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Community detection 
in hypergraphs via mutual 
information maximization
Jürgen Kritschgau 1, Daniel Kaiser 6, Oliver Alvarado Rodriguez 2,10, Ilya Amburg 3,10, 
Jessalyn Bolkema 4,10, Thomas Grubb 5,10, Fangfei Lan 7,10, Sepideh Maleki 8,10, Phil Chodrow 9 & 
Bill Kay 3*

The hypergraph community detection problem seeks to identify groups of related vertices 
in hypergraph data. We propose an information-theoretic hypergraph community detection 
algorithm which compresses the observed data in terms of community labels and community-edge 
intersections. This algorithm can also be viewed as maximum-likelihood inference in a degree-
corrected microcanonical stochastic blockmodel. We perform the compression/inference step via 
simulated annealing. Unlike several recent algorithms based on canonical models, our microcanonical 
algorithm does not require inference of statistical parameters such as vertex degrees or pairwise 
group connection rates. Through synthetic experiments, we find that our algorithm succeeds 
down to recently-conjectured thresholds for sparse random hypergraphs. We also find competitive 
performance in cluster recovery tasks on several hypergraph data sets.

The network clustering task asks us to identify sets, or clusters, of related vertices in a network. In particular, we 
aim to identify groups of vertices that are related to each other in some way that they are not related to vertices 
in other clusters. In various disciplines, the graph clustering task may also be called network partitioning or 
community detection. A large number of methods have been developed for clustering dyadic networks, in which 
relationships exist between pairs of vertices. Such dyadic networks can be represented as graphs. Techniques 
for graph clustering include spectral methods, greedy optimization methods, and methods based on statistical 
inference, with many theoretical connections across these  categories1.

Much recent work has emphasized the importance of multiway relations—interactions between groups of 
two or more entities—in complex  systems2,3. Such interactions can often be modeled as edges in a generaliza-
tion of graphs usually referred to as hypergraphs. A hypergraph H = (V ,E) consists of a finite set of vertices V 
and a collection of edges E ⊆ P (V) (the power set of the vertex set). That is, hypergraphs generalize graphs by 
allowing edge sizes other than two. Hypergraphs pose both opportunities and challenges for clustering algo-
rithms. On the one hand, the richer representation of relationships offered by hypergraphs can in some cases 
produce superior performance when compared to graph methods applied to the same data. On the other hand, 
the flexibility implied by arbitrary edge sizes can lead to both computational and statistical pitfalls. There are 
many extant approaches to hypergraph clustering including spectral  methods4, methods based on combinatorial 
 optimization5–7, and methods based on statistical inference in both single-membership and mixed-membership 
generative  models8,9.

In this paper, we offer a hypergraph clustering algorithm with information-theoretic foundations. This algo-
rithm extends a method proposed by Rosvall and Bergstrom for graph  clustering10. Their approach begins 
by regarding a proposed clustering of a graph as a lossy compression of the graph. The goal, then, is to form a 
compression that, for a fixed storage size, is maximally informative of the original graph structure. They formu-
late this criterion in terms of maximization of mutual information, or, equivalently, minimization of a certain 
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entropy functional. They then use simulated annealing to perform the minimization. This approach is equivalent 
to maximum-likelihood estimation in a microcanonical graph stochastic  blockmodel11, and may thus also be 
viewed as a statistical inference method.

We note here that there are a number of different notions of “community” that depend on context. In reference 
to real world data, communities are observed labels of the data points (for example, classroom assignments for 
students). If a graph is generated by sampling from a stochastic blockmodel, then the communities reference the 
latent partitions that are a parameter of the stochastic blockmodel. In our information-theoretic approach, com-
munities are a partition of the vertex set of a graph that is used to compress the graph. There are two heuristics 
at play. First, there is an assumption that observed edges in real world data are informative of the communities 
(data point label), in much the same way that edges in the stochastic blockmodel are more likely to be inside 
of communities (as a parameter of the stochastic blockmodel) under certain parameter choices. Second, we 
assume that communities (as a partition) for compression should co-vary with communities (as a parameter) in 
graphs sampled from the stochastic blockmodel. Our approach is to estimate the communities for compression 
as a way to approximate communities for a stochastic blockmodel or ground truth labels in real world data sets.

The main contribution of this paper is to extend the algorithm of Rosvall-Bergstrom to hypergraphs by (a) for-
mulating the entropy functional on the more combinatorially complex set of hypergraphs and (b) incorporating 
a degree-correction11,12 to account for heterogeneity of vertex degrees. Our algorithm is native to the hypergraph, 
but reduces to the graph version on 2-uniform hypergraphs. Section “Methods” contains a description of the 
entropy functional, its information theoretic foundations, the simulated annealing algorithm we use to locally 
minimize the entropy, and a principled method for determining a target number of clusters. In Section “Results: 
synthetic data”, we demonstrate our algorithm on several synthetic data sets, finding experimental suggestion that 
the algorithm succeeds down to the sparse detectability limit conjectured by Chodrow et al. 8 In Section “Results: 
experiments on data”, we conduct experiments on several empirical data sets, finding performance competitive 
with extant graph and hypergraph methods. We close in Section “Discussion” with discussion of our findings 
and suggestions for future work.

