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Analyzing the spatial motion 
of a rigid body subjected 
to constant body‑fixed torques 
and gyrostatic moment
T. S. Amer 1, H. F. El‑Kafly 2, A. H. Elneklawy 3 & A. A. Galal 4*

This paper aims to explore the rotatory spatial motion of an asymmetric rigid body (RB) under 
constant body‑fixed torques and a nonzero first component gyrostatic moment vector (GM). Euler’s 
equations of motion are used to derive a set of dimensionless equations of motion, which are then 
proposed for the stability analysis of equilibrium points. Specifically, this study develops 3D phase 
space trajectories for three distinct scenarios; two of them are applied constant torques that are 
directed on the minor and major axes, while the third one is the action of applied constant torque 
on the body’s middle axis. Novel analytical and simulation results for both scenarios of constant 
torque applied along the minor and middle axes are provided in the context of separatrix surfaces, 
equilibrium manifolds, periodic or non‑periodic solutions, and periodic solutions’ extreme. Concerning 
the scenario of a directed torque on the major axis, a numerical solution for the problem is presented 
in addition to a simulation of the graphed results for the angular velocities’ trajectories in various 
regions. Moreover, the influence of GM is examined for each case and a full modeling for the body’s 
stability has been present. The exceptional impact of these results is evident in the development and 
assessment of systems involving asymmetric RBs, such as satellites and spacecraft. It may serve as 
a motivating factor to explore different angles within the GM in similar cases, thereby influencing 
various industries, including engineering and astrophysics applications.
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In the realm of classical mechanics, the study of gyroscopic motion is of utmost importance. One intriguing 
phenomenon is the gyrostatic effect, which refers to the peculiar behavior exhibited by asymmetric or symmetric 
RBs that are subjected to CBFTs. This effect brings fascinating dynamics and has applications in various fields 
such as aerospace engineering and robotics. A review of earlier research on this topic can be found  in1–20.  In2, 
the motion of an asymmetric spacecraft with a CBFT was examined. As the spacecraft spins on its minor axis 
and experiences energy dissipation, it becomes unstable in its orientation. Eventually, the spacecraft will realign 
itself to spin around its major axis. Following this maneuver, the spin rate around the major axis may be either 
negative or positive.  In3, nondimensional EOMs are introduced to analyze the stability of the EPs. New analytical 
and simulation outcomes for CBFTs along the minor, middle, or major axes are presented. The rapid rotational 
motions of unbalanced asymmetric satellites around their center of mass under the influence of both gravitational 
and drag torques are examined  in4. It is concluded that the satellites’ kinetic energy and angular momentum 
decrease, in which they are identified in the presence of Quasi stationary motion phases. Furthermore, the orbital 
frame of reference for the direction of angular momentum is established.

The effect of external forces and torques is investigated  in5–8, where uniform approximate solutions are 
obtained using various perturbation approaches and numerical codes. These solutions are displayed to investigate 
the effect of the RB parameters on motion.  In9, the author examined the movement of a single body point near a 
center of attraction, in which the body’s space segment is comparable to an electron’s orbit in a hydrogen atom. 
 In10, it is looking into the viability of stabilizing a satellite’s monoaxial attitude in the orbital coordinate frame 
through the use of an electrodynamic control system. A theorem of the asymptotic stability of body-controlled 
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attitude motion is provided. The effectiveness of integrated controls for attitude, taking into account a distributed 
delay, is demonstrated through the use of numerical modeling. A previous study conducted  by11 examined a 
scenario in which the rotational axis of the RB was affected by the GM and another moment around the same 
axis. The authors were able to achieve analytical solutions for the RB’s motion that closely aligned with the body’s 
physical properties, thus establishing the uniqueness of these solutions.  In12, the issue for the RB’s movement 
is examined when it is subjected to a constant GM that is due to potential and gyroscopic forces. The authors 
successfully derived three new solutions for the EOM, which are governed by three linear invariant relationships 
for the angular velocity vector components. For the scenario where the RB is considered to be heavy with mass 
distribution, they obtained a solution that aligns with the Kovalevskaya and Goryachev-Chaplygin generalized 
conditions.

In13, the authors presented new precise solutions for the rotary movement of an RB analogous to Lagrange’s 
conditions. These solutions pertained to cases where the RB is subjected to a constant external torque of magni-
tude. Specifically, the solutions are derived for the following scenarios; firstly when the torque is parallel to the 
axis of symmetry and for arbitrary initial angular velocity; secondly for an orthogonal torque on this axis with 
stationary rotation around that axis, besides the assumption of arbitrary initial angular velocity; and finally when 
both the torque and initial angular velocity are perpendicular to the axis of symmetry, with the torque being fixed 
to the body. The kinematic solutions are represented using the rotation matrix. The obtained exact solutions are 
applicable to any duration of motion and rotation amplitude.  In14, the behavior of RBs undergoing perturbed 
rotations near regular precession according to Lagrange’s case is investigated. The influence of a restoring moment 
and a slowly varying perturbing one are taken into account during the processes of the gained solutions. In the 
absence of resonance, an approximated system of EOM is derived for this nonlinear two-frequency system.

The required solutions are obtained  in15 for the overall rotary movement of a nearly symmetrical RB when 
the action of variable torques is considered. The authors specifically focused on the scenarios of acted constant 
torque along the rotation’s axis, as well as variable transverse torques. In the case of RB with axial symmetry 
and consistent axial torque, the solutions of Euler’s EOM are completely accurate. However, the solutions of the 
Euler’s angles are given in approximate form. In order to consider the scenario of a rotating RB that experiences 
a time-varying torque in the axial  direction16, it is necessary to expand upon the approach outlined  in15. The 
resulting analytical solutions described the overall attitude movement of a near-symmetric RB that was subjected 
to time-varying torques around all three spatial axes relative to the body.  In17, the analysis focused on studying 
the movement of an axisymmetric gyrostat satellite in a circular orbit within the impact of a Newtonian force field 
(NFF) is presented. It identifies and examines all the stable positions of the satellite within the orbital coordinate 
system, while also investigating the factors that determine their existence. Furthermore, the authors identified 
the specific values of the system parameters that trigger changes in the number of EPs.

In18, a study was conducted on the rolling of an asymmetrical RB on a horizontal plane when it is acted by 
a periodic GM. The authors approached the problem using a rubber body model, which assumed no slipping 
or spinning at the contact point. The results showed that under specific values of the system’s parameters and 
time-dependent of the GM, the system exhibited acceleration which resulted in an unbounded growth of energy. 
Further investigations were carried out to analyze how the acceleration depends on the system’s parameters and 
initial conditions. It should be noted that the small parameter approach has been widely utilized  in19 as one of 
the approximate methods to obtain analytical solutions for the RB problem. However, the obtained periodic 
solutions using this approach, whether in a uniform gravity field or in an NFF; contained singular points. These 
singular points presented a significant challenge because the solutions aren’t defined as whole numbers or their 
negative counterparts. Consequently, it was crucial to address these singularities for all values of these frequen-
cies. As a result, a significant amount of scientific research is required to bridge this gap, making it impossible to 
find a solution that is completely free of these singularities.  In20, this problem was addressed by incorporating 
the effect of the third component of the GM, which led to the discovery of a new frequency, known as Amer’s 
frequency. This achievement was confirmed when considering the complete impact of the GM, regardless of 
whether the motion of a symmetric or asymmetric RB. It was determined that the solutions obtained were free 
from any irregularities and were applicable for all values of this frequency.

