs. The structure of the 
machine learning model is carefully designed, and the weights associated with each connection between nodes 
are updated in each iteration based on a predetermined criterion. This iterative process allows the algorithm to 
learn and improve its performance over time, ultimately leading to more accurate torque references, PV power 
estimations, and MPP determinations.

The pattern recognition-based machine learning algorithm utilized in this study incorporates a deep 
understanding of motor dynamics and solar irradiance variation to predict and optimize the electric vehicle’s 
 performance74,75. Specifically, the algorithm determines optimal torque settings based on input parameters like 
the error function of motor speed, reference speed, and irradiance for PV power estimation. In the initial layer, 
the algorithm estimates the required torque through a unique multi-layered machine learning model, which relies 
on deep neural networks. The model processes the input parameters to predict the output torque, taking into 
account the highly nonlinear characteristics of the electric vehicle’s drive system. The training process employs 
an extensive dataset consisting of 14,000 samples. This dataset encompasses a wide range of driving scenarios, 
including various combinations of vehicle speeds, load profiles, and ambient conditions. The machine learning 
model undergoes iterative adjustments to its internal weights, improving its accuracy and predicting capability 
with each training cycle. The training process involves both forward and backward propagation techniques, 
refining the network’s internal structure to enhance its  performance76,77. This iterative learning process continues 

(27)[(1− σ)Ts + Tr]
d

dt
ϕrβ =

Lm

Rs
usβ − ϕrβ − ωTrϕrα − σLmTs

d

dt
isβ

Figure 2.  Multi-layered machine learning for pattern recognition for torque, PV power and MPP.
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until the algorithm achieves a satisfactory level of accuracy in predicting the desired torque. The performance 
of the machine learning algorithm is evaluated through rigorous testing, ensuring its accuracy, precision, and 
robustness across diverse driving conditions. The algorithm’s superior predictive capabilities are showcased 
through its ability to accurately determine torque references, enabling optimal power management and efficient 
energy utilization in light electric vehicles. These advancements in machine learning-based control algorithms 
not only enhance the efficiency and performance of electric vehicle drives but also pave the way for future 
innovations in autonomous driving and intelligent transportation systems. Algorithm for Multi-layered ML 
pattern recognition model implementation is shown in Fig. 3.

Model based SRM Speed estimation
Speed estimation is a critical aspect of motor control in electric vehicle (EV) systems. It is traditionally achieved 
through the use of speed sensors, which can be costly and introduce complexity to the  system78–80. To address 
these challenges, we propose an innovative approach that leverages mathematical models and a model reference 
adaptive controller (MRAC) to estimate speed without the need for physical speed sensors. This approach is 
illustrated in Fig. 4, which shows a block diagram of the speed estimation process. In this system, the output of 
the switched reluctance motor (SRM) converter depends on both the voltage at the DC bus (VBus) and the pulses 
generated by the pulse width modulation (PWM) generator. These converter voltages can be accurately estimated 
using mathematical expressions based on the motor and converter models. This eliminates the need for physical 
voltage sensors, significantly reducing the cost and complexity of the system. The core of the speed estimation 
process lies in the mathematical model of the SRM converter, which accurately describes the relationship between 
VBus, the PWM pulses, and the motor speed. This model is utilized in the MRAC to adaptively estimate the motor 
speed based on the observed behavior of the converter. Overall, this approach offers a cost-effective and reliable 
alternative to traditional speed sensing methods, making it an attractive option for EV applications.

