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In this study, we aimed to understand the potential role of the gut microbiome in the development 
of Alzheimer’s disease (AD). We took a multi‑faceted approach to investigate this relationship. Urine 
metabolomics were examined in individuals with AD and controls, revealing decreased formate and 
fumarate concentrations in AD. Additionally, we utilised whole‑genome sequencing (WGS) data 
obtained from a separate group of individuals with AD and controls. This information allowed us 
to create and investigate host‑microbiome personalised whole‑body metabolic models. Notably, 
AD individuals displayed diminished formate microbial secretion in these models. Additionally, we 
identified specific reactions responsible for the production of formate in the host, and interestingly, 
these reactions were linked to genes that have correlations with AD. This study suggests formate as 
a possible early AD marker and highlights genetic and microbiome contributions to its production. 
The reduced formate secretion and its genetic associations point to a complex connection between 
gut microbiota and AD. This holistic understanding might pave the way for novel diagnostic and 
therapeutic avenues in AD management.

Keywords Alzheimer’s disease, Metabolic modelling, Constraint-based modelling, Microbiome, Formate, 
Metabolomics, Host-microbiome, Pathways, Co-metabolism

Alzheimer’s disease (AD) is the world’s leading neurodegenerative disease and the most common cause of 
 dementia1,2. Due to ageing populations and the current lack of effective treatment, AD constitutes a major 
socioeconomic burden in industrialised  countries3. AD is characterised by progressing brain pathology and 
declining cognitive function, in addition to metabolic network failures resulting in changes in the  metabolome4.

The human gut microbiome plays an important role in human health and well-being, performing a wide 
range of essential  functions5,6. The gut microbiome affects and is affected by downstream organs, such as the 
liver, kidney, and brain 7, and is a major source of neuroprotective (e.g., indoleacrylic acid) and neurotoxic (e.g., 
quinolinic acid)  metabolites8. Recently, microbial dysbiosis in AD has been  reported9,10. Moreover, changes in 
gut microbial metabolites, such as primary and secondary bile acids (BAs), have been reported to correlate with 
mild cognitive impairment and AD  dementia11,12. In particular, gut microbiome contributes up to 50% of formic 
acid human  production13 and urinary formic acid levels have been recently suggested as non-invasive and cost-
effective urinary biomarkers analysis in case of  AD14.

Creating mechanistic computational models capable of integrating multi-omics data is essential for under-
standing the connections between shifts in the microbiome, changes in the metabolome, alterations in host 
metabolism, and the onset of diseases. The constraint-based reconstruction and analysis (COBRA) approach 
provides a powerful tool to better understand metabolic changes and the biochemical pathways affected by 
the  disease15. COBRA relies on manually refined genome-scale metabolic reconstructions that are built bot-
tom-up from the target organisms’ genome  sequences16. These genome-scale reconstructions can be converted 
into condition-specific metabolic models through the application of constraints, such as dietary information, 
metagenomics, and metabolomics, thereby enabling the computation of the biologically feasible solution space 
of these metabolic models through widely used methods, such as flux balance  analysis17. To meet the scale 
of human gut microbiomes, a resource of genome-scale reconstructions of 773 human gut microbes, called 
 AGORA18, was generated and subsequently expanded in size and scope (AGORA2), now accounting for 7,302 
human  microbes19. Additionally, a large-scale reconstruction resource based on metagenomically assembled 
genomes has been developed accounting for nearly 250,000 genome-scale metabolic  reconstructions20. Using 
these microbial reconstruction resources, comprehensive, personalised microbiome models can be constructed 
using microbial relative abundances derived from metagenomics data through tools, such as the Microbiome 
modelling  toolbox21,22. Using personalised microbiome modelling, it is possible to provide insights and identify 
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changes in the metabolic capabilities of gut microbiomes in disease states, including in inflammatory bowel 
 disease21,22 and colorectal cancer. Such predicted metabolic capabilities could be validated against faecal metabo-
lome  data23. Additionally, sex-specific whole-body models (WBMs) of human metabolism have been  published24, 
which represent human metabolism in an organ-resolved and anatomically accurate manner. These WBMs 
can be contextualised with physiological parameters, dietary input, and personalised microbiome  models24. 
For the first time, these models can also be used to investigate the interaction between the host and microbiota 
 metabolisms24,25and host-virus co-metabolism26. These simulation-derived novel hypotheses can be subsequently 
validated with targeted in vitro or in vivo studies.

Results
In this study, we aimed to characterise metabolic changes associated with cognitive decline and AD as well as to 
elucidate the role of the human gut microbiota in these changes. We first generated 1D-NMR urine metabolome 
data from individuals on the clinical AD spectrum and from cognitively healthy age-matched individuals from 
the Germany-based DELCODE study cohort. We identified a statistically significant decrease in formate and 
fumarate concentrations in people with AD dementia. To dissect potential microbial contributions, we then 
used WGS data generated from an independent cohort consisting of 24 participants with AD dementia and 24 
cognitively unimpaired age-sex-BMI-matched controls to construct personalised host-microbiome models for 
each individual. We found that the formate microbial secretion was lowered in AD host-microbiome models 
compared to healthy control host-microbiome models. Furthermore, we found that amino acids and sugar 
host-microbiome co-metabolism were involved in the predicted urine formate production. The implications of 
these two host pathways in AD were further supported by known associations of the underlying genes with AD 
pathology. Taken together, our analyses point towards alterations in the microbiome’s formate secretion capac-
ity between AD cases and controls and host-microbiome interactions on its production (Fig. 1). These findings 
have potential clinical relevance for understanding the interplay between the host and the microbiome in AD.