In21, the author explored the analytic solution of free rotary movement of an RB that is powered by a low-
power motor. Through the application of asymptotic methods, it has been shown that the motion of the carrier 
body is closely related to the rotation around a stationary axis, which depends on the problem’s parameters 
and initial conditions. The analysis  in22 focuses on investigating the equilibrium attitude and stability of a rigid 
spacecraft in a stationary orbit around a uniformly rotating asteroid. The linearized EOM governing attitude 
motion are derived based on the assumption of small motions. Subsequently, the equilibrium attitude is estab-
lished for both a general and a symmetrical spacecraft. Owing to the presence of higher-order inertia integrals, 
the equilibrium attitude deviates slightly from zero Euler angles.  In23, the study extends the inquiry into atti-
tude stability to encompass a rigid spacecraft in a stationary orbit around a uniformly rotating asteroid. The 
authors observe that, owing to the markedly non-spherical shape and swift rotation of the asteroid, the attitude 
stability domain undergoes significant alterations compared to the classical stability domain predicted by the 
Beletskii–DeBra–Delp method for a circular orbit in a central gravity field. Notably, when the spacecraft is posi-
tioned along the intermediate-moment principal axis of the asteroid, the stability domain may exhibit a com-
plete divergence from the classical stability expectations.  In24, the investigation employs a differential geometric 
methodology to derive the Poisson tensor, Casimir functions, and equations of motion governing the phase flow 
and phase space structures inherent to the studied system. The equilibrium attitude of the spacecraft, serving 
as a stationary point for the equations of motion, is determined from a holistic perspective by considering the 
Hamiltonian constrained by Casimir functions. Subsequently, nonlinear stability conditions for the identified 
equilibrium attitude are formulated utilizing an adapted energy-Casimir method. The research further delves into 
the examination of nonlinear attitude stability concerning three key asteroid parameters, specifically the ratio 
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of mean radius to orbital radius and the harmonic coefficients.  In25, a method for depicting the turn-tensor of 
an axisymmetric RB using the angular momentum vector was suggested. The author proved that when specific 
external moments are applied, the movement of an axisymmetric RB is essentially the same as that of a spherical 
RB, except for the extra rotation around its axis of symmetry. Additionally, an accurate solution to the problem 
of unrestricted rotation of an axisymmetric RB was constructed when the impact of linear viscous friction was 
considered. Under the influence of the GM and NFF, an earlier investigation of the RB’s problem with a zero-value 
assigned to the first component of the GM vector was found  in26. To address scenarios with irrational frequencies, 
EOM was solved using the Poincaré method of small parameters. The influence of the GM, CBFTs, and resistive 
forces on a charged RB has been examined  in27. A suitable governing system for EOM was approached using the 
averaging method. To reach the required results, Taylor’s method was used along with some initial conditions 
to solve the averaged system of the EOM.

In this paper, the rotary spatial motion of an asymmetric RB with CBFTs, influenced by a first component of 
the GM, is investigated. To eliminate their reliance on both the inertia properties and the magnitude of torque, 
the controlling EOM in the case of CBFT is carried out in a dimensionless form. The determination of the 
dimensionless system’s EPs, the derivation of the linearized EOM, the characteristic equation, and the stability 
features are also presented. The analytic solution for the scenario of applied CBFTs along the minor and middle 
axes is addressed by a comprehensive schematic simulation for the SS, trajectories, stability areas, and extreme 
values for the torques in the 3D phase plane. The numerical solution in the scenario of an applied CBFT along 
major axis is also presented, along with 3D and 2D histograms of the dimensionless angular velocities, resulting 
in a typical spin-up maneuver as expected in some of the analyzed regions. The impact of various GM values on 
the locomotion and stability trajectories is supplied because it provides a useful resource for outcomes in such a 
case. Finally, each scenario includes a detailed examination of the minimum and maximum values of different 
dimensionless angular velocity components.

Problem’s formulation
In order to improve the description of this problem, this section seeks to provide us with more information. 
Therefore, the spatial rotation of an asymmetric RB about a fixed origin O of two coordinate systems is consid-
ered. The first coordinate system Ox1y1z1 is the inertial and the second system Ox2y2z2 rotates with the body. 
The RB’s motion is influenced by both GM � and CBFTs M  vectors, as graphed in Fig. 1.

The governing EOM for the  body1,6,27, is given by

Here, D = (D1,D2,D3) is the tensor components of the principal inertia’s moment such as D1 > D2 > D3 , 
ω = (ω1,ω2,ω3) represents the body’s angular velocity, and (M1,M2,M3) are the components of the CBFTs M  , 
while �1 is the first component of the GM � (where �2 = �3 = 0 ) along Ox2 , and t  represents the time. Taking 

(1)

D1
dω1

dt
+ (D3 − D2)ω2ω3 = M1,

D2
dω2

dt
+ (D1 − D3)ω3ω1 + �1ω3 = M2,

D3
dω3

dt
+ (D2 − D1)ω1ω2 − �1ω2 = M3.

Figure 1.  The simulation model of the RB’s motion.
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into consideration the following new parameters to eliminate the dependence of the above system on the inertial 
properties of the RB as

Therefore, one can rewrite the equation of system (1) as follows

where the scaled quantities xj , µj , and τ represent the angular velocities, CBFTs, and time, respectively.
The system in (1) can no longer rely on the magnitude of the torque vector (M1,M2,M3) as 

u =
√

k2k3u
2
1 + k3k1u

2
2 + k1k2u

2
3

/

k is introduced. Making good use of u to redefine xj , µj , and τ as follows

Substituting (4) into system (1) to yield

where the adjusted quantities xj , µj , and τ represent, respectively, the dimensionless forms of the angular veloci-
ties, CBFTs, and time. According to system (4), one gets

Therefore, the EOM at a steady state becomes

where Xj are the components of the EPs. Therefore, one obtains

In other words, if and only if µ1 µ2µ3 ≥ 0 , the EPs exist. Eight EPs could be determined by knowing the 
value of the constant torque µj as follows

Let us define the state perturbation concepts of angular velocity  as3

Then taking into account the consistency of µj , to derive the below linearized EOM

Then, the characteristic equation for (11) can thus be expressed as

(2)

k1 = (D2 − D3)
/

D1, k2 = (D1 − D3)
/

D2, k3 = (D1 − D2)
/

D3,

k = k1k2k3, τ =
√
k t, a = �1

/

(D2k2
√

k1), b = �1

/

(D3k3
√

k1),

uj = Mj

/

Dj , µj = uj

/

(
√
k
√

kj), xj = ωj

/√

kj , (j = 1, 2, 3).