Methods
We treat the hypergraph clustering problem as an information-theoretic compression problem in which the aim 
is to find a maximally informative clustered description of the hypergraph structure. In this section, we introduce 
the core technical ideas needed to describe this approach: hypergraph compressions, information, and entropy.

Hypergraph compression
Let H be a hypergraph with edge set E = E(H) and vertex set V = V(H) . Suppose {Ci}

m
i=1 is a partition of V into 

m clusters. For � = (�1, . . . , �m) ∈ N
m , we say an edge  A ∈ E  is of  �-type if |A ∩ Ci| = �i for 1 ≤ i ≤ m . That is, 

�i counts the number of vertices in edge A belonging to cluster Ci . We denote by E� the set of all edges of �-type.

Definition 2.1 (Hypergraph Compression) A compression of  H  into m clusters is a pair γ = ({Ci}
m
i=1, {e�}�∈Nm) 

such that

• {Ci}
m
i=1 is a partition of V, and

• {e�}�∈Nm is a collection indexed by � , where e� is the number of �-type edges in H.

We say that H and γ are compatible if γ is a compression of H . We let H(γ ) be the set of all hypergraphs compat-
ible with a fixed γ , and let Z(γ ) = |H(γ )| . We also let Ŵ(H) denote the set of compressions compatible with H.

The collection of clusters {Ci}
m
i=1 may be equivalently represented as an assignment vector c ∈ {1, . . . ,m}V 

where cv = i if and only if v ∈ Ci . Similarly, if H is a simple graph, then {e�}�∈Nm reduces to the module matrix 
in simple graph formulations of  compression10.

In applications, it is useful to also incorporate the vertex degree sequence into the compressed representation 
of the hypergraph. Let {dv}v∈V be the degree sequence of vertices in H.

Definition 2.2 (Degree-Corrected Hypergraph Compression) A compression of  H  into m  clusters with degrees is 
a triple γ = ({Ci}

m
i=1, {e�}�∈Nm , {dv}v∈V ).

Explicitly incorporating the degree sequence into the compression is the analogue of degree-correction in 
canonical stochastic  blockmodels12. In Section “Results: experiments on data”, we will see that the degree-cor-
rected compressions give improved ARI (Adjusted Rand Index) when clustering against known ground truths. 
This finding is consistent with simple graph clustering 13, which typically have heterogeneous degree sequences. 
We discuss the connection to stochastic blockmodels in Section “Relation to maximum-likelihood estimation”. 
Throughout the remainder of this paper, we let Ŵ(H) denote the set of all compressions of a fixed hypergraph 
H , describing in context when necessary whether the space of compressions includes degrees. An example of a 
clustered hypergraph can be found in Fig. 1.

Information and entropy
For a given hypergraph, our aim is to select a maximally informative compression. We define the information 
content of a compression in terms of Shannon  entropy14. Our definitions follow the formulation of Cover and 
 Thomas15 Let X and Y be discrete random variables with joint distribution p(x, y) over an alphabet X ×Y.
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Definition 2.3 (Marginal, Joint, and Conditional Entropies) The marginal entropy (or simply entropy) of the 
random variable X is

The joint entropy of X and Y is

The conditional entropy of Y given X is

The entropy H(X) can be viewed as a measure of spread for the discrete random variable X. It is maximized 
with respect to the distribution p by the uniform distribution p(x) = 1

|X |
 , in which case H(X) = log

∣

∣X
∣

∣ . The 
joint entropy H(X, Y) is similarly a measure of spread for the joint distribution p(X, Y). The conditional entropy 
H(Y|X) is the expected spread in the distribution p(y|x) across realizations of x, as highlighted by the formula

Definition 2.4 (Mutual Information) The mutual information of X and Y is given by:

Other definitions of the mutual information exist under which Definition 2.4 is a theorem rather than a 
definition. Treating H(X) as a measure of uncertainty about X, and H(X|Y) as a measure of uncertainty about 
X conditional on knowing the value of Y, the mutual information measures how much knowledge of Y reduces 
uncertainty in X.

Information maximization as counting
Our aim is to choose a compression γ that is maximally informative about the structure of the hypergraph H . 
Let Ŵ be a set of possible compressions and, for each γ ∈ Ŵ , p(· | γ ) be uniform on H(γ ) . In practice, we usually 
take Ŵ = Ŵ(H0) to be the set of all compressions compatible with an observed hypergraph H0 . We assume an 
unspecified prior q over Ŵ which we will soon optimize. We model H as being drawn from a distribution:

H(X) � −
∑

x∈X

p(x) log p(x) .