The following equations can estimate the speed:

(28)vsds = isdsRs + Lls
d

dt

(

isds
)

+
d

dt

(

ψ s
dm
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Figure 3.  Algorithm for Multi-layered ML pattern recognition model implementation.
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where σ = 1−
L2m
LrLs

Similarly

where Tr =
Lr
Rr

.
Hence, the rotor speed is calculated by the below equation

Model based current control of HPS
The proposed control structure for the Hybrid Power Supply (HPS) system in Light Electric Vehicles (LEVs) is a 
novel approach that combines principles of Proportional-Integral (PI) control for current reference generation 
and Model Reference Adaptive Controller (MRAC) for duty cycle generation. The main objectives of this control 
algorithm are to regulate the DC bus voltage to its permissible value and facilitate instantaneous power supply 
sharing between the battery and supercapacitor for varying load conditions. The control scheme, as depicted in 
Fig. 5, consists of two primary components: the current reference generation and the duty cycle generation. The 
first part focuses on generating the appropriate current references for the battery and supercapacitor based on 
the desired DC bus voltage. It involves the use of a PI controller that adjusts the current references to maintain 
the DC bus voltage within acceptable limits. The second part of the control scheme involves the generation of the 
duty cycles for the converters that interface with the battery and supercapacitor. These duty cycles are calculated 
based on the power sharing requirements and the load variations. The MRAC plays a crucial role in ensuring that 
the duty cycles are adjusted in real-time to meet the dynamic power demands of the system. Overall, the proposed 
control structure offers a robust and efficient solution for regulating the HPS system in LEVs. It provides precise 
control over the DC bus voltage and enables seamless power sharing between the battery and supercapacitor.

The PV interface converter, situated within the Hybrid Power Supply (HPS) system of Light Electric Vehicles 
(LEVs), performs a critical role in managing power distribution efficiently. It operates independently from 
the battery and supercapacitor converters, ensuring that the Direct Current (DC) bus receives the maximum 
available power from the solar panels at all times. This autonomous operation ensures the optimal utilization 
of solar energy in the system. Meanwhile, the battery and supercapacitor converters complement the power 
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supply by providing additional power when the PV system alone cannot meet the demand. The battery and 
supercapacitor converters are designed to distribute the remaining power needed to meet the load demand 
equitably. This ensures a balanced and consistent power supply to the vehicle. To facilitate seamless power 
distribution among the PV, battery, and supercapacitor converters, a sophisticated control scheme has been 
developed. This control strategy is based on a model-referred duty estimation-based Proportional-Integral (PI) 
current regulation approach. This approach continually assesses the current states and references of the converters 
to generate optimized switching pulses. These pulses regulate power flow, maintain the DC bus voltage, and 
enable effective power sharing among the converters. As a result, the model-referred duty estimation-based PI 
current regulation scheme ensures efficient and balanced power distribution within the HPS system of LEVs. 
This innovative approach significantly contributes to the advancement of sustainable and eco-friendly electric 
transportation by improving vehicle performance, reliability, and energy efficiency.

Error in the DC bus voltage serves as input to PI regulator, which determines the magnitude and direction of 
current supplied by the hybrid combination of battery and super capacitor. Then, the weighted average current 
estimator separates the reference for battery current and weighted transient current estimator separates the 
reference current to be absorbed or delivered by supercapacitor at instant. The weights for average and ripple 
current estimators are the factors by which hybrid reference current ih

* is raised by (1-d2nom) and (1-d1nom) 
respectively, where d2nom and d1nom are the nominal duty cycles of stage 1 interface converter and stage 2 interface 
converter respectively. During average and ripple extraction from reference current, the averaging of reference 
current is limited by the c-rate of battery and the ripple extracted shall be supplied by the supercapacitor 
instantaneously. Further, the model equations described in (6) concerning the condition satisfied in (7) generate 
the instantaneous duty cycle for PV interface converter. The duty thus generated is compared to constant 
frequency triangular carrier waveform to generate switching pulses for  SPV. Also, Eq. (16) serves as a reference 
to generate duty cycle for the stage 2 converter while Eq. (10) serves as a reference for duty cycle generation for 
stage 1.