(3)

dx1

dτ
− x2x3 = µ1,

dx2

dτ
+ x3x1 + ax3 = µ2,

dx3

dτ
− x1x2 − bx2 = µ3,

(4)τ =
√
ku t, xj = ωj

/√

ukj , µj = (1
/

u
√
k)(uj

/√

kj).

(5)

dx1

dτ
− x2x3 = µ1,

dx2

dτ
+ x3x1 + ax3 = µ2,

dx3

dτ
− x1x2 − bx2 = µ3,

(6)µ2
1 + µ2

2 + µ2
3 = 1.

(7)
X2X3 = −µ1,

X3X1 + aX3 = µ2,

X1X2 + bX2 = −µ3,

(8)X2
2X

2
3 (X1 + a)(X1 + b) = µ1µ2µ3.

(9)

(X1 + a)(X1 + b) = µ2µ3

/

µ1,

X2 = ±

√

µ3µ1(X1 + a)

µ2(X1 + b)
,

X3 = ±

√

µ1µ2(X1 + b)

µ3(X1 + a)
.

(10)�xj = xj − Xj .

(11)

(

�ẋ1
�ẋ2
�ẋ3

)

=
(

0 X3 X2

−X3 0 −(X1 + a)
X2 (X1 + b) 0

)(

�x1
�x2
�x3

)

.
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The prerequisites for the existence and stability of the roots of Eq. (12) are given in Table 1 along with an 
extensive list of all achievable and possible combinations of CBFTs and angular velocities.

CBFT along the minor axis
In this section, an analytical approach that determines the angular velocities of the RB when undergoing CBFT 
along its minor axis is investigated. Therefore, at the value (µ1,µ2,µ3) = (0, 0, 1) along this axis, system (5) 
takes the form

These equations depict the EPs of the system, which form a characterized hyperbola according to the equation 
X2(X1 + b) = −1 . Additionally, they are stable at |X2| > 1 and unstable at |X1 + b| > 1 . According  to1, a new 
variable α1 can be inserted as

which also can be rewritten as dα1
/

dτ = x3(τ ); α1(0) = 0 , and then one can transform system (13) into

By taking the derivative of the second equation from (15) with respect to α1 , and subsequently employing 
the first equation to get

which is a simple harmonic motion equation. Therefore, the following solutions hold for the first two equations 
of system (15)

where F =
√

x21(0)+ x22(0) and ψ1 = tan−1 [x1(0)
/

x2(0)] as |ψ1| ≤ π . Therefore, one writes

(12)ζ 3 + ζ [(X1 + a)(X1 + b)− X2
2 + X2

3 ] + X2X3(2X1 + a+ b) = 0.

(13)

dx1

dτ
− x2x3 = 0,

dx2

dτ
+ x3x1 + ax3 = 0,

dx3

dτ
− x1x2 − bx2 = 1.

(14)α1(τ ) =
τ

∫

0

x3(σ1) dσ1,

(15)

dx1

dα1
− x2 = 0,

dx2

dα1
+ x1 + a = 0,

d2α1

dτ 2
− x1x2 − bx2 = 1.

(16)
d2x2

dα2
1

+ x2 = 0.

(17)x1 = F sin(α1 + ψ1), x2 = F cos(α1 + ψ1).

(18)x21 + x22 = F2.

Table 1.  Explores the linear stability of different EPs.

Case EP Characteristic equation Stability Manner CBFT Notes

1 (0, 0, 0) ζ 3 = 0 Unstable (0, 0, 0) None

2 (X1, 0, 0) ζ 3 + ζ [(X1 + a)× (X1 + b)] = 0 Stable (0, 0, 0) None

3 (0,X2, 0) ζ 3 − ζX2
2 = 0 Unstable (0, 0, 0) None

4 (0, 0,X3) ζ 3 + ζX2
3 = 0 Stable (0, 0, 0) None

5 (0,X2,X3) ζ 3 − ζ(X2
2 − X

2
3 )+ X2X3(a+ b) = 0

Stable if
|X2| < |X3| (µ1, 0, 0) X2X3 = −µ1

6 (X1, 0,X3) ζ 3 + ζ [(X1 + a)(X1 + b)+ X
2
3 ] = 0

Stable if
X1  = −a

(0,µ2, 0) X3 = µ2

/

(X1 + a)

7 (X1,X2, 0) ζ 3 + ζ [(X1 + a)(X1 + b)− X
2
2 ] = 0

Stable if
X1  = −b

(0, 0,µ3) X2 = −µ3

/

(X1 + b)

8 (X1,X2,X3)
ζ 3 + ζ [(X1 + a)(X1 + b)− X

2
2 + X

2
3 ]

+X2X3(2X1 + a+ b) = 0.
Unstable (µ1,µ2,µ3) µ1µ2µ3 > 0, �µ� = 1
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This circle’s radius F is determined solely by the initial values respected to dimensionless first and sec-
ond angular velocity components, which represents the dimensionless first integral of the motion. Substituting 
Eq. (17) into the third equation in system (15), yields

Let’s assume that

As a consequence, Eq. (18) undergoes reformulation as follows

At the equilibrium’s angle α∗ with the absence of the GM, sin α∗ = −2
/

F2 is satisfied. Evidently, there is no 
EP for F <

√
2 . To investigate the system’s stability properties in the scenario where F ≥

√
2 will be presented. 

Therefore, the following new parameter is introduced in the form

This means that Eq. (21) has been transformed in the (α, x) phase plane as

Based on Eqs. (22) and (23), one can write

Likewise noticing that for a certain trajectory, the motion’s first integral F is constant. Therefore, Eq. (24) can 
be integrated to get

where the second integral of the motion corresponds to the dimensionless energy constant G1 . It may be contour-
plotted on the (α, x) phase plane using Eq. (25) and provided a specific value for the dimensionless first integral 
of the motion F . This type of contour-plot is shown in Fig. 2 for the value F = 4.72 , where each dashed or solid 
line contour corresponds to a G1 trajectory with constant values. The phase plane axis is periodically positioned 
along unlimited stable centers ( • ) and unstable saddles ( ◦ ) when F ≥ 1.41.

Therefore, (α∗, x∗) = [sin−1(−2
/

F2), 0] , where 
∣

∣sin−1 ϕ1
∣

∣ ≤ π
/

2 for all ϕ1 , is the first EP inside (α, x) con-
cerning left of the origin. Center points (CPs) are situated at π − α∗ ± 2mπ ; (m = 1, 2, . . .), while the saddle 
points (SPs) are at α∗ ± 2mπ . For an SP αs , the energy constant G1s takes the form as

Moreover, the separatrix’s equation travels via αs is

Substituting (26) into (27) yields

Bringing back that α(0) = 2ψ1 and |ψ1| ≤ π . Regarding stability analysis, there are just two separatrices that 
are relevant: the left separatrix (LS), going via the left SP at αSL and wrapping around the left CP at αCL ; the right 
separatrix (RS), going via the right SP at αSR and wrapping around the right CP at αCR . The LS and RS at F = 4.72 
are displayed in Fig. 3. The various CPs and SPs connected to the LS and RS are also represented. Additionally, 
it illustrates the cyclical, spin-up, and vertical crossing (VC) trajectories throughout the action.