H(X,Y) � −
∑

x∈X

∑

y∈Y

p(x, y) log p(x, y) .

H(Y |X) = −
∑

x∈X

∑

y∈Y

p(x, y) log p(y|x) .

H(Y |X) = −
∑

x∈X

∑

y∈Y

p(x)p(y|x) log p(y|x)

= −
∑

x∈X

p(x)H(Y |X = x) .

I(X;Y) � H(X)−H(X|Y)

= H(Y)−H(Y |X) .

p(H) =
∑

γ∈Ŵ

p(H | γ )q(γ ) .

Figure 1.  Example of a hypergraph whose vertices have been partitioned into four clusters.



4

Vol:.(1234567890)

Scientific Reports |         (2024) 14:6933  | https://doi.org/10.1038/s41598-024-55934-5

www.nature.com/scientificreports/

We form the compression γ and sample a new hypergraph H′ from the distribution p(· | γ ) . We can think of this 
process as describing the hypergraph H by transmitting the compression γ to a stranger who does not observe H 
itself. The stranger then forms a guess H′ about the structure of the hypergraph described by the compression.

We seek a distribution q over Ŵ that maximizes the mutual information between H and H′:

To simplify this problem, we first observe that, by construction, H and H′ are independent conditioned on γ:

The last equality reflects the fact that, once γ is transmitted, the signal receiver does not have any other access to 
H when generating the guess H′ . Now applying the chain rule of mutual information, we have

By conditional independence, I(H;H′|γ ) = 0 and I(H; γ ,H′) = I(H; γ ) . It follows that

Since the first term does not depend on γ , we can ignore it in the optimization over q, and our reduced problem 
becomes

Expanding the conditional entropy yields

This expression makes clear that the optimal q concentrates all its mass on values γ that minimize the entropy of 
the distribution p(· | γ ) . But since p(· | γ ) is uniform, the entropy of this distribution is simply logZ(γ ) , where 
Z(γ ) = |H(γ )| is the number of hypergraphs compatible with γ . Thus, after observing a data hypergraph H0 
and setting Ŵ = Ŵ(H) , our original mutual information maximization problem Eq. (1) reduces to the problem

That is, the maximally informative compression γ of a given hypergraph H0 is the compression that is compatible 
with H0 and minimizes the size of H(γ ) . We can think of γ as a description of H0 that minimizes the number of 
alternative hypergraphs Z(γ ) which could also be described by γ.

Relation to maximum-likelihood estimation
The entropy minimization problem of Eq. (2) and maximum-likelihood estimation arise from the stochastic 
blockmodel. Recall the conditional data generating distribution p(· | γ ) , which is uniform over the set H(γ ) of 
all hypergraphs compatible with the compression γ:

We can then equivalently write our minimum-entropy problem as:

Since γ itself contains cluster memberships and edge-cluster intersections, p(· | γ ) can be viewed as a microca-
nonical hypergraph stochastic blockmodel, generalizing known microcanonical models for  graphs11. The mutual 
information maximization Eq. (1), the entropy minimization Eq. (2), and the maximum-likelihood problem 
Eq. (3) are all equivalent ways to describe our inference problem.

One can count the number of graphs G that admit γ = ({Ci}
m
i=1,M) as a compression, where {Ci}

m
i=1 is a par-

tition of the vertex set of G and each entry of the module matrix Mi,j enumerates the number of edges between 
cluster i and j, as follows:

(1)q = argmax
q

I(H;H′) such that H
′ ∼ p(· | γ ) and γ ∼ q .

p(H,H′ | γ ) = p(H′ | H, γ )p(H | γ ) = p(H′ | γ )p(H | γ ) .

I(H;H′) = I(H; γ ,H′)− I(H;H′|γ ) .

I(H;H′) = I(H; γ ) = H(H)−H(H | γ ) .

q = argmin
q

H(H | γ ) such that γ ∼ q .

H(H | γ ) =
∑

γ∈Ŵ

∑

H∈H(γ )

p(H, γ ) log p(H | γ )

=
∑

γ∈Ŵ

q(γ )
∑

H∈H(γ )

p(H | γ ) log p(H | γ ) .

(2)γ̂ = argmin
γ∈Ŵ(H0)

Z(γ ) .

p(H | γ ) =

{

1
Z(γ ) H ∈ H(γ )

0 otherwise.

(3)γ = argmin
γ∈Ŵ(H0)

Z(γ ) = argmax
γ∈Ŵ(H0)

1

Z(γ )
= argmax

γ∈Ŵ(H0)

p(H | γ ) .

