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Automatic measurement of fetal 
anterior neck lower jaw angle 
in nuchal translucency scans
Yulin Peng 1,2,3, Yingchun Luo 1,2, Junyi Yan 4*, Wenjuan Li 1, Yimin Liao 1, Lingyu Yan 5, 
Hefei Ling 6 & Can Long 1

This study aims at suggesting an end-to-end algorithm based on a U-net-optimized generative 
adversarial network to predict anterior neck lower jaw angles (ANLJA), which are employed to define 
fetal head posture (FHP) during nuchal translucency (NT) measurement. We prospectively collected 
720 FHP images (half hyperextension and half normal posture) and regarded manual measurement as 
the gold standard. Seventy percent of the FHP images (half hyperextension and half normal posture) 
were used to fit models, and the rest to evaluate them in the hyperextension group, normal posture 
group (NPG), and total group. The root mean square error, explained variation, and mean absolute 
percentage error (MAPE) were utilized for the validity assessment; the two-sample t test, Mann–
Whitney U test, Wilcoxon signed-rank test, Bland–Altman plot, and intraclass correlation coefficient 
(ICC) for the reliability evaluation. Our suggested algorithm outperformed all the competitors in all 
groups and indices regarding validity, except for the MAPE, where the Inception-v3 surpassed ours 
in the NPG. The two-sample t test and Mann–Whitney U test indicated no significant difference 
between the suggested method and the gold standard in group-level comparison. The Wilcoxon 
signed-rank test revealed significant differences between our new approach and the gold standard in 
personal-level comparison. All points in Bland–Altman plots fell between the upper and lower limits 
of agreement. The inter-ICCs of ultrasonographers, our proposed algorithm, and its opponents were 
graded good reliability, good or moderate reliability, and moderate or poor reliability, respectively. 
Our proposed approach surpasses the competition and is as reliable as manual measurement.
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MAPE  Mean absolute percentage error
MMRFRMB  Multi-level multi-scale receptive field residual modular block
NPG  Normal posture group
NQCG  Non-quality control group
NT  Nuchal translucency
NTQR  Nuchal Translucency Quality Review
QCG  Quality control group
RFDB  Receptive field dense block
RFRMB  Receptive field residual modular block
RFBs  Receptive field block with small corns
RMSE  Root mean square error
SSC  Short skip connection
TG  Total group
WGAN-GP  Wasserstein generative adversarial network with a gradient penalty

Nuchal translucency (NT), the most frequently utilized ultrasonographic soft mark, refers to the anechoic patches 
at fetal napes between the hyperechoic skin and hyperechoic subcutaneous soft tissue at the gestation age of 
 111/7 to  137/7  weeks1,2. Floods of studies have proved the clinical value of NT, which makes NT scan a standard 
component of early prenatal  screening3,4.

Much work has been done on NT-related artificial intelligence (AI) studies. Most of the studies focused on 
NT region location or NT measuring  process5–16, and a few on midsagittal plane  discrimination17–19. Hardly any 
have involved the other NT measurement  criteria20,21. However, no criterion can be disregarded as they form 
the foundation of NT measurement  accuracy2,22,23. We take for example fetal head posture (FHP), which must 
maintain appropriate posture over NT  measurement24,25. Otherwise, hypertension can cause an NT overestima-
tion of up to 0.62 mm and hyperflexion an NT underestimation of at most 0.5  mm2,22.

U-net networks, which look like U’s, are full convolutional networks optimized by fully convolutional 
 networks26. The U-type networks need a smaller dataset size and boast higher segmentation accuracy than other 
convolutional neural  networks27. The vanilla U-net network compromises a down-sampling path (encoder) in 
the left of the network and an up-sampling path (decoder) in the right. The former is designed to collect the 
context information, and the latter to pinpoint the location. The former consists of several 3 × 3 convolutional 
networks and 2 × 2 max pooling layers. The active function, f (x) , utilizes  ReLU28 and is defined with τ > 0 as

The deconvolution halves the number of channels, and its result is then spliced with the corresponding feature 
map. The spliced feature map is next convolved with a 3 × 3 kernel. The last layer applies a 1 × 1 convolution to 
map the 2-bit feature vectors onto the output layer. Nonetheless, the adaptation of vanilla U-net to new scenarios 
consists of numerous degrees of freedom involving the exact architecture, preprocessing, training, and inference, 
whose choices depend on each other and considerably influence the overall  performance29.