Coordinated control of drive
Coordinated control for optimal current regulation into Switched Reluctance Motor (SRM) for speed and torque 
commands plays a crucial role in ensuring the smooth and efficient operation of the SRM  drive81–83. The control 
scheme is depicted in Fig. 6, where the SRM model estimates torque based on phase voltages and currents. 
The obtained instantaneous torque reference from the supervised model is then compared with the estimated 
torque, resulting in torque hysteresis. Similarly, flux hysteresis is developed from the SRM model, as illustrated 
in Fig. 6. These two hysteresis components serve as inputs for determining the instantaneous voltage vector, 
as presented in Table 1. In Fig. 7, the corresponding voltage vectors are generated from the integration of the 
estimated speed to identify the sector. However, due to the specific topology of the converter with four switches, 
one switch common in all three phases, the generated vectors are identified differently, as shown in Fig. 7. 
Accordingly, the corresponding switches of the leg are turned ON to control the current flow into the SRM. 
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Figure 6.  Control block diagram for SRM.

Table 1.  Current Control Space Vector Dynamic Switching.

Flux error Torque error Magnitude shift Phase shift

Positive Positive Increase Anti-clockwise

Positive Negative Increase Clockwise

Negative Positive Decrease Anti-clockwise

Negative Negative Decrease Clockwise
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This comprehensive approach ensures the effective and coordinated control of the SRM drive, optimizing its 
performance and efficiency in various operating conditions.

Simulation results and performance evaluation
A detailed simulation of the proposed drive was conducted using MATLAB/SIMULINK, wherein the load was 
modeled to reflect real-world electric vehicle drive cycles, encompassing scenarios like acceleration, maintaining 
a constant velocity, and vehicle deceleration. The parameters employed in the system simulation are outlined in 
Table 2, covering various aspects such as power sources, the motor itself, power switches, filter elements, and 
specifications pertinent to machine learning. Throughout the simulation, the proposed drive underwent rigorous 
testing to assess its performance across a spectrum of critical metrics. Initially, the accuracy and real-time viability 
of the machine learning algorithm were scrutinized for its capacity to generate torque references, estimate PV 
power, and identify the maximum power point (MPP) voltage. Subsequently, the regulation of hybrid power 
supplies (HPs) and the distribution of power among diverse sources were evaluated. Furthermore, the drive 
was put through a battery of tests to evaluate its response in different operational scenarios. This encompassed 
examining steady-state torque ripple, the transient response of torque and speed, and the response when reversing 
the speed command. Through this exhaustive testing, the performance characteristics and the efficacy of the 
proposed drive were gauged, ensuring a thorough understanding of its capabilities and limitations in varied 
operating conditions.

Performance of supervised learning
The training and validation processes of the machine learning algorithm were meticulously monitored and 
evaluated. Table 3 elucidates the sample combinations for training data, delineating the pairing of torque reference 
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Figure 7.  Vector based instantaneous switch combinations for SRM current control.

Table 2.  Simulation Parameters.

Parameter Simulation

PV source 660  Wp,  VOC = 36 V,  ISC = 5 A

Battery source 200 AH,  Imax = 20 A, V = 12 V

Super capacitor 58 F, 18 V

DC Bus nominal voltage 48 V

LBat 0.8 mH

LBat 1 mH

Lsc 1 mH

CDC 440 µF

Kp,  Ki 0.0325, 0.224

SRM power rating 5 HP

Nominal speed 3000 rpm

Maximum current 20 A

Supervised learning parameters

Inputs: e(N) (or I or ΔG)

Outputs: T* (or  PPV or  VPV*)