The graphed curves in Fig. 4 expresses the impact of distinct GM’s values �1(= 100, 300, 500) kgm2 s−1 that 
acted on the body’s main axes of inertia. The distinction between every case has been shown in the graphical 
simulation as in (a) of Fig. 4 which represents the LS and RS at �1 = 100 kgm2 s−1 , noticing that the cyclical 
trajectories at the RS make closed oval trajectories bigger than the LS with a united direction for the VC and 
the spin-up trajectories. The left SP αSL and right one αSR are located, respectively, at (0, 0) and (6.2, 0) , while 
the left CP αCL and the right one αCR are found, respectively, at (−3, 0) and (3.3, 0) on the (α, x) phase plane. At 
�1 = 300 kgm2 s−1 , as seen in Fig. 4b, the cyclical trajectories at the RS make distinct closed ovals other than 
the aforementioned at �1 = 100 , which are now smaller than the LS, with a non-united direction for the VC and 

(19)
d2α1

dτ 2
− F

[

F

2
sin 2(α1 + ψ1)− b cos(α1 + ψ1)

]

= 1.

(20)α = 2(α1 + ψ1).

(21)d2α

dτ 2
− F

(

F sin α − 2b cos
α

2

)

= 2.

(22)x =
dα

dτ
.

(23)
dx

dτ
= F

(

F sin α − 2b cos
α

2

)

+ 2.

(24)dx

dα
=

F [F sin α − 2b cos(α
/

2)] + 2

x
.

(25)x2

2
+ F2 cosα − 4Fb sin

α

2
− 2α = G1,

(26)G1s = F2 cosαs − 4Fb sin(αs
/

2)− 2αs .

(27)x2

2
+ F2 cosα − 4Fb sin

α

2
− 2α = G1s .

(28)x = ±
√
2F

√

(cosαs − cosα)− 4b{[sin(αs
/

2)− sin(α
/

2)]
/

F} + (αs − α) sin αs .
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the spin-up trajectories. In this case, the left SP is located at (0.19, 0) and the position of the right SP is found at 
(6.15, 0) , while the left CP is found at (−3.1, 0) and the location of the right CP is found at (3.29, 0) . When the 
value of the GM becomes �1 = 500 kgm2 s−1 , the difference between the two SS becomes so obvious as the LS 
is becoming much smaller than the RS with a distribution in the direction of the trajectories, see Fig. 4c. The 
left SP is now located at (0.32, 0) and the right one SP is found at (5.8, 0) , while the left CP and the right CP are 
located at (−3.13, 0) and (3.28, 0) , respectively.

Considering

The substitution from (29) into (27), yields

It must be noted that cosαs =
√

(F4 − 4)
/

A2 and sin(αs
/

2) = ±
√

(1− cosαs)
/

2 . Therefore, the 
substitution from (26) into (30), yields

Parts of Fig. 5 show 3D representations of the LS and RS surfaces at D(= 2000, 1500, 1000) kgm2 when 
�1 = 100 kgm2 s−1 in the space (x1, x2, x3) . It is noted that the mentioned space is divided into three infinite 
areas by two surfaces. Two of them are stable, while the third one is an unstable region. One of these areas will 
remain associated with any motion that has starting conditions there. If the body starts its motion within one 
of the stable domains, it will follow a closed and limited path within that region, revolving around its respective 
center. However, if the initial conditions lie within the realm of instability, an upward spin will be executed. 
When these conditions lie in the unstable region, the projection of the endpoint dimensionless angular velocity 
(x1, x2, x3) inside (x1, x2) plane represents a complete circle, and for initial conditions within any of the stable 
regions, it represents a segment of the circle. The circle’s radius, denoted as F , has the flexibility to assume any 
length, leading to the possibility of both stable and unstable movement.

Figure 5 displays a contour map of the top area (x1, x2, x3 > 0) for the LS and RS seen in Fig. 3. The EPs for 
the system are found on the two branches of the hyperbola x2(x1 + b) = −1 . The equation x1 + x2 = 0 serves 
as a dividing line, creating distinct regions within the hyperbola branches known as Lyapunov stable and unstable 

(29)x = 2x3, cosα =
1− tan2(α

/

2)

1+ tan2(α
/

2)
=

x22 − x21
F2

; α = 2 tan−1 (x1
/

x2).

(30)2x23 + x22 − x21 − 4bx1 − 4 tan−1(x1
/

x2) = G1.

(31)
2x23 + x22 − x21 − 4bx1 −

√

(x21 + x22)
2 − 4− 2 sin−1[2

/

(x21 + x22)] − 4 tan−1(x1
/

x2)

±(4b
/√

2)

√

x21 + x22 −
√

(x21 + x22)
2 − 4 = 0,

Figure 2.  Shows trajectories for CBFT along minor axis at x(0) = (2.5, 4, 0.1), D(= 2000, 1500, 1000) kg m2, 
and �1 = 100 kg m2

s
−1.
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domains, as shown in the cylindrical coordinates F =
√

x21(0)+ x22(0) and ψ1 = tan−1 [x1(0)
/

x2(0)] , which 
are presented. Within the circumference of a circle with a radius of F , the absence of EPs can be observed.

Figure 6 shows the depiction, at a moment of principal inertia D(= 2000, 1500, 1000)kg.m2 , the initial condi-
tion x(0) = (2.5, 4, 0.1) , and the value of the GM �1 = 100kg.m2.s−1 , for the following surfaces:

1. the circle (x21 + x22)
2 − 4 = 0 where none of the EPs are located,

2. the two branches of the hyperbola x2(x1 + b) = −1 , which are where all of the system’s EPs are located,
3. the line x1 + x2 = 0 that separates the two branches of the hyperbola x2(x1 + b) = −1 into regions with 

Lyapunov stable and unstable regions,
4. the surface x22 − x21 − 4bx1 − 4 tan−1(x1

/

x2) = 0.

The SP, CP, and VC points connected to the LS and RS in Fig. 2 have the same positions where a circle of 
radius F = 1.41 intersects with the SP, CP, and VC curves in Fig. 6.

In order to find the solutions to the transcendental equations provided by Eq. (28), one must find the 
intersection of the two SS and the (x1, x2) plane as follows

The fact that α = αs is thought to be a solution of (29), which results in

The SP, CP, and VC connected to the LS surface converge into a single focal point at (x1, x2, x3) = (1,−1, 0) , 
whereas those connected to the RS surface converge into (x1, x2, x3) = (−1, 1, 0) . The statement holds true in the 

(32)(cosαs − cosα)− 4b{[sin(αs
/

2)− sin(α
/

2)]
/

F} + (αs − α) sin αs = 0 .