Generative adversarial networks (GANs), first proposed in  201430, are an emerging technique for learning 
deep features without demanding large amounts of annotated training data. The GANs are typically split into 
two parts: the generator and the discriminator. Conditional  GANs31, a sort of classical GAN model, are predeces-
sors of many GANs, say adversarially learned inference (ALI)32 or bidirectional GANs (BiGANs)33. The ALI and 
BiGANs supply simple but effective extensions that introduce an inference network where the discriminators 
inspect joint (data, latent) pairs. The structures of these two kinds of networks are illustrated in Supplementary 
Fig. S1.

In this study, we provided an end-to-end prediction model based on a U-net-optimized GAN to forecast 
anterior neck lower jaw angle (ANLJA) (Fig. 1a), which was proposed to define FHP by Nuchal Translucency 
Quality Review (NTQR) Program. We then comprehensively evaluated all involved models on both validity 
and reliability.

Results
General information of study object
We collected an FHP image for each 720 singleton gravidas we recruited. Medians and interquartile ranges 
(IQRs) were adopted to describe objects’ general information because most variables conformed to non-normal 
distributions. The study objects’ general information is presented in Supplementary Table S1.

Validity evaluation
As shown in Fig. 2 and Table 1, the suggested algorithm surpassed all its competitors in all groups and indices, 
apart from the mean absolute percentage error (MAPE), where the Inception-v3 outperformed ours in the 
normal posture group (NPG).

Reliability evaluation
As indicated in Fig. 3a,b, and Table 2, we could not provisionally confirm any significant difference between the 
means of the predicted values of our new approach and the ground truth in the NPG and hyperextension group 
(HG). Neither could we temporarily when comparing the medians of the predicted values of our new approach 
to their ground truth in the total group (TG).

(1)f (x) =

{

x, x > 0

τ(ex − 1), x ≤ 0
.
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As seen in Fig. 3c and d, there is a significant difference between predicted values and their own ground truth 
in both NPG and HG.

The mean errors between the predicted values of our new method and the ground truth, as well as the limit 
of agreement (LoA), were illustrated in Fig. 3e and f. The Bland–Altman plots indicated that all points remained 
within the domain of [− 95% LoA, + 95% LoA]. It means no significant difference between the reliability of our 
novel method and the gold standard (manual measurement).

As presented in Fig. 3g, the two ultrasonographers’ intra-intraclass correlation coefficients (intra-ICCs) were 
graded good or excellent reliability, and their inter-intraclass correlation coefficients (inter-ICCs) good reliability. 
The inter-ICC of our suggested algorithm was ranked as good or moderate reliability, and the other algorithms 
as moderate or poor reliability.

Ablation analysis
As described in Table 3, our proposed method (U-net + Wasserstein generative adversarial network with a gradi-
ent penalty (WGAN-GP) + multi-level multi-scale receptive field residual modular block (MMRFRMB)) is the 
most effective one with a root mean square error (RMSE) of 5.21°, an explained variation (EVA) of 93.43%, and 
a MAPE of 10.85%. The combination of U-net, BiGAN, and MMRFRMB is the second best, and that of U-net 
and WGAN-GP the third best. The model containing only U-net performed worst in the ablation test.