Error bound: 0.01

Activation Function: Sigmoid
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with corresponding speed and PV power estimations. The subsequent analyses of training and validation 
performance are captured through various figures. For instance, Fig. 8 offers insight into the tracking of target 
values across iteration cycles, with each iteration cycle manifesting a distinct fitness level denoting the learning 
capability of the artificial neural network (ANN) for the training  pattern84,85. Moreover, Fig. 9 illustrates the 
gradient of error, showcasing how it stabilizes after eight iterations. The validation checks are also graphically 
represented in Fig. 9. Figure 10 presents an error histogram for a sample set of twenty data points, exhibiting 
the frequency distribution of errors encountered during the validation process. Encouragingly, for 95 percent of 
these data points, the mean square error was observed to be within a negligible range of 0.1 percent. To further 
validate the efficacy of the algorithm, Fig. 11 offers an in-depth analysis of the mean squared error, with specific 
emphasis placed on the zeroing of mean squared error from the eighth iteration onwards. This meticulous analysis 
of training and validation processes serves to affirm the reliability and robustness of the developed machine 
learning algorithm in accurately estimating torque reference, speed, and PV power.

Performance of HPS
In Fig. 12, the voltage profiles of the DC bus, supercapacitor bus, and battery bank are depicted, demonstrating 
their adept regulation to nominal values with precision, as demonstrated in Fig. 6. A comprehensive examination 
of this regulation process and its associated voltage stress is provided in the subsequent subsection. Notably, the 
ensuing discussion reveals an admirably stringent regulation standard, wherein a deviation of under 5 percent 
is observed across the entire span of load variations within the nominal range.

In the simulated scenario, the voltage regulation is meticulously maintained to nominal values, ensuring 
precise control over the distribution of power among the sources. As displayed in Fig. 13, the power shares reflect 
the current allotments among the different components. Furthermore, the figure visually represents how the 
PV-generated power, which is dependent on irradiance, is channeled to the DC bus. Meanwhile, the battery and 

Table 3.  Sample Training Data for ANN.

Speed error (rpm) Change in torque reference (N-m) Irradiance (W/m2) Normalized power generated (percentage)

22  − 0.2 504 25.39472593

29  − 0.28 465 23.13561481

98  − 0.9 465 23.13561481

90  − 0.82 487 24.40998519

 − 42 0.4 569 28.92241481

 − 40 0.39 505 25.21515556

 − 38 0.37 474 23.41945185

Figure 8.  Training of machine.
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Figure 9.  Gradient of mean squared error and validation checks.

Figure 10.  Error histogram for twenty test samples.

Figure 11.  Performance of supervised learning pattern.



13

Vol.:(0123456789)

Scientific Reports |         (2024) 14:5661  | https://doi.org/10.1038/s41598-024-55988-5

www.nature.com/scientificreports/

supercapacitor share the remaining power requirements, with the supercapacitor rapidly accommodating any 
sudden load variations. This flexible arrangement ensures the efficient and seamless adaptation of the system to 
changing conditions, optimizing the performance of the light electric vehicle under different driving scenarios.

Performance of SRM control
The performance of the drive in response to a 50 N-m torque increase was examined through simulation. 
As shown in Fig. 14, the drive torque response exhibits precise tracking of the new torque demand, with a 
transient time of just 0.01 s and zero steady-state error. This rapid adjustment is complemented by a minor dip 
of 15 rpm in speed, as depicted in Fig. 15, which is quickly resolved within 0.4 s of the changeover. These results 
underscore the drive’s ability to efficiently adapt to abrupt variations in torque demand, ensuring a smooth and 
uninterrupted driving experience. The implementation of a multi-layered machine learning algorithm, including 
pattern recognition for instantaneous torque setting and PV power estimation, contributes significantly to the 
drive’s agility and accuracy in responding to dynamic torque demands.

Simulating the drive for an 80 N-m step change in speed demand provides further insights into its robust 
performance. As illustrated in Fig. 16, the drive speed precisely tracks the new speed demand, exhibiting 
zero steady-state error and a transient time of merely 0.08 s. Concurrently, a surge of 10 N-m in drive torque 
is observed in Fig. 17 during the transition, swiftly settling within 0.01 s. The torque response under these 
conditions highlights the drive’s effective management of sudden changes in speed demand, showcasing its 
adaptability and reliability in varying driving scenarios. The implementation of the multi-layered machine 
learning algorithm significantly contributes to this precise and agile response, underscoring its role in ensuring 
smooth and consistent drive performance.