Metabolomic analysis reveals decreased fumarate and formate concentrations in the urine of 
people with AD
To characterise altered metabolism in AD and cognitive decline, we utilised 1D-NMR urine metabolome data 
generated at the baseline visit from n = 177 DELCODE  participants27 (Fig. 2A). The DELCODE cohort has four 
principal study groups, from which a subsample was characterised using urine metabolomics: healthy controls 
(n = 49), individuals with subjective cognitive decline (n = 45), mild cognitive impairment (n = 49), and AD-
Dementia (n = 34). A targeted metabolomics analysis resulted in the quantification of 49 creatinine-normalised 
urine metabolites (Table S01). We screened all quantified metabolites with at least 50% non-zero measurements 
in association with the study group variable. The tricarboxylic acid (TCA) cycle intermediate fumarate was 
decreased in the urine among people with AD dementia (FDR < 0.05, Fig. 2B, Table S02). Furthermore, formate 
was also decreased in the AD dementia group, although the result was not statistically significant after correc-
tion for multiple testing (Fig. 2C, Table S02). Notably, formate and fumarate were lowered among individuals 
with subjective cognitive decline (SCD) as well as those with mild cognitive impairment (MCI), suggesting that 
altered formate and fumarate could be indicative of an early process in the aetiology of AD.

Figure 1.  Workflow summary HC Healthy Controls, SCD Subjective Cognitive Decline, MCI Mild Cognitive 
Impairment, AD Alzheimer’s disease.
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Microbiome models showed no difference in metabolic content
The human gut microbiome affects host metabolism and contributes up to 50% to human formate  production13. 
To investigate possible microbial influences on the altered fumarate and formate levels in urine, we used person-
alised constrained-based models of human and microbial metabolism. As no microbiome data for the DELCODE 
study participants were available, we obtained stool samples from 24 subjects with dementia due to AD and 
24 age- and sex-matched control participants from the Wisconsin Registry for Alzheimer’s Prevention study 
(WRAP) and the Wisconsin Alzheimer’s Disease Research Center cohort (WADRC)28. As expected, there was 
a higher carriage of the APOE4 allele among people with AD dementia (Fig. 3A), the strongest genetic risk fac-
tor for late-onset  AD29,30. For these 48 individuals, metagenomic sequence data were generated from the stool 
samples and analysed using the default  Woltka31 toolkit against Web of Life (Release 1)32 in  Qiita33. The median 
amount of reads the samples contained was 2,561,443 (interquartile range (IQR) = 2,344,948) reads. (Fig. 3A). 
No statistically significant differences in the number of reads could be observed between cases and controls.

To gain insight into microbiome metabolism, we used the microbial species’ relative abundances to generate 
personalised microbiome metabolic models and we investigated their properties. Therefore, we discarded all reads 
that had no species taxonomic information, compared the list of identified species with the ones accounted for by 
the AGORA2 metabolic reconstruction  resource19, and discarded all reads belonging to species that could not be 
mapped onto AGORA2. We generated pan-species microbial metabolic reconstructions consisting of the union 
of all metabolites and reactions present in any corresponding AGORA2 strains of the same species (“Methods”). 
These pan-species microbial reconstructions were then combined into one microbiome reconstruction for each 
sample. This AGORA2 mapping resulted in 815 different species present in at least one of the 48 samples with 
an average of 476 (SD = 74) microbes in each sample. After the cut-off of low abundant species (“Methods”), the 
sample-specific microbiome models were composed of an average of 259 (SD = 29) pan-species models, account-
ing for an average of 73.60% (SD = 11.92%) of the total reads in the sequencing data (Fig. 3A). The resulting 48 

Figure 2.  1D-NMR metabolomic data on urine samples from the DELCODE study cohort support altered 
metabolism in AD, including formate metabolism. (A) Descriptive statistics for the analysed DELCODE 
samples. *p-value derived from one-factorial ANOVA, #p-value derived from Fisher’s exact test. SCD subjective 
cognitive decline, MCI mild cognitive impairment, AD Alzheimer’s disease, BMI body mass index. (B, C) Box 
plots for formate and fumarate (both creatinine normalised) over the four study groups. p-Values were derived 
from multivariable regressions adjusting for age, sex, and BMI using heteroscedastic robust standard errors. 
SCD subjective cognitive decline. MCI mild cognitive impairment. AD Alzheimer’s disease.
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sample-specific microbiome models consisted, on average, of 373,118 (SD = 40,819) non-unique metabolites 
and 337,340 (SD = 36,718) non-unique reactions (Fig. 3A). The reaction and metabolite redundancy in the 
microbiome models originated from the fact that each pan-microbial reconstruction was preserved within the 
microbiome reconstructions. When only considering the set of unique reactions, the AD microbiome models 
contained on average 7,558 (SD = 169) unique reactions. No differences in the metabolic content were detected 
between AD and control microbiome models (Fig. 3A).