Z(γ ) =
�

i<j

�

|Ci|
�

�Cj

�

�

Mi,j

� m
�

i=1





�

|Ci|
2

�

Mi,i



.
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Our aim is to maximize the mutual information between a hypergraph H and its compression. To do this via 
Eq. (2), we need to evaluate Z(γ ) , the number of hypergraphs compatible with the compression γ . If we restrict 
to simple hypergraphs, which do not have multiple edges, then

We remark that the (a priori) infinite limit exists, as all but finitely many � are 0 . Here, the expression 
∏m

i=1

(

|Ci|
�i

)

 

counts the number of ways to choose the appropriate number of vertices from each of the m clusters for inclusion 
in one �-edge, from which we select e� edges without repetition to realize.

If we instead consider multi-hypergraphs, in which multiple edges are permitted, then there are

ways to select the e� edges from among all possible edges of type � . It follows in this case that

Noting that �i = |A ∩ Ci| if A ∈ E� , we can rewrite this expression as

Notably, this final expression is not organized according to edge type.

Degree-corrected entropy
In this section we vary the compression to allow for specification of a degree sequence in the hypergraph. In 
doing so, we will obtain a new entropy based objective function to minimize. As in the previous section, this 
entropy will be inspired by a hypergraph counting task.

We consider degree-corrected compressions of the form γ = ({Ci}
m
i=1, {e�}�∈Nm , {di}i∈V ) . We again let Z(γ ) 

denote the number of hypergraphs compatible with γ as a degree-corrected compression. We again seek to 
maximize mutual information by minimizing Z(γ ) , which again requires a formula for Z(γ ).

Let

for 1 ≤ i ≤ m denote the degree sum of vertices in cluster Ci . In what follows, we treat degrees as distinguishable 
“stubs” hanging off of vertices. We imagine constructing a hypergraph H with the desired compression γ through 
the following process: 

1. First, assign the available stubs within each cluster Ci to the �-types to which they will contribute.
2. Second, for each �-type: 

(a) for each 1 ≤ i ≤ m , group the assigned stubs from cluster Ci into packets of size �i , then
(b) combine the packets into edges of �-type.

To count the number of hypergraphs compatible with γ , it suffices to count the number of possible �-type assign-
ments, a(γ ) , from which to choose in Step 1, and then for each � ∈ N

m , the number of possible packets, p�(γ ) , 
from which to choose in Step 2(a) and the number possible combinations of these packets into edges, c(γ ) , in 
Step 2(b).

The first assignment step can be done in

possible ways, where the lower portion of the multinomial coefficient ranges over all � ∈ N
m.

To proceed with the second step, suppose � is fixed. Notice that each edge of �-type requires �i degrees from 
cluster i. Furthermore, recall that in the first step, we allocated �ie� degrees for the purpose of construction �-type 

edges. We can group the �ie� degrees into packets of size �i in 
(

�ie�
. . . , �i , . . .

)

 ways, where the lower portion of 

the multinomial coefficient is repeated e� times. Note that the packets produced by multinomial coefficients are 
ordered, which we will account for later. Repeating this process for each cluster completes Step 2(a) and can be 
done in a total of

Z(γ ) =
�

�∈Nm





�m
i=1

�

|Ci|
�i

�

e�



.

(

m
∏

i=1

(

|Ci|
�i

)

)e�

=
∏

A∈E�

m
∏

i=1

(

|Ci|
�i

)

Z(γ ) =
∏

�∈Nm

∏

A∈E�

m
∏

i=1

(

|Ci|
�i

)

.

Z(γ ) =
∏

�∈Nm

∏

A∈E�

m
∏

i=1

(

|Ci|
|A ∩ Ci|

)

=
∏

A∈E

m
∏

i=1

(

|Ci|
|A ∩ Ci|

)

.

ei =
∑

�∈Nm

�ie�

(4)a(γ ) =

m
∏

i=1

(

ei
. . . , �ie�, . . .

)
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ways.
There is a natural way to combine packets into edges: simply take the first packet from each cluster to produce 

the first edge, then take the second packet from each cluster to produce the second edge, and so on. (Note that 
if �i = 0 , we proceed as if there is an infinite stream of empty packets.) Notice that the same set of edges can be 
produced in e�! ways. We account for this by dividing our count by e�! , which resolves the fact that the multi-
nomial coefficients counted ordered packets. This essentially finishes step 2(b), which when combined with the 
expression from (5) for each � produces

Therefore, combining expression (4) and (6) and forgetting the degree stub labels gives