Simulating a scenario of a sudden speed reversal from + 80 rpm to – 80 rpm provides crucial insights into the 
drive’s resilience and performance under extreme conditions. In this experiment, we examined how the drive 
responds to such abrupt changes in speed demand, ensuring the safety and stability of the vehicle in unpredictable 
situations. As depicted in Fig. 18, the drive’s speed tracking capabilities are commendable, showcasing an 

Figure 12.  Voltage of DC Bus, Supercapacitor and Battery bank.

Figure 13.  Power delivered by sources and load power demand.
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error-free transition and a remarkably swift transient time of just 0.08 s. This rapid response underscores the 
drive’s agility and adaptability, vital attributes for navigating dynamic and ever-changing environments. However, 
the transition also exposes a brief dip in drive torque, as illustrated in Fig. 19. This temporary dip occurs due to 
the absence of a load during the transient speed reversal, but it is rapidly corrected within a mere 0.01 s. This 
quick recovery reflects the drive’s robustness and its ability to maintain consistent performance even during 
the most challenging conditions. By simulating scenarios such as these, we can better understand the drive’s 
capabilities and potential areas for improvement. Furthermore, it allows us to refine control strategies and drive 
algorithms, ultimately enhancing the overall performance, safety, and efficiency of electric vehicles.
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Comparison to existing power supplies
To provide a comprehensive evaluation of the proposed hybrid power supply (HPS) system and its accompanying 
control system, we conducted a rigorous comparison with existing power supplies commonly used in PV-assisted 
electric vehicle (EV) drives. This comparison aimed to assess the robustness and accuracy of the proposed 
HPS and control mechanism across various performance metrics, including DC bus regulation, stress on the 
supercapacitor for transient requirements, and optimal sizing of power supply components. Table 4 serves as a 
visual representation of the comparative analysis, highlighting the key attributes and performance characteristics 
of the proposed HPS and control system. It illustrates how the proposed system fares against conventional power 
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supplies in terms of addressing transient load demands, maintaining the stability of the DC bus voltage, and 
ensuring the overall reliability and efficiency of the power delivery. Through this comprehensive comparison, 
we aim to demonstrate the superiority of the proposed HPS and control mechanism in terms of robustness, 
accuracy, and performance, setting a new standard for PV-assisted EV drives (Table 5).

Drive component sizing comparison
The merit of the proposed HPS topology in terms of steady-state ripple in battery interface inductor and series 
switch voltage stress is evaluated in this section. The mathematical expression for inductor current ripple is 
obtained as follows:

For a bi-directional converter with inductor at battery side for conventional topology, following the differential 
equation as

And for cascade converter topology, following the differential equation as in (14)

Substituting for considered nominal values for VBus , VBat , and Vsc , the following expressions for battery 
inductor size are obtained for conventional topology as

And for cascaded converter topology it is

The percentage change in battery inductor size as per considered nominal values of voltages is obtained as

Now, the voltage sizing of diodes and switches in SRM converter was obtained from the blocking voltage 
level during turn OFF interval of the respective switch or diode. In these intervals, the blocking voltage across 
the switch combination was obtained as  Vsw =  VS/2. The diode during turned OFF, should block the maximum 
value of source voltage. Therefore, the voltage rating of any diode was  VD =  VS/2. The RMS current rating of 
power switches is determined from power to be delivered by the converter. Now, the RMS current rating of  Gx 
or  Dx where X = 2,3,4 is obtained as

and that of  G1 and  D1 is  3Irms,X
The battery interface converter, a critical component in electric vehicles (EVs) using photovoltaic (PV) power, 

was subjected to rigorous analysis in this study. A comparison was made between the conventional topology 
and the proposed cascaded converter topology, focusing on the reduction of component sizes while maintaining 

(35)LBat =
VBus(VBus − VBat)

�iLBat fsVBat

(36)LBat =
Vsc(Vsc − Vbat)

�iLBat fsVBat

(37)LBat =
144

�iLBat fs

(38)LBat =
9

�iLBat fs

%�LBat = 93.75

(39)Irms,X =
Pavg

3Vph,rms

Table 4.  Comparison of Power Supplies for PV assisted EV Drive.