Microbes’ abundance shifts in AD‑dementia
We investigated altered microbes’ relative abundances in the microbiome reconstructions and found that the 
relative abundances of Turicibacter sanguinis, Hungatella hathewayi, Turicibacter sp h121, Haemophilus parain‑
fluenzae, Ruminococcus champanellensis, Dialister succinatiphilus, and Coprobacillus cateniformis were decreased 
and the relative abundances of Akkermansia sp kle1797, Akkermansia sp kle1798, Parabacteroides distasonis, 
Bacteroides finegoldii, Collinsella tanakaei, Collinsella stercoris, and Bacteroides thetaiotaomicron were increased in 
the AD-Dementia (participants with dementia due to AD) samples compared to the healthy controls (Table S04). 
Due to the compositional nature of the relative abundance data, we performed a log ratio analysis of the increased 
species against the decreased ones using their gOTU counts. This analysis confirmed the alteration found in the 
relative abundances (Fig. 3B).

No alteration in formate urine secretion fluxes was predicted between AD dementia partici‑
pants and healthy controls
Formate is a fermentation production of anaerobic bacteria in the gut and the gut microbiome metabolism can 
account for up to 50% of the overall formate production in the  host13. To evaluate the possible involvement of the 
microbiome on formate urine excretion, we used the sex-specific, organ-resolved whole-body models of human 
metabolism (WBMs)24 and added the personalised microbiome models to the large-intestinal lumen of either the 
female or male WBM. Formate, which we found altered in the urine of people with AD in the DELCODE study, 
was part of the microbiome models and the WBMs. This metabolic overlap enabled our investigation of its direct 
effect on host-microbiome co-metabolism. We computed the maximum urine secretion flux and the maximum 
microbiome production flux for formate for all the microbiome-associated WBMs and the two sex-specific germ-
free WBMs. The simulation setup of the WBMs was identical except for sex-specific host metabolism and the 
microbiome models. Hence, we included sex as a covariate in the subsequent statistical analyses. No statistically 
significant differences could be observed between healthy and AD individuals (Table S05).

Figure 3.  Descriptive statistics for the analysed samples and their corresponding Qiita-derived microbiome 
models, and diversity analysis on microbial relative abundance. (A) Samples and model characteristics of the 
Wisconsin cohort studies. AD Alzheimer’s disease, SD Standard deviation, ap-value from Welch t-tests, bp-
value from Fisher’s exact test. Full results can be found in Table S03. (B) Boxplot of gOTU log-ratio analysis 
on microbes, whose models’ relative abundances were found to be altered between healthy and dementia-AD 
participants, p-value from Welch t-tests. The full results of the relative abundance analysis can be found in 
Table S04.
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Microbial metabolites contribute to the variation in urine formate secretion through 
host‑microbiome co‑metabolism
To evaluate the presence and contribution of host-microbial co-metabolism in formate urinary production, we 
investigated the predicted differences between the formate urine fluxes of the microbiome-personalised WBMs 
and non-microbiome-personalised WBMs, i.e., germ-free WBMs. The difference was higher than the amount 
of formate secreted by the microbiomes meaning that other microbially derived metabolites must be involved in 
the host-microbiome co-metabolism of formate (Fig. 4A,B). To determine the main microbial metabolites that 
contributed to urinary formate production, we investigated the solution vector when solving the microbiome-
personalised models for maximum formate urine secretion and extracted all the microbial secretion fluxes that 
had average flux values greater than 30 mmol/person/day (TableS06). Excluding formate, 14 metabolites were 
found to be highly secreted by the microbiomes. To test whether these metabolites could indeed increase the 
maximal urine formate secretion, we added each of the 14 metabolites individually to the diet of germ-free 
WBMs and solved for the maximum formate urine secretion. Nine of the 14 metabolites resulted in higher 
flux values for urine formate secretion compared to the average European diet without their addition and thus 
could be used by the host metabolism to synthesise formate (Fig. 4C). Interestingly, one of the metabolites, 
the ammonium ion, is not a carbon source. Nonetheless, its addition to the diet increased the formate urine 
secretion suggesting its involvement in formate-producing pathways. These results demonstrate that the host 
models metabolise microbial secretion products underlining the importance of microbial-derived metabolites 
as precursors of urinary formate.