An important remark is that we have technically counted hypergraphs H where we allow vertices to appear mul-
tiple times in an edge. This is a choice we make to simplify the hypergraph counts. By distinguishing the stubs 
attached to each vertex from each other, we have also overcounted hypergraphs with parallel hyperedges. Equa-
tion (7) gives therefore an approximation of the exact degree-corrected entropy. The quality of this approximation 
depends on the statistical prevalence of multiple vertex inclusions and parallel  hyperedges16. In graphs with fixed 
degree sequences, it is known that, provided that the low-order moments of the degree sequence remain constant 
as the number of vertices grows large (i.e. in the “large, sparse limit”), the number of multiple inclusions and 
parallel edges is concentrated around constants that depend on moments of the degree  sequence17. It follows 
that the proportion of edges with multiple vertex inclusions or with parallel edges approaches zero in the limit. 
We are unaware of formal proofs of similar results for hypergraphs or for graphs with community structure. 
We conjecture that the same heuristic should roughly hold: provided that the degree sequence and edge-size 
sequence of the hypergraph have low-order moments that are sufficiently small relative to the number of vertices, 
the approximate entropy will be very close to the exact entropy. A visualization of each of the constituent steps 
for producing Eq. (7) can be found in Fig. 2.

In light of allowing vertices to appear multiple times in an edge and the form of Eq. (7), it is tempting to 
assume that the degree sequence of H does not impact the entropy calculation. This is partially correct. The 
degrees matter up to cluster assignment; which is to say that the entropy calculation varies with the total degrees 
of the clusters, but not with the degree distribution within the clusters. However, the particular degree sequence 
of H does influence how the entropy calculation acts across the whole state space. The entropy of two cluster 
assignments which differ by a single vertex v is a function of the degree of v and the cluster placement of the 
neighbors of v. In other words, the degree of v determines how the total degrees of clusters change when we 
change the cluster assignment of v. This, in turn, determines how entropy changes.

Simulated annealing
Our aim is to cluster a hypergraph H by selecting the partition {Ci}

m
i=1 which maximizes the mutual informa-

tion between H and the compression γ induced by {Ci}
m
i=1 . For this section, it is convenient to instead use the 

vector representation c ∈ Z
n , where cj gives the cluster to which vertex j is assigned by the partition {Ci}

m
i=1 . A 

choice of c is equivalent to a choice of partition {Ci}
m
i=1 and therefore to a choice of compression γ . Hence, we 

can define the entropy H(c) and number of compatible hypergraphs Z(c) . We aim to minimize Z(c) . Performing 

(5)p�(γ ) =

m
∏

i=1

(

�ie�
. . . , �i , . . .

)

(6)c(γ ) =
∏

�∈Nm

(

(e�!)
−1(p�(γ )

)

=
∏

�∈Nm

(

(e�!)
−1

m
∏

i=1

(

�ie�
. . . , �i , . . .

)

)

.

(7)

Z(γ ) = a(γ )c(γ )

=

m
∏

i=1

(

ei
. . . , �ie�, . . .

)

∏

�∈Nm

(

(e�!)
−1

m
∏

i=1

(

�ie�
. . . , �i , . . .

)

)

=

∏m
i=1 ei!

(

∏

�
e�!

)(

∏

�

∏m
i=1(�i!)

e�
) .

C1

C2

C3
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1
2
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λieλ
...,λi,...

)

ei
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)

(eλ!)−1
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hypergraph

λ

Figure 2.  Visualization of each of the constituent counting steps for Eq. (7). Here, bold curves demarcate 
clusters, colored regions illustrate assigning stubs to � types, and colored curves illustrate packet assignment.
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this minimization exactly is computationally intractable, even for dyadic  networks10. We therefore perform 
approximate stochastic optimization via simulated  annealing18.

To perform simulated annealing, we use the Metropolis-Hastings  algorithm19 to construct a random walk on 
the space of candidate clusterings. We begin at a uniformly random clustering c(0) ∈ Z

n . At each timestep t, we 
select a vertex and candidate label (v, i) ∈ V × {1, . . . ,m} uniformly at random and propose a new state state c′ 
where c′u = c

(t)
u  for u  = v and c′v = i . Let �(c′, c) = logZ(c′)− logZ(c) . We accept c′ as the new state with prob-

ability min
{

1, e−β�(c′ ,c)
}

 and reject c′ otherwise, where β ≥ 0 is an inverse temperature parameter. If c′ is 
accepted, then we set c(t+1) = c

′ . From standard results on the Metropolis-Hastings algorithm, this random walk 
has a stationary distribution and the mass of this distribution at c is proportional to Z(c)−β . The mode(s) of this 
distribution occur at the value(s) of c that minimize Z(c) , with the sharpness of these modes depending on the 
inverse temperature β . For small β , much of the probability mass of the stationary distribution lies away from 
the modes, whereas as β → ∞ the mass concentrates on these modes. In simulated annealing, we allow β = β(t) 
to depend on the timestep, gradually increasing β(t) as the algorithm proceeds.

We use β(t) = (t + 1) · 0.0001 for all of our applications, as this seems to work better than (t + 1) · 0.001 or 
(t + 1) · 0.00001 . An important note is that we allow the proposed cluster assignment of a vertex to be the same 
cluster assignment it already has (that is c′ = c is allowed in our implementations). Therefore, if m is the number 
of clusters, then about 1/m of all steps our algorithm proposes do not change the clustering.