(33)sin αs = sin α =
2 tan (α

/

2)

1+ tan2 (α
/

2)
=

2x1x2

x21 + x22
.

Figure 3.  Plots LS and RS for a constant minor torque axis at x(0) = (2.5, 4, 0.1),D(= 2000, 1500, 1000) kg m2, 
and �1 = 100 kg m2 s−1.
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case where F = 1.41 . So, starting with F = 1.41 in Fig. 3, one may create the SP, CP, and VC curves by tracing the 
polar coordinates (F,ψ1 = α

/

2) covered by the SP, CP, and VC points as F is raised. The motion that started from 
the separatrix area will stay trapped there and approach steadily upon the EP in the location of the intersection 
of (x21 + x22)

2 − 4 = 0 with the unstable branch of the hyperbola x2(x1 + b) = −1 , which is encapsulated in that 
area. The projection of the trajectories on the (x1, x2) plane forms a segment of a circle with a radius of F = 1.41 
since it is in the stable zone bounded by the RS surface, which is plotted in Fig. 7.

By modifying system (13), one may determine the extreme values that the dimensionless angular velocity 
component x1 , x2 , and x3 takes along an enclosed trajectory in each of the two regions of stability with constant 
torque along the minor axis as follows

Figure 4.  Plots of LS and RS for a constant minor torque axis at x(0) = (2.5, 4, 0.1) , D(= 2000, 1500, 1000) kg m2 , 
and �1(= 100, 300, 500) kg m2 s−1.

Figure 5.  Shows the 3D simulation for LS and RS for a constant minor torque axis when D(= 2000, 1500, 1000)kg.m2 , 
and �1 = 100kg m2 s−1.
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It’s crucial to mention that the extremal values for x1 and x2 will only take place when the dimensionless 
angular velocity path intersects the plane (x1, x2) or the plane (x1, x3) . In contrast, the extreme values for x3 will 
only take place when this trajectory intersects with the two surfaces x2(x1 + b) = −1 , which is a direct result of 
the system (34). By replacing the formulas for the constants of the motion F and G1 , provided by Eqs. (18) and 
(30), with the system (34), and calculating the resultant transcendental equations, it is possible to determine the 
extremes for x1, x2, and x3.

(34)

dx1

dx2
=

−x2

x1 + a
= 0,

dx2

dx1
=

−(x1 + a)

x2
= 0,

dx1

dx3
=

x3

x1 + b
= 0,

dx3

dx1
=

x1 + b

x3
= 0,

dx2

dx3
=

−x3(x1 + a)

x2(x1 + b)
= 0,

dx3

dx2
=

−x2(x1 + b)

x3(x1 + a)
= 0.

Figure 6.  Shows contour plots of LS and RS surfaces for a constant minor torque axis.

Figure 7.  plots of typical steady trajectories for a constant minor torque axis.
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Considering the following initial data to continue our estimation as the initial values of the scaled angular 
velocity components x(0) = (2.5, 4, 0.1) , the values of the principal inertia D(= 2000, 1500, 1000)kg m2 , and the 
value of the first component of the GM �1(= 100, 300, 500)kg m2 s−1 . Then, the values for both constant of the 
motion are F = 4.72 and G1 = 2.54.

As a result, Eq. (18) implies

The substitution of (30) into (35) produces

The conditions associated with the x3 extremes are provided by

Equation (38) is substituted into Eq. (18) to get

Then substituting the previous solutions for x1 and x2 into Eq. (30) to produce the required extreme values 
of x3.

Table 2 provides an analytical statement for the extreme values of several dimensionless angular velocity 
components x1, x2, and x3 alongside a solution in CBFT along minor axis which is periodic.

CBFT along the major axis
In this section, an approximate solution for the angular velocities of the RB when it is subjected to CBFT along 
its major axis is explored. This method is employed when the analytical solution fails to be achieved and will be 
further discussed later on. If the constant positive torque along the major axis has the form (µ1,µ2,µ3) = (1, 0, 0) , 
then system (5) can be rewritten as follows

The equations presented in the above system illustrate their EPs, wherein they manifest as a hyperbola with 
the equation X2X3 = −1 . Additionally, they are stable at X3 > 1 and unstable at |X2| > 1 . Adding a new variable 
α2 through the following equation as

(35)x1 = ±
√

F2 − x22 , x2 = ±
√

F2 − x21 .

(36)2x23 − 2x21 − 4bx1 ± 4 tan−1(x1

/

√

F2 − x21) = G1 ± F2,

(37)2x23 + 2x22 ± 4b

√

F2 − x22 ± 4 tan−1(

√

F2 − x22

/

x2) = G1 ± F2.

(38)x2(x1 + b) = −1.

(39)x41 + 2bx31 + (b2 − F2)x21 − 2bF2x1 − b2F2 + 1 = 0,

(40)x42 + (b2 − F2)x22 − 2bx2 + 1 = 0.

(41)

dx1

dτ
− x2x3 = 1,

dx2

dτ
+ x3x1 + ax3 = 0,

dx3

dτ
− x1x2 − bx2 = 0.

Table 2.  Presents xj extreme values corresponding to the minor axis as (µ1,µ2,µ3) = (0, 0, 1).

Item Analytic statement Estimated values

General F =
√

x
2
1(0)+ x

2
2(0),

G1 = 2x23(0)+ x
2
2(0)− x

2
1(0)− 4bx1(0)− 4 tan−1[ x1(0)

x2(0)
].

x(0) = (2.5, 4, 0.1),
F = 4.72, G1 = 2.54.

x3max
,

x3min

x1 =
√

F2−
√
F2−4

2
, x2 = −

√
F2−

√
F2−4

2
,

x3 = ±
√

G1−x
2
2+x

2
1+4bx1+4 tan−1(x1/ x2)

2
.

x = (3.64,−2.99,±1.76).

x2max

x1 = 0, x2 = F,

x3 = ±
√

(G1 + 2F2 + 4π)
/

2.
x = (0, 4.72,±5.56).

x1max

x1 = F, x2 = 0,

x3 = ±
√

(G1 + 2F2 + 4bF + 4π)
/

2.
x = (4.72, 0,±5.44).
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which also has the form dα2
/

dτ = x1(τ ); α2(0) = 0 . Applying this variable will transform the system (41) into

It is significant to note that the variables of system (43) can’t be separated, and then it is impossible to obtain 
the analytical solution of this system by using the aforementioned method. Therefore, a numerical solution for 
the system is going to be presented and diagrammed to see the various effects of the GM on the RB motion. All 
numerical simulations were performed concerning the aforementioned values of the inertia’s main moments 
D(= 2000, 1500, 1000)kg.m2 besides the values the GM �1(= 100, 300, 500) kg.m2.s−1.

Currently, the rotational motion of the RB, with the assumption that the torque along the major axis remains 
constant, is going to be examined. In this particular scenario, Figs. 8, 9, 10, 11, 12, 13, 14, 15 are drawn to depict 
the equilibrium conditions on the specific regions mentioned in Table 1.