Host formate originates from the metabolism of dietary and microbial metabolites
Subsequently, we aimed at elucidating the host-microbiome metabolism pathways involved in formate produc-
tion. The host can produce formate through various pathways from dietary  inputs13,34. We considered 47 reactions 
that have been suggested to be implicated in host formate metabolism and three transport reactions into or from 
the peroxisome and the endoplasmic reticulum to complete the pathways (Fig. 5, Table S07)13. To quantify the 
contribution of host metabolic reactions involved in the urine formate secretion, we deleted metabolic reactions 
involved in formate production in the germ-free WBM models. Overall, 17 of the 47 (36%) reaction deletions 
reduced the urine formate secretion flux by more than 10% (Fig. 5, Table S08). We then identified a minimal 
set of four reactions (VMH ID: PSP_L, Phosphoserine phosphatase; VMH ID: SFGTH, S-Formylglutathione 
hydrolase; VMH ID: TRPO2, L-Tryptophan: Oxygen 2,3 Oxidoreductase; and VMH ID: DKMPPD, 2,3-Diketo-
5-Methylthio-1-Phosphopentane Degradation) (Fig. 5), which, when deleted together, largely reduced the urine 
formate secretion by the germ-free WBM models (92% reduction in male, 86% in female). These four reactions 
represent endpoints of multiple pathways leading eventually to formate production, either directly or indirectly 

Figure 4.  Evaluation of host-microbiome involvement in urine secretion of microbe-derived metabolites. (A, 
B) Breakdown of maximum sex-specific urine formate secretion highlighting the presence of microbiome-
host co-metabolism. (C) Average metabolite microbiome secretion when the host-microbiome WBMs were 
interrogated for the maximum urine secretion, and urine secretions when the specific metabolites were 
unconstrained in the diet for the germ-free models.
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via the formation of formaldehyde, which is then converted into S-formylglutathione by formaldehyde dehy-
drogenase (VMH ID: FALDH) and formate by the S-formylglutathione hydrolase (VMH ID: SFGTH) (Fig. 5). 
The four reactions were present in numerous organs in the WBM models, with all being present in the brain, 
pancreas, lung, and adrenal gland. Different subsets of three were also present in eight further organs (colon, 
stomach, liver, heart, adipocytes, gall, kidney, and thyroid gland). Notably, the four reactions were also part of 
the metabolic pathways of the ten microbial metabolites that we previously identified (Fig. 4C). Taken together, 
microbial metabolites contributed to urine formate secretion flux via host-microbiome co-metabolism involving 
a network of host reactions that could be mostly deactivated by the deletion of four reactions, which are broadly 
distributed across numerous organs.

Reactions involved in the urine formate secretion are associated with AD
We were interested in whether any of the identified reactions and their corresponding genes have been previously 
associated with AD. Using the ADatlas (https:// adatl as. org/)35 a network-based integrative resource for AD, we 
found that 28 of the 47 (59.5%) reactions had genes associated with AD/cognitive decline phenotypes (Fig. 5, 
Table S09). Nine of these 28 reactions (32%) were also predicted to alter the maximal urine formate secretion 
flux by more than 10% (Fig. 5). Six of these nine reactions (i.e., VMH IDs: SARCOXp, r1378, SFGTH, PGCD, 
PSERT, and PSP_L, full names in Table S07) were involved in the formate production through formaldehyde 
and 3-phosphoglycerate catabolism and positively associated with AD. Additionally, two reactions (VMH ID: 
FKYNH, N-formyl-L-kynurenine amidohydrolase; and VMH ID: TRPO2, L-tryptophan: oxygen 2,3-oxidore-
ductase) were involved in formate production through tryptophan catabolism and negatively associated with 
AD. Notably, reactions associated with the folate metabolism (MTHFDm, MTHFDm2, MTHFCm, MTHFD, 
MTHFD2) were also associated with genes differently expressed in AD, in particular with low-expression of 
gene MTHFD1 and high-expression of gene MTHFD2 (Fig. 5, Table S09). These results demonstrate that for-
mate metabolism is altered in people with AD due to genetic variations and these genetic changes could lead to 
changes in formate urine secretion in addition to microbial formate production.

Figure 5.  Cellular metabolism involved in the production of formate including reactions found responsible 
for host-microbiota co-metabolism. Dotted lines represent diet constituent involvement in the overall formate 
production, circled reactions when deleted together largely reduced the formate urinary production. Metabolites 
names (abbreviations are given in VMH IDs, www. vmh. life,69): 10fth 10-formyl-THF; 3 pg 3-phosphoglyceric 
acid; chol choline; cys_L L-cysteine; dmgly dimethylglycine; fald formaldehyde; for formate; glc_D D-glucose; gly 
glycine; glyb betaine; glyc glycerol; glyc3p glycerol-3phosphate; gthrd GSH; his_L L-histidine; lac_D D-lactate; 
lkynr L-kynurenine; meoh methanol; methf 5,10-methenyl-THF; mlthf 5,10-methylene-THF; mma methylamine; 
orn ornithine; sarcs sarcosine; ser_L L-serine; thf tetrahydrofolate; trp_L L-tryptophane; tyr_L L-tyrosine. 
Reactions’ names can be found in Table S07. Complete KO analysis can be found in Table S08. Differential gene 
expression (DEG) and differential protein abundance (DEP) analysis of association to AD-related phenotypes 
can be found in Table S09.

https://adatlas.org/
http://www.vmh.life
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Discussion
A challenge in understanding the gut microbiome’s role in health and neurological disease is linking changes 
in the microbiome itself and its derived metabolome to changes in host metabolism and cognitive symptoms. 
Here, we present a personalised metabolic modelling approach for the interrogation of the host-microbiome 
co-metabolism in AD. Through this framework, we used whole-body models of human metabolism to generate 
insights about the consequences of altered formate microbial secretion and its association with urine output 
through host-microbiome co-metabolism. These in silico investigations were motivated by findings of alterations 
in formate urine levels in AD from an independent cohort. Taken together, our analyses point towards altered 
gut microbiome secretion capacities and host-microbiome interactions on formate production, results that could 
help understand the crosstalk between host and microbiome metabolisms in AD.