Figure 1.  Data collection and preprocessing. (a) Original image of anterior neck lower jaw angle (ANLJA); 
(b) illustration of ANLJA measurement; (c) raw ANLJA image from an ultrasonoscope; (d) 400 × 400-pixel 
screenshot of ANLJA captured manually.
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Discussion
Most NT-related AI studies deal with narrow NT location or measurement problems, and only a few handle 
the issues of NT measurement criteria. Nevertheless, it is vital to ascertain whether an NT image follows all 
criteria and which criterion the NT image violates. Firstly, the violation causes measurement inaccuracies in all 
 probability2,22,23. Secondly, it is necessary to identify which criterion or criteria have been broken in real-time 
NT measurement if we wish ultrasonoscope robots to obtain standard NT images and determine precise NTs 

Figure 2.  Comparison of different ANLJA prediction algorithms in validity assessment. (a), (b), and (c) are 
the bar charts of root mean square error (RMSE), explained variation (EVA), and mean absolute percentage 
error (MAPE), respectively. The smaller the RMSEs and MAPEs, the higher the performance; the bigger the 
EVA, the better the models operate. TG, NPG, and HG denote the Total group, Normal posture group, and 
Hyperextension group, respectively.

Table 1.  Comparison of ANLJA prediction models concerning validity. ANLJA anterior neck lower jaw angle, 
RMSE root mean square error, EVA explained variation, MAPE mean absolute percentage error.

Models

Total group Normal posture group Hyperextension group

RMSE (°) EVA (%) MAPE (%) RMSE (°) EVA (%) MAPE (%) RMSE (°) EVA (%) MAPE (%)

Proposed algorithm 5.21 93.43 10.85 6.88 78.37 13.89 4.50 79.62 7.89

ResNet-34 7.92 86.57 14.14 8.62 65.19 16.53 5.11 74.31 10.54

ResNet-50 8.68 83.63 16.88 9.77 48.55 19.29 6.89 59.14 12.48

Inception-v3 7.27 88.91 18.36 7.79 71.67 17.74 7.23 48.75 15.40

Vgg-16 11.54 75.72 23.73 13.21 26.41 26.17 10.42 42.61 20.51
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Figure 3.  Comparison of algorithms and ultrasonographers in reliability assessment. (a) Group-level 
comparison of mean values of suggested method and manual measurement with two-sample t test (standard 
deviation bars). (b) Group-level comparison of medians of suggested method and manual measurement 
with Mann–Whitney U test and illustration of distributions of differentials between suggested method and 
manual measurement; (c) and (d) Personal-level comparison of suggested method to manual measurement 
with Wilcoxon signed-rank test. (e) and (f) Bland–Altman plots for reliability assessment between proposed 
algorithm and manual measurement. (g) Reliability evaluation for algorithms and ultrasonographers by 
intraclass correlation coefficient (ICC) with 95% confidence intervals. Poor reliability: ICCs below 0.50; 
moderate reliability: ICCs from 0.50 to 0.75; good reliability: ICCs between 0.75 and 0.90; excellent reliability: 
ICCs above 0.90. Two ultrasonographers’ ICCs are intra-ICCs, and the rest ICCs are inter-ICCs. NPG, Normal 
posture group; HG, Hyperextension group; TG, Total group; LoA, limit of agreement.
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automatically. That is because different situations require different solutions: we should shift non-midsagittal 
planes to midsagittal ones but wait for hyperextension or hyperflexion fetuses to revert to normal FHP.

We concentrated on the FHP scenario owing to the scarcity of FHP studies pertinent to NT-related AI 
 research17–19,34. NTQR’s quantified definitions were adopted to prevent ambiguity because theirs are more unam-
biguous and easier to accept by novices than other ambiguous  editions24. After careful consideration, we volun-
teered first to handle the ANLJA prediction problem to lay the groundwork for automatic FHP identification.

Our new approach boasts the following advantages contrasted with traditional deep learning-based models:
First, an end-to-end prediction algorithm for ANLJA was designed under an optimized U-net structure, 

which could precisely identify the two sides of ANLJAs and cope with relatively small datasets in medical image 
segmentation tasks.

Second, the receptive field blocks with small corns (RFBs) could not only efficiently diminish the parameter 
number and time complexity but also extract more details with their small cores. These enable the RFBs to 
abstract multi-scale features with minimized time complexity.

Third, each level of a receptive field dense block (RFDB) could receive features from the last RFDB, which for-
warded the extractive capability of the local residual learning (LRL). The RAM was a hybrid attention mechanism 
composing channel and spatial attention. The former was used to learn attention to retrieve high-frequency infor-
mation, and the latter was utilized to distinguish between channels to concentrate on low-frequency information.