Figure 8 describes the 3D trajectory of the angular velocities x1, x2, and x3 of the RB when the GM has the 
values �1(= 100, 300, 500) kgm2 s−1 . On the other hand, the projections in the planes x1x3, x2x3, and x1x2 are 
presented in Figs. 9, 10, and 11, respectively, at the same values as Fig. 8. These figures are generated with the 
initial condition x(0) = (4.5, 1.8, 3.4) at the upper unstable region of the space (x1x2x3) during the interval 
τ ∈ [0, 15] s.

Note that in all 3D graphical simulations, the motion’s trajectory begins with rainbow colors and then 
transitions to a unique color during its path interval.

In Fig. 8, as the GM value equals 100 kg m2 s−1 , the body begins its spin in the positive area of x1 and remains 
spinning between the intervals x2 ∈ [−4, 4] and x3 ∈ [−4.1, 4] for its oscillation, where it eventually converges 
on a spin-up maneuver. As the GM value approaches to the value 300 kg m2 s−1 , it’s released that the body 
follows the same path as before, but it is noticed that an increase in the amplitude of the spin maneuver in the 
positive region of x1 towards the negative regions of x1, x2, and x3 , as seen in the 2D simulations of Fig. 9, 10, 11. 
The increasing of the frequency of the body oscillation increases the oscillation interval as x2 ∈ [−4.2, 4] and 
x3 ∈ [−5, 4] . At �1 = 500kg.m2.s−1 , the body spins increasingly to maneuver around x1 . The amplitude of the 
maneuver about x2 and x3 is also increases as x2 ∈ [−4.5, 4] and x3 ∈ [−6, 4] , and then the closed paths of the 
trajectories keep it spinning manner with a slight deformation for the one path trajectory before the increasing 
of the GM value, as shown in Fig. 10. The importance of these outcomes lies in their broad utilization across 
various domains. For instance, they can be employed to stabilize the movement of spacecraft in their orbits. This 
is achieved by adjusting the GM value, which impacts the component of the body’s angular velocity and ensures 
it remains within the designated orbit.

(42)α2(τ ) =
τ

∫

0

x1(σ2) dσ2,

(43)

dx1

dα1
− x2 = 0,

dx2

dα1
+ x1 + a = 0,

d2α1

dτ 2
− x1x2 − bx2 = 1.

Figure 8.  Presents a 3D plot for x1, x2, and x3 at a constant major axis torque when �1(= 100, 300, 500) kg m2 s−1.
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Figures 12, 13, 14, 15 are calculated at the stable region of the space (x1x2x3) during the interval τ ∈ [0, 15]s 
when the initial condition x(0) = (0,−1, 5) is considered. The outcomes of this simulation are graphed at distinct 
values of the first component of the GM �1 . At �1 = 100 kg m2 s−1 , the trajectory initiates a customary rotational 
acceleration maneuver inside positive region of angular velocity x3 with a slight decrease in its amplitude towards 
the negative region and the body has a stable motion, as explored in Fig. 12a. As the GM increases to become 
300 kg m2 s−1 , the body starts its spinning motion about the positive stable region of x3 , and then moves towards 
the SS with a higher oscillation amplitude and lower frequency. Therefore, it crosses into the positive unstable 
region of x1 , where it converges to a pure spin-up maneuver, as shown in Fig. 12b. At �1 = 500 kg m2 s−1 , an 
increase in the amplitude of the spinning about the negative region of x1 is noticed, and the trajectory follows 
the same path as �1 = 300 kg m2 s−1 with the same motion’s behavior, as observed in Fig. 12c. This description 
can be easily noticed in the 2D representation of the body’s angular velocities, as seen in Figs. 13, 14, 15.

CBFT along the middle axis
In this section, the analytical method employed to calculate the angular velocities of the RB while it experiences 
CBFT along its middle axis, is explored. In the scenario, we consider (µ1,µ2,µ3) = (0, 1, 0) for this torque along 
the middle axis, and then equations of system (5) provide the following form

Figure 9.  Shows 2D plots for the represented angular velocities x1 and x3 in Fig. 8.

Figure 10.  Shows 2D plots for the given angular velocities x2 and x3 in Fig. 8.
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In this scenario, the points of equilibrium in the system form a hyperbola resembling the form (X1 + a)X3 = 1 . 
As mentioned in the preceding three sections, we consider a new variable α3 such that

(44)

dx1

dτ
− x2x3 = 0,

dx2

dτ
+ x3x1 + ax3 = 1,

dx3

dτ
− x1x2 − bx2 = 0.

Figure 11.  Shows 2D plots for the graphed angular velocities x2 and x3 in Fig. 8.

Figure 12.  Expresses 3D plots of xj (j = 1, 2, 3) at a constant major axis torque when �1(= 100, 300, 500) kg m2 s−1.
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Figure 13.  Plots 2D graphs for the drawn angular velocities x1 and x3 in Fig. 12.

Figure 14.  Plots 2D graphs for the drawn angular velocities x2 and x3 in Fig. 12.

Figure 15.  Plots 2D graphs for the drawn angular velocities x1 and x2 in Fig. 12.
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In other words, one can write this formula as dα3
/

dτ = x2(τ ); α3(0) = 0 . Applying this transformation 
to the system (44), yields

The solutions to the first and third equations of system (46) have the forms

where they satisfy the next equation

Substituting Eq. (47) into the second equation of system (46) to get

Considering

Then, Eq. (49) will be

In the trajectories’ case with |x1(0)| �= |x3(0)|:
When L > M , Eq. (51) takes the form

where

Considering the following variables

Therefore, one can rewrite Eq. (52) as follows

where N is the first integral of the motion. Since Eq. (55) represents a conservative system, then at an EP γ = γ ∗ 
and ψ2 = γ ∗ as γ ∗ = α3(τ ) = α3(0) = ψ2 , one can obtain

Implying that ψ2 = γ ∗ , led to

Hence,

(45)α3(τ ) =
τ

∫

0

x2(σ3) dσ3,

(46)

dx1

dα3
− x3 = 0,

d2α3

dτ 2
+ x1x3 + ax3 = 1,

dx3

dα3
− x1 − b = 0.

(47)
x1 = b+ x3(0) sinh α3 + x1(0) cosh α3,

x3 = x3(0) cosh α3 + x1(0) sinh α3,

(48)x23 − x21 = x23(0)− x21(0)− b{b+ 2[x3(0) sinh α3 + x1(0) cosh α3]}.

(49)
d2α3

dτ 2
= 1− (a+ b)[x1(0) sinh α3 + x3(0) cosh α3] −

x21(0)+ x23(0)

2
sinh 2α3

−x1(0)x3(0) cosh 2α3.

(50)L =
1

2
[x21(0)+ x23(0)], M = x1(0)x3(0).