Because we aim to find minima rather than sample from the stationary distribution, we track the cluster 
assignment vector that minimizes entropy along our random walk. For pseudocode, see Algorithm 1.

Algorithm 1.  This algorithm will use simulated annealing to find a cluster assignment with low entropy. 
Note that Z implicitly depends on the hypergraph H.

Model selection
The proposed clustering procedure here requires a given number of clusters. Although there may be a priori well-
reasoned choices for sensible values of m, the number of clusters to cluster a given hypergraph into, there is no 
guarantee the interested practitioner will have a selected m in mind. Should m be difficult to choose or unknown 
a priori, we then find ourselves faced with a model selection problem before we may even begin clustering.

While a variety of approaches have been proposed for choosing the optimal number of communities into 
which to cluster a (hyper)graph20, our method suggests an information-theoretic approach: utilizing the principle 
of parsimony and choosing an appropriate number of clusters m given the clustering’s description  length10,21,22. 
In this framework, a principled choice for m, unless otherwise constrained by domain knowledge or hypothesis, 
is the value that minimizes total description length. If we express by L(H) the total number of bits to precisely 
describe H , then we can decompose L(H) as

where H is a given hypergraph and γ is a proposed compression of H . Hence, our model selection can be per-
formed via the entropy-parsimonious minimum description length value for m given as the solution to the 
equation

where γm is the optimal compression of H into m-many clusters with our proposed method.
We expand Eq. (8) as

(8)L(H) = L(γ )+ L(H | γ )

(9)m∗ = argmin
m

[

L(γ )+ L(H | γm)
]
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where n is the number of vertices in the hypergraph, m is the number of groups in partition γ , ℓk is the number 
of hyperedges of size k, and k∗ is the size of the largest hyperedge in H.

The description length under this coding scheme is known to frequently underestimate the number of clus-
ters as compared to ground truth from a given generative  model10. Our work is consistent with these findings. 
However, the minimum description length provides some amount of insight and acts as a counterweight to 
uninformed selection of the number of clusters. We report the results applied to the real systems in Table 1.

Results: synthetic data
The stochastic blockmodel is a method to generate random graphs with latent community structure. For a review 
of the stochastic blockmodel in simple graphs, see the work by Lee and  Wilkonson23. Given vertex sets V1, . . . ,Vm 
with sizes n1, . . . , nm respectively, we want to generate a hypergraph on the vertex set 

⋃

1≤i≤m Vi , where each Vi 
is a latent community within the graph. In order to do this, we add a hyperedge of �-type with probability P� . 
Communities may be denser or sparser depending on the choice of the probabilities P�.

We generate hypergraphs according to the following parameters: two ground truth communities of size 
n = 200 , where each vertex sees on average five 2-edges and five 3-edges. This means we must generate exactly 
5n 2-edges and 103 n 3-edges. We generate these edges so that the total proportion of 2-edges within one of the 
two latent clusters is p2 and the total proportion of 3-edges within one of the two clusters is p3 , for various 
choices of 0 ≤ p2, p3 ≤ 1 . This model roughly corresponds to choosing P(0,2) = P(2,0) with P(0,2) + P(1,1) =

5
2n , 

and P(3,0) = P(0,3) , P(2,1) = P(1,2) with P(3,0) + P(1,2) =
10
n2

 where a bit more care needs to be taken to balance 
the number of edges within communities and between communities. The advantage of not strictly following 
the stochastic blockmodel is that synthetic hypergraphs can be generated in O(n log n) steps (in the number of 
vertices) time rather than cubic time.

The parameters we use for our synthetic data are the same parameters used in previous  literature5,8. The 
number of vertices is chosen for pragmatic reasons; larger graphs take longer to process. The average degrees 
are fixed to 5 in our paper to have directly comparable results with the non-backtracking spectral method and 
the belief-propagation  method8. The more important parameters are the relative distribution of edges within 
and between clusters, governed by p2 and p3 , for which we do an exhaustive sweep.

The heatmaps in Fig. 3 show the results of a series of experiments on the planted partition model described 
above. Each pixel gives the average ARI (Adjusted Rand Index) of the cluster assignments found by our algorithm 
compared to the planted partition after 20 attempts, for varying parameters of p2, p3 . In these visualizations, the 

(10)L(γ )+ L(H | γ ) = n logm+

k∗
∑

k=2

(

m+ k − 1
k

)

log ℓk +H(H | γ )

Table 1.  Selecting the number of clusters via the minimum description length principle. The average, standard 
deviation, and minimum calculated description lengths (in bits) of 10 independent clusterings are presented 
for the real data sets. The suggested number of clusterings—on the basis of average description length—is 
bolded for each data set while the ground truth is underlined. Note that the MTG data set “ground truth” is 
discussed further in Section “Clustering magic: the gathering cards”.