The use of urine metabolomics, as a non-invasively collectable biofluid, in the context of AD and the identi-
fication of early markers of AD could be crucial to developing successful  therapies36,37. Notably, urinary formate 
has been already suggested as a new potential biomarker for Alzheimer’s disease by an independent  study14. As 
a final breakdown product of human and microbial metabolism, formate is typically found in human  urine38. 
Levels are affected by both environmental and dietary exposures, and our results suggest that the urinary formate 
secretion could be a direct effect of altered host and microbial formate co-metabolism13. The interrogation of 
microbiome-personalised sex-specific WBM models, through computation of maximum formate urine secre-
tions (Fig. 5), highlighted that microbial formate secretion capacity was lower in AD microbiomes. Our results 
suggested the involvement of host-microbiota co-metabolism in the overall formate urine secretion catabolising 
microbially derived metabolites, such as glucose, L-serine, L-glycine, L-tryptophan, L-cysteine, L-tyrosine, and 
ornithine. The tyrosine pathway has been repeatedly implicated in  AD39,40 and tryptophan metabolites have 
been shown to regulate the cerebral activity of neprilysin, a metalloproteinase that controls the degradation and 
clearance of Aβ peptides in the  brain41.

Our results further underline altered metabolism as a hallmark of  AD42,43. In particular, the WBMs revealed 
the role of amino acid degradation in formate production, highlighting microbial-derived tryptophan degra-
dation as one of the primary microbial sources of formate. Tryptophan is not only an important precursor of 
neurotransmitters and neuroactive metabolites, such as serotonin and kynurenine 44, but it also plays a role in 
immunoregulation 4. Moreover, tryptophan depletion increases cognitive deficits among people with  AD45 and 
the bioavailability of metabolites in the serotonin and kynurenine pathways are altered in both the urine and 
serum of AD patients 46. The microbiome modelling implicated that microbial tryptophan production may also 
be reduced in AD, concurring with earlier work indicating that the microbiome contributes to human trypto-
phan pools 24. Thus, in conjunction with the WBMs, our finding of decreased formate among individuals with 
AD and MCI suggests alterations in tryptophan degradation in AD. These results are also in line with a recently 
formulated hypothesis of AD being a tryptophan metabolism-correlated disease 47.

Formate is also involved in different pathways and is a precursor of purine  synthesis48. Our study also high-
lighted the association of formate with folate metabolism, a pathway that has been found associated with AD and 
DNA  methylation49. The importance of host-microbiome formate co-metabolism is further highlighted by our 
examination of genes associated with AD, where we found that most of the reactions involved in formate metabo-
lism (Fig. 5) belong to genes, whose expression was altered in AD participants compared to healthy controls. 
Five reactions associated with the folate metabolism (MTHFDm, MTHFDm2, MTHFCm, MTHFD, MTHFD2) 
were associated with genes differently expressed in AD, three reactions (VMH IDs: PGCD, PSERT, and PSP_L), 
which are involved in the catabolism of 3-phosphoglycerate through an alternative pathway from glycolysis with 
the production of L-serine, a possible precursor of formate, were associated with genes overexpressed in AD; this 
result could corroborate the reported reduction in glycolysis intermediate concentrations in AD  participants50. 
Overall, these results suggest that formate metabolism is altered in individuals with AD also due to genetic 
variations, which could lead to changes in formate urine secretion in addition to microbial formate production. 
Notably, this inference would have not been possible without the WBM modelling, which clarified the role of 
the host formate metabolism. Without this additional in silico analysis, one could have falsely concluded that 
changes in microbial formate production, due to differences in microbiome composition, would be responsible 
for the reduced urine formate secretion in AD patients as measured in the metabolomic data. Since our WBM 
models were not further personalised using an individual’s genomic, metabolomic, or transcriptomic data, the 
aforementioned host genetic factors should be considered in future in silico studies, potentially increasing the 
validity of the in silico results regarding host urinary formate secretion.