(51)d2α3

dτ 2
= 1− L sinh 2α3 −M cosh 2α3 − (a+ b)[x1(0) sinh α3 + x3(0) cosh α3].

(52)d2α3

dτ 2
= 1−

√

L2 −M2 sinh(2α3 + ψ2)− (a+ b)
√
2N sinh(α3 + ψ2).

(53)ψ2 = tanh−1(M
/

L), N =
1

2
[x21(0)− x23(0)].

(54)
γ = 2α3 + ψ2,

L2 = M2 + N2.

(55)d2γ

dτ 2
= 2{1− N sinh γ − (a+ b)

√
2N sinh(

γ + ψ2

2
)},

(56)γ ∗ = sinh−1[
1

N + (a+ b)
√
2N

].

(57)sinhψ2 =
M

L
,
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which implies that

Recalling the equation

which holds at EPs. Therefore, the substitution of X3 from (59) into the hyperbola’s Eq. (60) yields

Now, Eq. (60) implies that

Then, the first EP for the system is ( a
a+b

√

N
2 , 0,

a+b

a(
√

N/ 2+a+b)
).

The system (44) has a constant amount of energy due to the fact that Eq. (55) can be perceived as a force  field3 
that conservatively acts on the right-hand side. In order to determine this constant, it is necessary to rewrite 
Eq. (55) as follows

Making use of Eq. (55) to yield

Dividing the previous two equations to get

Integration of this equation, yields

where the second integral of motion is donated by G2 and is defined as the system’s dimensionless energy constant.
The dimensionless variable representing potential energy (distinct from actual potential energy) within the 

system may be defined according to

Hence,

It is easy to deduce that the EP γ ∗ is stable. This indicates that every starting condition where |x1(0)| �= |x3(0)| 
produces a path that is an enclosed periodic. It has a shape that is elliptical around a distinct EP that is stable 
according to Lyapunov’s criterion.

As every point on the pathways is recognized as a set of initial conditions for it, at γ (0) = ψ2 , Eqs. (55) and 
(68) yields

Also, as y = 2x2 , Eq. (66) becomes

Substituting the expression (53) about N to get

(58)M =
N

N + (a+ b)
√
2N

,

(59)M = x1(0)x3(0) = X1X3 =
N

N + (a+ b)
√
2N

,

(60)X3(X1 + a) = 1,

(61)X1 =
a

(a+ b)

√

N

2
.

(62)X3 =
a+ b

a(
√

N
/

2+ a+ b)
.

(63)
dγ

dτ
= y.

(64)
dy

dτ
= 2

[

1− N sinh γ − (a+ b)
√
2N sinh

(

γ + ψ2

2

)]

.

(65)γ
dy

dγ
= 2

[

1− N sinh γ − (a+ b)
√
2N sinh

(

γ + ψ2

2

)]

.

(66)
y2

2
+ 2

[

N cosh γ + 2(a+ b)
√
2N cosh

(

γ + ψ2

2

)

− γ

]

= G2,

(67)V = 2

[

N cosh γ + 2(a+ b)
√
2N cosh

(

γ + ψ2

2

)

− γ

]

.

(68)
d2V

dγ 2
= 2N cosh γ + (a+ b)

√
2N cosh

(

γ + ψ2

2

)

> 0.

(69)2N cosh γ + 4(a+ b)
√
2N cosh(

γ + ψ2

2
) = 2L[1+ 2(a+ b)

√

2
/

N].

(70)2x22 + (x21 + x23)[1+ 2(a+ b)
√

2
/

N] − 2 tanh−1 2x21x
2
3

x21 + x23
= G2.
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The enclosed pathway’s 3D simulation, maintaining a constant energy G2 is given by Eq. (71). It is calculated 
for the scenario that involves CBFT along central axis in addition to a starting condition |x1(0)| �= |x3(0)|.

Figure 16 provides a visual representation of the 3D simulation depicting SS of Eq. (71). These SSs divide 
the space (x1x2x3) into three infinite regions: two stable regions and an unstable one. Any motion originating 
from one of these regions will continue to be associated with that region. If the initial conditions for motion lie 
within either of the stable regions, the trajectory will be closed and restricted, revolving around its corresponding 
center. On the other hand, if the initial conditions fall within the unstable region, a spin-up maneuver will occur.

Figure 17 shows the drawing at initial condition x(0) = (1.7, 1.1,−0.2) for the following surfaces:

(71)2x22 + (x21 + x23)[1+ 2(a+ b)(x21 − x23)
−1/ 2] − 2 tanh−1 2x21x

2
3

x21 + x23
= G2.

Figure 16.  Presents a 3D simulation for SS for a constant middle torque axis.

Figure 17.  Shows projection of SS in the plane (x1x3) for a constant middle torque axis.
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1. the surface x21 − x23 = 0 where none of the EPs are located,
2. the two branches of the hyperbola x3(x1 + a) = 1 , in which all of the system’s EPs are located,
3. the line x1 − x3 = 0 that separates the two branches of the hyperbola x3(x1 + a) = 1 into regions with stable 

and unstable regions,
4. the surface (x21 + x23)[1+ 2(a+ b)(x21 − x23)

−1/ 2] − 2 tanh−1[2x21x23
/

(x21 + x23)] = 3.93.

Similar to the examination of the situation of CBFTs impacting in the minor axis, x2 and x3 attain extreme 
values within an enclosed trajectory fulfilling |x1(0)| �= |x3(0)| may be derived for the situation of CBFTs impact-
ing in the central axis. Table 3 summarizes outcomes for such analysis for Figs. 16, 17.

Stable separatrix
In the previous case where x1(0) = x3(0) , generate a maneuver characterized by spin in an upward direction 
around the central axis, as demonstrated by system (44). As x1(0) = x3(0) �= 0 , equations in (47) yield

Moreover, equations in (50) give

Therefore, x1 = b+ x3 and L = M accordingly N =
√
L2 −M2 = 0 where N  denotes the first integral of 

motion. As a result, Eq. (51) implies

At the equilibrium α3 = 0 , we have

From Eq. (60), one writes

to give an estimation for the EPs. Letting

then substituting Eq. (77) into (74) to yield

To achieve the desired outcome, one must first separate the variables and subsequently integrate to obtain 
the following result

(72)x1 = b+ x1(0)e
α3 , x3 = x3(0)e

α3 .

(73)L =
1

2
[x21(0)+ x23(0)] = x21(0), M = x1(0)x3(0) = x21(0).

(74)d2α3

dτ 2
= 1− Le2α3 − (a+ b)x1(0)e

α3 .

(75)
x1 = b+ x1(0)e

α∗3 = b+ x1(0) ⇒ α∗
3 = 0,

x∗3 = x3(0)e
α∗3 = x3(0) ⇒ α∗

3 = 0.

(76)X1 =
−a±

√
a2 + 4

2
= X3,

(77)
dα3

dτ
= x2,

(78)x2
dx2

dα3
= 1− x21(0)e

2α3 − (a+ b)x1(0)e
α3 .