17 21 25
Proposed control for conventional 
converters

Proposed control for cascaded 
converters

Power rating 480 W 40 W 80 W 900 W 900 W

DC bus voltage 48 V 48 V 48 V 48 V 48 V

DC bus regulation 12.5% 5.3% 4.25% 3.125% 2.7%

Super capacitor ratings 65 F, 18 V 65 F, 18 V 65 F, 18 V 58 F, 18 V 58 F, 18 V

Voltage stress percentage 2.5% 2.4% 2.4% 2.2% 1.6%

Table 5.  Power Converters sizing comparison.

Conventional drive Proposed drive

HPS stage 2 inductor size 8 mH 0.56 mH

HPS stage 2 series switch voltage stress 1 pu 0.16 pu

SRM converter power switches 6 4
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or improving performance. The battery interface inductor, an essential element, was computed using Eqs. (19) 
and (20) for both topologies. It was found that the proposed cascaded converter topology led to a substantial 
reduction in the inductor’s size. Additionally, the voltage stress on series switch S2 was evaluated under OFF 
conditions. The results showed a significant decrease in voltage stress from 1 pu in the conventional topology to 
only 0.16 pu in the cascaded converter topology. This reduction in voltage stress, along with the downsizing of 
the battery interface components, is a testament to the effectiveness of the proposed topology. Furthermore, the 
sizing of switches in the switched reluctance motor (SRM) converter was optimized, resulting in fewer switches 
and improved efficiency without compromising performance. The results of this comparative analysis underscore 
the potential of the proposed topology to enhance the performance and efficiency of battery interface converters 
in EVs using PV power.

Comparison to existing drive output characteristics
The performance of the proposed hybrid power supply (HPS) with the proposed control scheme was compared 
to existing power supplies typically used in photovoltaic (PV)-assisted electric vehicle (EV) drives. Additionally, 
the proposed control strategy was also applied to a conventional power supply to assess its robustness and 
effectiveness. Table 6 provides a detailed comparison of the proposed control scheme with the HPS in terms of 
DC bus regulation, supercapacitor stress for transient requirements, and power supply component sizing. The 
results demonstrate the robustness and accuracy of the proposed control strategy, particularly when used in 
conjunction with the HPS. The analysis indicates that the proposed control scheme can effectively regulate the DC 
bus voltage, manage transient requirements without placing excessive stress on the supercapacitor, and optimize 
power supply component sizing. These findings underscore the potential of the proposed control scheme and 
HPS in enhancing the performance and efficiency of PV-assisted EV drives.

Conclusion and future research directions
In conclusion, this paper has presented a comprehensive study on the development and performance evaluation of 
a novel PV-assisted EV drive system with a focus on efficient and sustainable power management. We introduced 
a unique topology and mathematical model for the proposed drive, which integrates hybrid energy storage 
solutions and advanced control strategies, including machine learning. Our simulation results demonstrate the 
effectiveness and real-time feasibility of the machine learning algorithm for torque reference generation, PV 
power estimation, and MPP voltage identification, with a mean squared error within 0.1 percent for 95 percent 
of samples after the eighth iteration. Additionally, we showcased the robustness and accuracy of our control 
scheme through various performance indices such as DC bus regulation, power sharing among various sources, 
and transient response, with stringent regulation of less than 5 percent observed for all possible variations in the 
nominal range of the load. Our study also introduced a new approach to current control in a hybrid power system 
that addresses load changes effectively and efficiently. This approach, based on model reference adaptive control, 
offers improved performance over traditional methods. Additionally, our proposed control scheme for the SRM 
drive provides precise torque control, reduced torque ripple, and fast transient response. Our simulation results 
confirm that our proposed control strategy successfully handles changes in torque demand and speed commands, 
ensuring accurate and rapid responses, with a torque ripple of 0.04 pu and a speed settling time of 0.5 s for a step 
change in reference speed. We compared the performance of our proposed HPS with existing power supplies for 
PV-assisted EV drives, showcasing superior DC bus regulation and reduced supercapacitor voltage stress, with 
a DC bus regulation as low as 2.7 percent and a supercapacitor voltage stress as low as 1.6 percent. Moreover, 
we presented a detailed analysis of the sizing of drive components, including the battery interface inductor and 
series switch, demonstrating significant reductions in size and voltage stress with our proposed topology, with a 
93.75 percent reduction in battery interface inductor size and a 0.16 pu series switch voltage stress.