While the COBRA modelling approach is a very valuable approach for investigating host-microbiome co-
metabolism involvement in AD, certain limitations should be noted. For instance, we used a relatively small 
cohort of subjects and controls. Hence, our results need to be validated in larger independent cohorts with 
possibly urine metabolomics and WGS data from the same individuals to reduce variability. It has to be noted 
that discarded microbes not accounted for by the AGORA2 resource could lead to loss of metabolic capacities 
in the correspondent microbiome models. Additionally, the models were built on microbial relative abundance 
data generated from the reads count data, and results were subject to the intrinsic compositional structure of the 
models. Genome-scale metabolic reconstructions are also continuously updated as new experimental data and 
biochemical knowledge become  available51–53. The incompleteness of the metabolic reconstructions is particu-
larly true for gut microbes, for which only limited data are available. Computational reconstruction tools, such 
as  DEMETER54, which has been used for the construction of the AGORA2 microbial reconstructions, permit 
the inclusion of experimental data, e.g., from  BacDive55, during the reconstruction process. Similarly, refined 
genome annotations that correct missing and mis-annotations should be performed to minimise the errors in 
the reconstruction, and thus increase the fidelity of the predictions. Such reannotation has been done for most 
of the microbes in AGORA2. Moreover, an inherent limitation of the COBRA approach is that it assumes the 
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biological system to be in a steady-state condition, thereby ignoring the dynamic nature of microbial communi-
ties. Notably, the predicted secretion capacities obtained through microbiome modelling are not confounded 
by different factors, such as age and sex, improving the identification of secretion-microbial correlations, since 
they are derived from deterministic modelling rather than inferred from statistical dependence patterns of 
observational data. Additionally, while this study highlighted the role of gut microbes and host metabolism and 
genetics, differences between lifestyle factors (e.g., diet and exercise) and medications are also likely to contribute 
to changes in host-microbiome co-metabolism, urine metabolome, and AD pathology.

In conclusion, in this study, we combined omics data with COBRA modelling on the level of the microbiome 
and the whole human supra-organism and highlighted the role of microbiome-host interplay on formate-produc-
ing pathways. In particular, the microbiome’s role in linking aminoacidic and glucose metabolism with formate, 
a possible early marker for AD, could be of clinical importance, potentially contributing to the AD phenotype. 
The underlying mechanism suggested by our model, that both gut microbes and host genetics contribute to an 
altered formate metabolism in AD, needs to be assessed with more targeted validation studies. Our study delivers 
proof of the concept of personalised whole-body modelling in the context of a complex human disease. As such, 
the paradigm has demonstrated promise in uncovering host-microbiome co-metabolism involving biomarkers 
found in metabolomic studies validating or suggesting pathology hypotheses.

Methods
This study did not generate new unique reagents.

Statistical analyses
For descriptive statistics, metric variables were expressed in means and standard deviations, while categorical 
variables were described by proportions. All p-values were reported as two-tailed. The statistical analyses were 
performed with STATA 16.1/MP (STATA Inc., College Station, Texas, USA).

DELCODE cohort
Study sample
We used an interim data-freeze from the DELCODE study conducted by the Deutsches Zentrum für Neurode-
generative Erkrankungen (DZNE)27. Note that the DELCODE study did not include individuals with a current 
major depressive episode, major psychiatric disorders, neurological diseases other than AD, or unstable medi-
cal  conditions27. For our study, we also excluded individuals who had no urine samples available. The resulting 
sub-cohort consisted of 49 healthy controls, 45 cases with subjective cognitive decline (n = 45), 49 cases with 
mild cognitive impairment, and 34 cases with AD dementia (Fig. 2A). We defined subjective cognitive decline 
(SCD) as a constant self-perceived cognitive decline without observation of any objective cognitive impairment 
as measured by the CERAD test battery, persisting at least for six months and being unrelated to an episodic 
 event56. The National Institute on Aging-Alzheimer’s Association (NIA-AA) workgroup  guidelines57,58 were used 
to define the core clinical criteria for MCI and dementia AD-related. The control subjects showed no objective 
cognitive impairment in cognitive tests, had no history of neurological or psychiatric disease, and did not report 
a self-perceived cognitive decline. Informed consent was provided by all participants or their representatives. The 
study protocol was approved by the local institutional review boards and ethics committees of the participating 
centres and the study was conducted in accord with the Helsinki Declaration of 1975.

1H‑NMR measurements
The urine samples were handled and prepared as  in59. The urine samples from 185 individuals were measured 
at the University Medicine Greifswald on a Bruker AVANCE-II 600 NMR spectrometer operated by TOP-
SPIN 3.2 software (both Bruker Biospin, Rheinstetten, Germany). The spectrometer was equipped with a 5-mm 
z-gradient probe and an automated tuning and matching (ATMA) unit (both Bruker Biospin, Rheinstetten, 
Germany). Specimens were automatically delivered to the spectrometer via SampleJet (Bruker Biospin, Rhein-
stetten, Germany) into standard 5 mm NMR tubes. The acquisition temperature was set to 300°K. A standard 
one-dimensional 1H-NMR pulse sequence with suppression of the water peak (NOESYPREAST) was  used60. 
Urine samples of four individuals could not be processed at all due to too little biomaterial available for 1H-
NMR measurements. After processing the raw spectra, 50 metabolites were quantified using the Bruker Suite 
B.I.Quant-UR b™ for targeted analyses. To account for dilution, two different normalisation approaches were 
performed: (1) creatinine normalisation and (2) PQN normalisation. Different normalisation approaches have 
been shown to have different advantages as well as disadvantages such that it is recommended to use multiple 
approaches and to compare results across normalisation  techniques61. For quality check purposes, creatinine was 
measured via an enzymatic standard kit to compare 1H-NMR-derived creatinine measurements with standard 
creatinine measurements. Four further observations were excluded for strong differences between enzymatic 
and 1H-NMR creatinine measurements. The remaining observations showed a correlation > 0.95 between the 
two types of creatinine measurements. In the end, n = 177 spectra were included in statistical analyses.