Fourth, the MMRFRMB and receptive field residual modular blocks (RFRMB) deployed a long skip con-
nection (LSC) and short skip connection (SSC), respectively. These made it easier for our model to bypass low-
frequency information, further the LRL, and focus on data with channel attention.

Last but not least, we applied the discriminator network derived from the WGAN-GP and then executed 
the regularization to the Lipschitz-1 by making the constraint conditions the penalty terms of object functions. 
This discriminator network could remarkably boost the training effect and stability of GAN and resolve the slow 
convergence problem in the original Wasserstein generative adversarial network.

We compared our novel approach to four traditional deep learning models in the validity assessment by 
means of the RMSE, MAPE, and EVA.

The suggested method boasted the lowest RMSE in the TG and HG and the second lowest RMSE in the NPG. 
Meanwhile, the proposed approach fared best in all groups regarding the EVA and MAPE (Fig. 2 and Table 1).

Although the P values exceeded the significant level in all groups in the group-level comparison, all power 
of test were below 80% (Fig. 3a,b, and Table 2). We can only temporarily confirm that there is no significant dif-
ference between the two methods at group levels unless the sample size is expanded to such a point where the 
power of test reaches 80%35. Nonetheless, we need not do that despite the uncertainty because practitioners are 
more concerned with how closely different approaches correspond to one another at personal levels. Therefore, 
using the paired t test or Wilcoxon signed-rank test is more reasonable in the Reliability  evaluation36.

Table 2.  Group-level comparison of proposed algorithm and manual measurement (gold standard) [Median 
(IQR), °]. a Differentials between predicted values and paired manual measurements; bPower of test below 
0.80. * Values of the normal posture group follow a normal distribution; the mean and standard deviation of 
manual measurements are 56.18° and 10.87°, respectively; those of predicted values are 58.10° and 12.91°; the 
two-sample t test was used to determine the difference between groups. $ Values of the hyperextension group 
follow a normal distribution; the mean and standard deviation of manual measurements are 105.96° and 6.66°, 
respectively; those of predicted values are 106.15° and 8.22°; the two-sample t test was used to determine the 
difference between groups. # Values of the total group follow a non-normal distribution; the Mann–Whitney U 
test was utilized to determine the difference between groups.

Group Manual measurements Predicted values Differencea Statistics (P value)b

Normal posture  group* 55.51 (49.39, 61.45) 58.39 (51.22, 65.70) 5.50 (− 5.23, 6.35) − 1.080 (0.283)

Hyperextension  group$ 106.04 (101.44, 110.60) 106.57 (99.73, 112.33) 1.77 (− 4.97, 4.94) − 0.172 (0.864)

Total  group# 89.32 (55.48, 106.12) 89.16 (58.37, 106.93) 4.13 (− 5.00, 5.83) 15,573.50 (0.523)

Table 3.  Ablation analysis of the proposed method by testing data set of the total group. WGAN-GP 
Wasserstein generative adversarial network with a gradient penalty; multi-level multi-scale receptive field 
residual modular block, RMSE root mean square error, EVA explained variation, MAPE mean absolute 
percentage error. The best results are shown in bold.

Method

RMSE (°) EVA (%) MAPE (%)U-net WGAN-GP BiGAN MMRFRMB

√ √ × √ 5.21 93.43 10.85

√ × √ √ 8.13 84.2 15.97

√ √ × × 9.09 85.26 17.39

√ × × × 10.77 80.01 21.62
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We conducted the personal-level comparison utilizing the Wilcoxon signed-rank test since the difference 
between the suggested approach and manual measurement showed non-normal distributions in all groups 
(Fig. 3b). As illustrated in Fig. 3c and d, there are significant differences between the two methods in both groups.

We visualized the reliability assessment of the proposed algorithm and the manual measurement through 
Bland–Altman plots. All points fell between the upper and lower LoAs, which indicates no difference between 
the two methods in terms of reliability (Fig. 3e,f).