Overall, this study makes several significant contributions to the field of PV-assisted EV drives. We introduce 
a novel topology and mathematical model, propose efficient control strategies, and provide detailed simulations 
and analyses of the performance of the proposed system. Our work demonstrates the feasibility and benefits 
of integrating PV, battery, and supercapacitor energy storage systems in an EV drive, paving the way for more 
sustainable and efficient electric mobility solutions. Furthermore, our findings contribute to the development 
of advanced control and power management strategies for renewable energy-based transportation systems, 
promoting the adoption of PV-assisted EV drives and supporting the transition towards a greener and more 
sustainable future.

Future research directions for PV-assisted EV drives encompass several key areas. One such area is the 
advancement of control strategies. Deep reinforcement learning and artificial intelligence have shown promise in 
enabling real-time optimization of PV-assisted EV drives. Research in this domain can lead to more sophisticated 
and adaptive control algorithms that optimize energy efficiency and overall performance. Another area of interest 

Table 6.  Comparison of Power Supplies for PV-assisted EV Drive.

48 52 53 54 Proposed drive

Torque ripple 0.06 pu 0.06 pu 0.05 pu 0.05 pu 0.04 pu

Torque settling 0.02 s 0.02 s 0.02 s 0.015 s 0.01 s

Speed settling 0.8 s 0.8 s 0.8 s 0.6 s 0.5 s

Speed reversal 0.8 s 0.8 s 0.8 s 0.6 s 0.7 s
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is the exploration of advanced multi-level converter designs. These converters have the potential to improve 
power density and reduce component stress, thereby enhancing the overall efficiency and reliability of PV-assisted 
EV drives. Innovative battery management techniques also offer promising avenues for future research. Energy 
storage integration is critical for the effective operation of PV-assisted EV drives, and developing novel battery 
management systems can improve the overall energy efficiency and lifespan of these systems. Continuous system 
optimization and performance evaluation are also important areas for future research. By rigorously evaluating 
the performance of PV-assisted EV drives under various operating conditions, researchers can identify areas for 
improvement and fine-tune the design and control strategies to enhance the system’s reliability and efficiency. 
Furthermore, researchers can extend the scope of their work to include other renewable energy sources for 
hybrid energy systems. This can involve integrating technologies such as wind power or geothermal energy to 
create more robust and resilient energy systems for EVs. Rigorous real-world testing and validation are crucial 
for ensuring the reliability and safety of PV-assisted EV drives. Researchers should collaborate with industry 
partners and government agencies to conduct extensive testing and validation under various operating conditions 
to ensure that these systems meet the highest standards of safety and performance. Finally, accelerating the 
commercialization and adoption of PV-assisted EV drives is essential for realizing their full potential. This can 
be achieved through industry-government partnerships and incentives that encourage the widespread adoption 
of these systems. By focusing on these key areas, researchers can help advance the state of the art in PV-assisted 
EV drives and contribute to a more sustainable and resilient future in the realm of electric mobility.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author upon 
reasonable request.
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