Descriptive sample statistics of targeted metabolome data
Metadata and urine samples for 177 individuals belonging to four study groups were available for analysis 
(Fig. 2A). As described above, eight individuals were excluded from analyses, thus the final sample, for which 
urine metabolome data was available, comprised 177 individuals. Figure 2A lists the descriptive statistics for 
basic sample characteristics. Importantly, the four study groups (healthy, subjective memory impairment, MCI, 
AD) were not balanced for age and body mass index (BMI, Fig. 2A). Therefore, all statistical metabolome analy-
ses accounted for age and BMI differences by including age and BMI as covariates in the statistical modelling.
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Statistical analyses of the NMR metabolome data
Descriptive statistics were derived for 49 metabolites after creatinine normalisation. Of those 49 metabolites, 
only 16 metabolites had non-zero urinary concentration measurements in more than 50% of the samples. Impor-
tantly, a zero measurement in the context of NMR measurement does not necessarily mean that the metabolite 
was below the limit of detection. The signal of the correspondent metabolite may also have been clouded by 
other metabolites or may have been shifted due to pH differences in ion concentrations, hence, we treated zero 
measurements as missing values. We screened all metabolites fulfilling the 50% criteria via multivariable linear 
regressions including age, sex, and BMI as covariates. Log-transformed, creatinine-normalised metabolite con-
centrations were used as the dependent variables, and the study group variables (categorical) were the predictors 
of interest. We performed the global test using the Wald-test method to investigate 1. whether the study group 
variable contributed overall to the statistical model and 2. whether there were specific differences between the 
AD group and the healthy controls. For correction of multiple testing, the false discovery rate was utilised.

WISCONSIN cohort
Faecal samples
Our study utilised data from the Wisconsin Alzheimer’s Disease Research Center (WADRC) and the Wisconsin 
Registry for Alzheimer’s Prevention (WRAP) studies. Participants with AD-Dementia were recruited from the 
WADRC, while cognitively unimpaired participants were recruited from the WADRC and the WRAP studies. 
Data on age, sex, BMI, APOE genotype, diagnosis, and cognitive test results were  collected62,63. Our study used 
a subset of the cohort comprising 48 individuals (24 AD-Dementia cases and 24 sex and age-matched healthy 
controls). Covariates were compared against the clinical diagnosis using Fisher’s exact test for APOE4 and sex, 
and Welch’s t-test for age and BMI. The study protocol was approved by The University of Wisconsin Health 
Sciences Institutional Review Board.

Sequencing and processing of metagenomic data
The faecal samples were sequenced and then processed through  Qiita33 using the default workflow for metagen-
omics data. In short, the raw files were loaded in multiple preparations to represent the multiple runs and pro-
cessed with default parameters; then the raw sequencing data were demultiplexed and trimmed at 150 bases. 
Adapter removal was carried out using  fastp64 and human reads were filtered using  minimap265. Genomic OTUs 
(gOTUs) were generated using the Woltka  Toolkit31 by aligning reads to the Web of Life (Release 1) reference 
genome  database32 using  bowtie266.

Construction of personalised microbiome metabolic models
First, we assigned taxonomy to gOTUs using the Web of Life database, and we summed together the gOTUs 
with matching taxonomical information. Reads with no specific species information or associated to species not 
accounted by our database of genome-scale metabolic microbial reconstructions (AGORA2)19 were discarded. 
The remaining reads were normalised such that the sum of all reads was one, thereby obtaining the relative abun-
dances of each microbe in the sample. The obtained relative abundances were then mapped to 1,742 AGORA2 
pan-species reconstructions, the union of reactions and metabolites of each strain-specific reconstruction of one 
species. Then, sample-specific microbiome models were derived using the mgPipe module of the Microbiome 
Modelling  Toolbox21,22. The process involves integrating various microbial reconstructions by introducing addi-
tional reactions into each microbial reconstruction to allow the transfer of metabolites between the extracellular 
space of each microbe and a shared lumen  compartment67. This lumen compartment is interconnected with 
both dietary and faecal compartments, allowing for the absorption and excretion of metabolites to and from the 
surrounding environment. Within each microbial community model, adjustments are made to the community 
biomass reaction based on the provided relative abundance data. Further constraints were then applied to cou-
ple each microbial reaction to its corresponding biomass reaction. These ‘coupling constraints’ ensure that flux 
through a pan-genome model within the microbiome model was only non-zero if the corresponding biomass 
reaction carried a non-zero flux. The coupling factor was arbitrarily chosen to be  40067,68. We tested for differences 
in measures of metabolic content in the microbiome models between cases and controls using linear regressions 
correcting for the presence of the APOE4 allele.

Species abundances evaluation
To investigate differences in the AGORA2-covered microbial abundances between cases and controls, we fitted 
fractional regressions using the relative microbial abundances as the response variable and the health status as 
an independent one correcting for categorical APOE genotype, while we excluded all the microbes present in 
less than 50% of the models to avoid statistical artefacts. Alteration in relative species abundances was checked 
using log-ratio analysis, after calculating the sum of the gOTUs for the increased species and decreased species, 
the ratio was calculated and a t-test was run between groups.