We also exploited the intra-ICCs to evaluate the intra-rater reliability between the ultrasonographers and 
inter-ICCs to assess the inter-rater reliability between the ultrasonographers and algorithms. The ultrasonog-
raphers’ intra-ICCs and inter-ICCs were graded good reliability or higher, which is common in well-designed 
and well-executed  research37. The suggested algorithm was graded moderate or good reliability, higher than the 
others. In other words, the proposed algorithm surpassed all its rivals in Reliability evaluation.

In addition, we executed ablation analyses of the proposed method by the testing data set of the TG. Our 
proposed method (U-net + WGAN-GP + MMRFRMB) surpassed all the other competitors, which means the 
combination of U-net, WGAN-GP, and MMRFRMB boasts high effectiveness in the prediction of ANLJA.

The major limitation of our research was the relatively small sample size and mono-center design. However, 
the impact should be small. First, the proposed algorithm performed better than traditional ones statistically, 
according to our results, despite the sample size limitation. Second, our hospital is a national regional medical 
center with two campuses in Changsha (provincial capital) and numerous cooperating agencies all over Hunan 
 province38.

Our near-term expectation of this research was to present a model dealing with an NT measurement cri-
terion—fetal head posture, which had been usually neglected. Our long-term expectation was to lay a solid 
foundation for NT image quality control and further fully automatic NT measurement.

In conclusion, the differentiation of NT criteria is crucial for NT image quality control and further fully 
automatic NT measurement. Following NTQR’s quantified definitions of FHP, we provide a U-net-optimized 
end-to-end GAN for ANLJA prediction, which lays the groundwork for automatic FHP discrimination. The 
generative network composes numerous innovative customized structures, such as the RFBses, RFDBs, RFRMs, 
RFRMBs, and MMRFRMBs; the discriminator network is derived from the WGAN-GP. A series of rigorous tests, 
including validity, reliability, and ablation assessment, demonstrate that our cutting-edge algorithm is superior 
to all its rivals in ANLJA forecast and as dependable as manual measurement.

Materials and methods
The study was conducted in accordance with the Declaration of Helsinki,  STARD39,  GRRAS40, and Recom-
mendations for Reporting Machine Learning Analyses in Clinical  Research41. All experimental protocols of 
this cross-sectional study have been approved by the ethics committee of the Hunan Provincial Maternal and 
Child Health Care Hospital (HPMCHCH) of the University of South China. Written informed consent has been 
acquired from all enlisted gravidas in this study.

Patients
We prospectively and randomly recruited in this research a total of 720 gravidas who received an NT scan at the 
HPMCHCH between October 2019 and December 2021.

The inclusion criteria for the candidates were singleton gravidas at the gestational age of  111/7 to  137/7 weeks 
(crown-lump length between 45 and 84 mm). The exclusion criteria for the candidates were emergency patients, 
multiple pregnancies, gravidas with an abnormal deepest vertical pocket of amniotic fluid or thick anterior 
abdominal walls producing plainly unclear NT images, or fetuses with chromosomal, genetic, or congenital 
defects or thickening NT (Fig. 4).

Image collection
Pieces of Voluson E8 and E6 (General Electric) with RAB6-D probes (2.0–6.0 MHz) were utilized to collect FHP 
images after careful fine-tuning.

All FHP images were gathered when enlisted gravidas received their NT scans in the supine position by 
certified experienced sonographers. Appropriate FHP images were collected in brightness mode and stored in 
an ultrasound workstation as static images. Collected FHP images shall fulfill the following conditions: images 
should be clear; fetuses should occupy over half of the image area; fetal heads should stay in the midsagittal 
plane  approximately25.

Measurement and preprocessing
All ANLJAs were measured by two ultrasonographers using the caliper function of ultrasonoscopes (Fig. 1b). 
Their manual measurements served as the ground truth. Moreover, 20% of all images were randomly sampled 
for the quality control group (QCG) to assess the ultrasonographers’ inter-rater and intra-rater reliability, while 
the rest to the non-quality control group (NQCG). The images of QCG were evaluated twice by each of the 
aforementioned observers. Following NTQR’s definitions, a third party categorized images with the ground truth 
between 0° and 90° as normal posture, images with the ground truth above 90° as hyperextension, and images 
with the ground truth close to 0° as  hyperflexion25. We only deployed hyperextension and normal posture images 
since the hyperflexion ones were unsuitable for ANLJA prediction.