Data set m Average SD Minimum

High school

4 126678 955.498 124704

5 125516 1030.96 123736

6 124840 1074.93 123442

7 125150 978.124 123946

8 126557 590.183 125368

9 129394 583.888 128302

Primary school

4 239454 1122.45 237264

5 237048 805.445 235960

6 236618 726.493 235495

7 236923 497.284 236165

8 238765 679.516 237889

9 241589 725.895 240501

10 245773 501.992 245034

11 251477 446.934 250660

12 259522 498.737 258784

MTG

2 4.440 ×10
7 402.753 4.440 ×10

7

3 4.435  ×10
7 156455 4.413  ×10

7

4 4.514 ×10
7 21227.6 4.512 ×10

7

5 5.690× 10
7

1.501× 10
−5

5.690× 10
7

6 1.511 ×10
8 1.128 ×10

−5 1.511 ×10
8
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region bounded by the white curves is the detectability threshold for hypergraph spectral methods conjectured 
by Chodrow, Eikmeier, and  Haddock8. In other contexts, the detectability threshold phenomenon is phrased 
as estimator  consistency24–27. While our present results fall short of these conjectured thresholds, we note that 
these thresholds were derived under the Nishimori Condition, which assumes that the edge probabilities and 
the number of latent communities in the stochastic blockmodel are known exactly. In contrast, our proposed 
method does not require estimation or knowledge of the edge probabilities, though we do assume that the 
number of clusters are known.

We compare the performance of our algorithm on these planted-partition hypergraphs to its performance 
on the simple and multi-edge projections. The simple projection of a hypergraph is a dyadic graph on the same 
vertex set, wherein a simple pairwise edge connects each pair of vertices that participate together in some 
hyperedge. This projection is a lossy representation of a hypergraph since two vertices are connected by at most 
one dyadic edge, whether they participate in one hyperedge together or many. For this reason, we also consider 
the multi-edge projection, wherein a pair of vertices that participate in k distinct hyperedges are connected by k 
dyadic edges in the expansion (or equivalently, a single dyadic edge with edge weight k). See Fig. 4 for an example.

Plots (c) and (d) in Fig. 3 shows the results of our degree-corrected algorithm using the simple and multi-edge 
projections, respectively. The orange lines are the detection thresholds for the graph stochastic  blockmodel28 using 
the edge densities of the multi-edge projection parameterised by p2 and p3 . Since the hypergraphs we generated 

Figure 3.  Each heatmap has 51× 51 pixels, where each pixel represents the average ARI across 5 hypergraphs. 
Each hypergraph underwent 20 independent clustering attempts, of which we used the results from the run 
which achieved the lowest entropy. The same hypergraphs are used across all four plots. The white ellipse 
in plots (a) and (b) are the conjectured detection threshold for Belief-Propagation Spectral Clustering for 
 hypergraphs8. The white lines in plots (c) and (d) are the conjectured detection threshold for Non-Backtracking 
Spectral Clustering for  hypergraphs8. The orange lines in plots (c) and (d) are the proven detection threshold for 
the graph stochastic  blockmodel28 for edge densities of the multi-edge projection parameterized by p2 and p3.

Figure 4.  From left to right, a hypergraph, its simple clique projection, and its multi-edge clique projection.
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are sparse, there should be relatively few multi-edges in the multi-edge projection, suggesting that the edge densi-
ties in the multi-edge and simple projections are similar. This also justifies using the detection threshold for the 
graph stochastic blockmodel, which holds for sparse hypergraphs. Interestingly, both the simple and multi-edge 
projection find some success within the detection threshold, suggesting that some mutual information cluster-
ing may be sensitive to some of the latent hypergraph information in the projections. For example, the presence 
of triangles in the projections of a sparse hypergraph are potentially distinguishing from the graph stochastic 
blockmodel or the sparse Erdős-Rényi random graph. A comparison between the degree-corrected algorithm’s 
performance on multi-edge and simple projections can be found in Fig. 5.

Results: degree correction on synthetic data
In order to determine whether the degree-corrected chain performs better than a non-corrected chain, we gen-
erated a synthetic hypergraph with heterogeneous vertex degrees that are not informative of the ground truth 
clustering. We roughly follow the degree-corrected hypergraph stochastic blockmodel (DCHSBM) as presented 
by Chodrow, Veldt, and  Benson5, with a few modifications to make the generated graph amenable to the non-
corrected entropy calculations used in the non-corrected chain.