Diet constraints
An average European  Diet69, supplemented with bile acids (cholic acid and chenodeoxycholic acid), was applied 
to further constrain each microbiome model and to convert them into condition-specific models (Table S11). 
The diet constraints were defined to be in mmol/person/day. We integrated the uptake fluxes values defined by 
the diet with all the microbiome models using the Microbiome Modelling  Toolbox21 implemented in the COBRA 
 toolbox70, and we ensured that all the pan-species models could grow under the defined diet.
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Microbiome model simulations
Each microbiome model under the given condition-specific constraints was interrogated using flux variability 
analysis (FVA)71 to obtain the corresponding maximum net secretion capacity for all the model’s secretion reac-
tions, FVA solves maximisation problems with the interested reactions secretion fluxes as objective subject to 
different constraints to specify the feasible region: predetermined upper and lower bound of reactions fluxes 
stated in the model, diet fluxes, and mass balance in form of (S.v = dv/dt = 0, whereas is the stoichiometric matric 
with metabolites as rows and reactions as columns and v is the flux vector). For each metabolite secretion capacity, 
zero values meant that the model could not secrete the corresponding metabolite, while a positive value corre-
sponded to the microbiome model’s capacity of secreting the metabolite, under the given simulation constraints. 
All simulations were performed in MATLAB (Mathworks, Inc.) version R2018b using IBM CPLEX (IBM, Inc.) 
as a linear programming solver and the COBRA Toolbox  v370 and the Microbiome Modelling  Toolbox22.

Interrogation of whole‑body metabolic (WBM) personalised models
We added the individual microbiome models to the large intestinal lumen of either female or male organ-
resolved, whole-body models of human metabolism (WBMs), as appropriate, using the PSCM  toolbox24. We 
computed the maximum urine secretion fluxes of metabolites, which were significant in the previous analyses 
and could be produced by the microbiome-associated WBM under an average European  diet69. The male and 
female WBMs, which correspond to a reference man and  woman24, respectively, were not further personalised 
as the sub-cohort was age and BMI matched between healthy and AD individuals. The maximum urine secre-
tion rate for each microbiome-associated WBM was calculated by choosing the corresponding urine metabolite 
exchange reaction (e.g., ‘EX_for[u]’ for formate) as an objective function and maximising for this reaction, using 
the PSCM  toolbox24. Maximum urine secretion rates for the investigated metabolites were also calculated for 
non-personalised, germ-free, male and female WBMs. The maximum microbial secretion fluxes were calculated 
by choosing the corresponding microbial metabolite exchange reaction between the microbial lumen [luM] and 
large intestinal lumen [luLI] and solving the models minimising the reaction.

Differences in secretion fluxes between AD cases and controls
To investigate differences in reaction fluxes between cases and controls, we fitted linear regression using the fluxes 
as the response variable, the health status as an independent variable correcting for categorical APOE genotype, 
and sex being the WBM models sex-specific.

Investigation of host‑microbiota co‑metabolism
To investigate the involvement of host-microbiota co-metabolism in formate production, we considered the 
difference in secretion of formate between the personalised and the germ-free models and we compared these 
differences with the community microbial secretion of the same metabolite to evaluate the amount of urine secre-
tion directly correlated to the microbial secretion and the amount correlated to host-microbiota co-metabolism.

We confirmed the capacity of the whole-body models to produce formate from other microbial metabolites by 
adding individually to the diet metabolites that can be secreted by the microbiome. All metabolites were added 
to the diet setting their potential maximum intake to 300 mmol/d. These implemented diets were tested for 
maximum urine formate production on the germ-free models to evaluate changes in the previous baseline value.

Genetic involvement in host formate production pathways in AD
We considered all the reactions known from the  literature13 to be involved in the formate metabolism including 
the ones we found responsible for the host-microbiota co-metabolism. We retrieved all the genes associated 
with these reactions from the Virtual Metabolic Human database (VMH)69, which houses the generic human 
metabolic reconstruction,  Recon3D52, and then we investigated for associations between genes and health status 
using the AD  Atlas35 a network-based integrative resource for AD. The AD Atlas integrates multi-omics data 
from large-scale population-based and AD case–control studies, enabling users to annotate genes, metabolites, 
or phenotypes of interest in an AD-related context. In particular, differential expression genetic (DEG) data 
had been integrated in AD atlas from 2,114 postmortem human brain  samples72. In our study, the AD atlas was 
queried using the genes identified to be involved in formate metabolism, retrieving information on brain-region-
specific differential gene expression and differential protein abundance in AD, as well as genetic associations 
to AD-related phenotypes inferred from large-scale genome-wide association studies (GWAS). A gene-wise 
significance threshold was applied to filter GWAS results, as implemented by the AD  Atlas35.

Data availability
The data supporting the conclusions of this study are accessible; however, constraints are imposed on their public 
availability. Notwithstanding, these data can be procured from the authors upon the submission of a reasonable 
request. Data from the DELCODE cohort will be made available on request to Johannes Hertel (Johannes.Her-
tel@med.uni-greifswald.de). Data from the WISCONSIN cohort will be made available on request to Barbara 
B. Bendlin (bbb@medicine.wisc.edu).
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