We prospectively obtained a total of 720 clear FHP images, half of which were in normal posture and the 
other half in hyperextension. We manually screenshotted the regions of interest containing ANLJAs from raw 
ultrasound images and stored them as 400 × 400-pixel images using the ImageJ (Fig. 1c). These 400 × 400-pixel 
screenshots (Fig. 1d) and their corresponding ground truth comprised the entirety of our data set.
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According to the ground truth of ANLJAs, we classified all images into the NPG and HG, each of which 
contained 360 images. The images from the aforesaid groups were then randomly divided into the training set 
and testing set individually at a ratio of 7:3 (Supplementary Table S2). The NPG and HG composed the TG.

U-net-optimized Generative Adversarial Network
We demonstrated the overall structure of our end-to-end ANLJA prediction algorithm based on U-net-optimized 
GAN, where batch normalization was eliminated to increase training speed and decrease time complexity.

The U-net-based generative network (Fig. 5a) featured two MMRFRMB (Fig. 5c) capable of extracting more 
texture features and advancing the model.

An MMRFRMB consisted of eight RFRMB, one convolutional layer, and one LSC. Input data through the LSC 
were integrated with the other processed by the eight RFRMBs and the subsequent convolutional layer. Next, the 
infused data underwent an element-wise sum operation.

The RFRMB (Fig. 5d) had a similar topology to the MMRFRMB, except that the LSC was replaced by an SSC. 
Noteworthily, batch normalization was removed from RFRMBs.

As depicted in Fig. 5e, input data were separated into three sections. The first portion was crunched by LRL 
directly, while the remainder were crunched numerous times by RFDB, feature weight α, and element-wise 
sum operation. All processed data fused together, underwent a convolutional layer and LeakyReLU function, 
and finally went through an attention mechanism RAM. The RAM was composed of both spatial and channel 
attention.

An RFDB (Fig. 5f) contained five RFBs and four LeakyReLU activation functions where the RFBses alternated 
with the LeakyReLU functions. An RFDB could be grouped into three sections according to the functions: con-
tiguous memory, LRL, and local feature fusion (LFF). The contiguous memory sent the states of the last RFDB 
to every RFBs of the current RFDB, and the LFF merged the previous states and RFBses. The LRL was designed 
for the output of the last RFDB, and the LFF to promote information flow and network representation.

The RFBses (Fig. 5g) were modified from the original receptive field blocks by replacing big cores (e.g. 3*3 
and 5*5) with small cores (e.g. 1*1, 1*3, and 3*1).

As to the discriminator network (Fig. 5b), we used the discriminator in the WGAN-GP42 with its batch 
normalization deleted (Supplementary Table S3).

Model evaluation
Validity is the extent to which the predicted results closely match the actual  ones36. We regarded the manual 
measurements as ground  truth43. In addition, we employed the three most often utilized indices in angle predic-
tion to evaluate the validity of our model and traditional AI algorithms. These indices were EVA, RMSE, and 

Figure 4.  Flowchart of inclusion, exclusion, and quality control sampling. HPMCHCH, Hunan Provincial 
Maternal and Child Health Care Hospital; QCG, quality control group; NQCG, non-quality control group; NT, 
nuchal translucency; ICC, intraclass correlation coefficient.
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MAPE (Supplementary Equations S1–S5)44. Following their definitions, the smaller the RMSEs and MAPEs, the 
higher the performance; the bigger the EVA, the better the models operate.

Reliability is the consistency of obtaining identical results from identical objects under identical 
 circumstances36. We considered the manual measurements as ground truth and utilized the two-sample t test, 
Mann–Whitney U test, Wilcoxon signed-rank test, Bland–Altman plots, and ICCs to evaluate the reliability.