Table 3.  Shows xj extreme values that correspond to the middle axis (µ1,µ2,µ3) = (0, 1, 0).

Item Analytic statement Estimated Values

General
N =

∣

∣x
2
1(0)− x

2
3(0)

∣

∣

/

2,

G2 = 2x22(0)+ [x21(0)+ x
2
3(0)][1+ 2(a+ b)

√

2
/

N] − 2 tanh
−1 2x21 (0)x

2
3 (0)

x
2
1 (0)+x

2
3 (0)

.

x(0) = (1.7, 1.1,−0.2),
N = 1.43, G2 = 8.24.

x2max
,

x2min

x1 =
√√

N2 + 1+ N , x3 =
√√

N2 + 1− N ,

x3 = ±
√

G1−x
2
2+x

2
1+4bx1+4 tan−1(x1/ x2)

2
.

x = (1.78,±1.21, 0.56).

x1max
,

x3max

x2 = 0,

x1 =
√

x
2
3 + 2N .

x = (1.77, 0, 0.52).

x1min

x1 =
√
2N , x3 = 0,

x2 = ±
√

{G2 −
√
2N[1+ 2(a+ b)

√

2
/

N]}
/

2.
x = (4.72, 0,±5.44).
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The system’s dimensionless energy constant is denoted by G3 , which corresponds to the system’s second 
integral of motion.

As performed in the case of x1(0)  = x3(0) , stability analysis shows that every combination of initial condi-
tions concerning with x1(0) = x3(0) > 0 leads to a confined oval-shaped closed periodic solution within the 
plane x1(0) = x3(0) and encircles the EP (−a+

√
a2+4

2 , 0, −a+
√
a2+4

2 ) contained within this plane, while every set of 
initial conditions that satisfy x1(0) = x3(0) < 0 leads to a confined oval-shaped closed periodic solution within 
the plane x1(0) = x3(0) and encircles the EP (−a−

√
a2+4

2 , 0, −a−
√
a2+4

2 ) contained within this plane. Therefore, it 
can be inferred that, similar to the scenario of x1(0)  = x3(0) , the two extremes of x1(0) corresponding to x3(0) 
are positioned at the point where the angular velocity trajectory intersects the plane x2(0) = 0 . Similarly, the 
two extremes for x2(0) are situated at the intersection points of the trajectory with the surface (x1 + a)x3 = 1.

Table 4 summarises the extremal values reached by x1 = x3 and x2 along a closed trajectory with an initial 
condition at x(0) = (2.5, 1.3, 2.5).

Unstable separatrix
For the case when x1(0) = −x3(0) , equations in (47) yield

Hence, equations in (50) produce

Therefore, x1 = b+ x3, L = −M, and then N = 0 . Equation (51) results

It is evident that in this scenario, there are no EPs. A closer look at Eq. (81) shows that

Utilizing Eqs. (80) and (81) in order to achieve

Therefore, a movement that quickly transitions into a pure spin in an upward direction around the central 
axis, while maintaining a constant angular acceleration is obtained.

Discussion
The investigation delves into the influence of the GM and CBFTs on the rotatory motion of an asymmetric RB, 
employing Euler’s dynamic equations to derive the governing EOM. To reduce reliance on inertia characteristics, 
the equations are appropriately scaled. By identifying and expanding the controlling EOM, inertia properties 
are effectively removed from the equation. The EPs of the dimensionless system are determined, alongside the 
linearized EOM, characteristic equation, and stability properties.

Three distinct cases are presented:

1. For applied constant torque on the minor axis, an analytic solution is achieved, complemented by a 
comprehensive diagrammed simulation illustrating SS, trajectories, stability zones, and extreme torque values 
in the 3D phase plane.

(79)x21
2

+
x22
2

+ (a+ b)x1 − ln x1 = G3.

(80)x1 = b+ x1(0)e
−α3 , x3 = x3(0)e

−α3 .

(81)L =
1

2
[x21(0)+ x23(0)] = x21(0), M = x1(0)x3(0) = −x21(0).

(82)d2α3

dτ 2
= 1− Le−2α3 + (a+ b)x1(0)e

−α3 .

(83)lim
τ→∞

d2φ2

dτ 2
= 1 ⇒ lim

τ→∞
x2 = ∞ ⇒ lim

τ→∞
α3 = ∞.

(84)lim
τ→∞

x1 = lim
τ→∞

x3 = 0.

Table 4.  Presents xj extreme values corresponding to the middle axis (µ1,µ2,µ3) = (0, 1, 0) when 
x1(0) = x3(0).

Item Analytic statement Estimated Values

General
x1 = x3,

G3 = x
2
1 (0)+x

2
2 (0)

2
+ (a+ b)x1 − ln x1(0).

x(0) = (2.5, 1.3, 2.5),
G3 = 3.9287.

x1max
,

x1min

x1 = x3, x2 = 0,

x
2
1

2
+ (a+ b)x1 − ln x1 = G3.

x = (2.82, 0, 2.82),
x = (0.02, 0, 0.02).

x2max
,

x2min

x1 = x3 = 1,

x2 = ±
√
2[G3 − (a+ b)] − 1.

x = (1,±2.48, 1).



21

Vol.:(0123456789)

Scientific Reports |         (2024) 14:5390  | https://doi.org/10.1038/s41598-024-55964-z

www.nature.com/scientificreports/

2. When considering a directed CBFT along the major axis, numerical solutions are provided, along with 3D 
and 2D graphs depicting dimensionless angular velocities leading to a typical spin-up maneuver. Motion 
stability varies with increasing GM values, while maintaining the spin-up maneuver about one of the dimen-
sionless axes.

3. In the scenario of CBFT along the middle axis, an analytic solution is obtained, accompanied by complete 
3D and 2D phase plane representations for various SS motions. Extreme value cases are explored, and 
stabilization is discussed in detail, including system solutions and tables of extreme values in the stable 
separatrix section.

The effects of different GM values on body paths and stabilization are thoroughly examined, yielding beneficial 
insights. Each instance undergoes a comprehensive assessment, analyzing obtained values at the lowest and 
highest points of angular velocity distinct dimensionless components along a periodic solution.

Conclusion
The influence of the GM and CBFTs on the rotatory motion of an asymmetric RB is investigated. The governing 
EOM has been derived using Euler’s dynamic equations and scaled to reduce their dependence on inertia 
characteristics. To remove their reliance on inertia properties, the controlling EOM has been identified and 
expanded. The EPs of the dimensionless system are determined, as well as the linearized EOM, characteristic 
equation, and stability properties. In three distinct cases.

The remarkable significance of these results becomes apparent when considering the advancement and 
evaluation of systems that utilize asymmetric RBs, such as satellites and spacecraft. The study’s findings hold 
particular promise for stabilizing spacecraft motion within their orbits. Manipulating external moment values 
and body parameters can further enhance stabilization efforts. Consequently, these results may drive further 
exploration of GM perspectives in similar scenarios, with potential impacts across diverse industries, including 
engineering and astrophysics applications.
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