The two-sample t test and Mann–Whitney U test are usually deployed to establish differences between algo-
rithms at group levels. If both ground truth and predicted values of our new method followed normal distribu-
tions, we would compare them at group levels utilizing the two-sample t test. If conversely, we would use the 
Mann–Whitney U test to compare them. Moreover, if there was no significant difference between them, we would 
determine whether the power of test exceeded 80%35.

Practitioners care more about the difference between approaches to identical samples. Thus, applying the 
paired t test or Wilcoxon signed-rank test is more  reasonable35,36. Both methods considered the difference 
between predicted values and their corresponding actual ones as a new variable. When the new variable shows 
a normal distribution, we should use the paired t test to compare zero and the mean of this new variable. Con-
trariwise, we should use the Wilcoxon signed-rank test to compare zero and the median of the new variable.

When assessing the reliability of two methods, scientists always use Bland–Altman plots to visualize the dis-
similarity. If all points lie in the domain of − 95% LoA to + 95% LoA, it means there is no significant difference 
between these two methods in terms of  reliability45. We assigned the differentials between ground truth and the 
predicted values of our new approach to y and their means to x to plot the points. We then marked the means 
of errors, LoAs, and their 95% confidential intervals with different types of lines.

The intra-ICC was used to quantify the two ultrasonographers’ intra-rater reliability with the QCG data; the 
inter-ICC to quantify their inter-rater reliability with their first QCG measurements. Similarly, the inter-ICC 
could be used to determine the reliability of algorithms (towards ground truth) since each algorithm could be 
considered an independent rater.

Additionally, we conducted ablation analyses with the testing set data of the TG to prove the effectiveness 
of our proposed approach for ANLJA prediction. The U-net served as the baseline. We later selected one of 
WGAN-GP/ BiGAN/ no GAN and one of MMRFRMB/ no MMRFRMB to form comparative items under the 
condition of the U-net.

Statistical analyses
We deployed the RStudio 2023.03.2 + 454 (posit.co), PASS 2022 (NCSS Statistical Software), and Biorender.com 
for statistical analysis and visualization. We employed the Q–Q plot and Shapiro–Wilk test for the normality 
 test46. Means and standard deviations were applied to describe normal distributional indices, whereas medians 
and IQRs were used to characterize non-normal distributional ones.

Figure 5.  Structure of proposed ANLJA prediction algorithm. (a) Structure of U-net-based generator network; 
(b) Structure of discriminator network derived from Wasserstein generative adversarial network with a gradient 
penalty; (c) Structure of multi-level multi-scale receptive field residual modular block (MMRFRMB); (d) 
Structure of receptive field residual modular block (RFRMB); (e) Structure of receptive field residual module 
(RFRM); (f) Structure of receptive field dense block (RFDB); (g) Structure of receptive field block with small 
cores (RFBs). LSC, long skip connection; RAM denotes hybrid attention mechanism; α stands for feature weight.
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The two-sample t test is usually used for group-level comparisons under the assumption that both independ-
ent samples follow normal distributions. Otherwise, the Mann–Whitney U test should be utilized. The paired 
t test is typically employed to compare the predicted values and their matched ground truth if their difference 
shows normal distributions. If not, the Wilcoxon signed-rank test should be exploited. When the difference is not 
statistically significant, further action shall be conducted to verify whether or not the power of test exceeds 80%35.

The preconditions of the Bland-Atman plot, specifically the randomness, homoscedasticity, and normality 
of difference, were confirmed before we drew on  it47.

The intra-ICCs were calculated with the absolute agreement, single measures, and two-way mixed effect 
model; similarly, the inter-ICCs were determined using the absolute agreement, single measures, and two-way 
random effect model. Finally, the point and interval estimations of ICCs were reported in accordance with the 
guidelines 37,48,49.

Additionally, all statistical analyses were conducted with the two-tailed test at a significant level of 0.05 without 
adjustment for multiple  testing37.

Ethical approval
Institutional Review Board approval was obtained.

Consent to participate
Written informed consent was obtained from all subjects (patients) in this study.

Data availability
The data analyzed in this study will be available from the corresponding author on reasonable request after 
follow-up studies will have been conducted on these data.
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