We generated our hypergraph as follows. Our hypergraph has 2 ground truth clusters with 50 vertices in each 
cluster. For each sub-multiset R of size 2 or 3 of the vertices (allowing for multiple vertices in an edge), we sample

where θv is a parameter controlling the expected degree in the DCHSBM, and � is an intensity function akin to 
P� in our hypergraph stochastic blockmodel. We use θv = 1/rv where rv is a uniformly chosen random integer 
between 1 and 24. We use the all-or-nothing intensity function given by

XR ∼ Possion

(

∏

v∈R

θv ·�(R)

)

Figure 5.  Plot (a) compares the degree-corrected hypergraph chain against the non-corrected chain. 
Interestingly, p2, p3 ∈ [0.00, 0.32] range appears to favor the degree-corrected chain, while the rest of the circular 
boundary region favors the non-corrected chain. Plots (b) and (c) are a comparison of hypergraph native results 
with multi-edge and simple projection results; red indicates a superior performance by the degree-corrected 
hypergraph chain, while blue indicates that the degree-corrected algorithm on the projection performed better.
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If XR > 0 , then we include R as an edge in our sampled hypergraph; this is the first difference between our genera-
tion method and the DCHSBM as presented in Chordow, Veldt, and  Benson5, since the DCHSBM includes the 
edge R with multiplicity XR . Unfortunately, multi-edge pose an issue for the non-corrected entropy calculation, 
making this change necessary for our experiment. Finally, there is a possibility that an edge R contains only a 
single vertex with some multiplicity. These edges also pose a problem for the non-corrected entropy calculation. 
Therefore, to make our hypergraph amenable to the non-corrected entropy calculation, we replace every edge 
with a single vertex v (with some multiplicity) by an edge of size 2 containing the vertices v and (v + 1) mod 100 . 
The hypergraph that we sample and use for our experiment has 100 vertices evenly split between 2 ground truth 
clusters with 450 2-edges and 1296 3-edges.

Figure 6 presents the inferred clusters on our sampled hypergraph using the non-corrected and degree-cor-
rected chains. The non-corrected chain does not recover the ground truth clusters and scored an ARI of −0.006 . 
The degree-corrected chain recovered the ground truth clusters perfectly with an ARI of 1.00. In order to test 
the hypothesis that the non-corrected chain fails to recover the ground truth clusters because of the uninforma-
tive heterogeneous vertex degrees, we compare the degrees of vertices in the inferred clusters. Figure 6c shows 
the degrees of vertices (sorted by degree) with a color-coding that corresponds to the clusters inferred by the 
non-corrected chain. This plot does not rule out the hypothesis that the non-corrected chain infers clusters that 
co-vary with the degrees of vertices. For comparison, Fig. 6d shows the degrees of vertices (sorted by degree) 
with a color-coding that corresponds to the ground truth clusters; this plot shows that both of the ground truth 
clusters have a similar degree distribution that contains both high and low degree vertices. As a result, we find that 
this synthetic experiment supports our claim that the degree-correct chain can succeed where the non-corrected 
chain fails, because of the degree-correction.

Results: comparison to spectral clustering
We compared the degree-corrected mutual information clustering to spectral clustering on the simple and 
multi-edge clique projection for two different parameter settings in our hypergraph stochastic block model. The 

�(R) =

{

1 if all R is contained a single ground truth cluster
0.1 otherwise

.

Figure 6.  The non-corrected and degree-corrected chains were given 10 runs with 20, 000 steps, where we keep 
the inferred clustering with maximum mutual information observed over all runs. Plot (a) shows the inferred 
clusters from the non-corrected chain, which scored an ARI of −0.006 . Plot (b) shows the inferred clusters from 
the degree-corrected chain, which scored an ARI of 1.00. Plot (c) shows the degrees of vertices (vertices are 
sorted by degree), with a color-coding that corresponds to the inferred cluster from plot (a). Plot (d) shows the 
degrees of vertices with a color-coding that corresponds to the ground truth cluster.
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first parameter setting we used is p2 = 1 and p3 = 0.97 . Figure 5 predicts that both hypergraph and graph with 
projections should solve this clustering task. Figure 7a,c,e confirm this.

On the other hand, sampling from the stochastic block model with parameters p2 = 1 , p3 = 0.97 should result 
in a hypergraph whose clusters information is lost after either a simple or multi-edge projection (see Fig. 5). 
Figure 7b,d,f shows that the degree-corrected mutual information clustering method can recover the clusters 
while spectral clustering applied to the simple and multi-edge projection cannot.

Using the hypergraph information comes at the cost of time where the degree-corrected mutual information 
clustering required 35.551 seconds while the spectral methods required less than 0.05 seconds. Given that our 
hypergraphs are relatively small (with only 200 vertices), run time is a concern for mutual information clustering. 

Figure 7.  On the left hand side, we applied the degree-corrected mutual information clustering (best of 20 runs 
with 20, 000 steps), simple projection spectral clustering, and multi-edge projection spectral clustering on a 200 
vertex hypergraph stochastic block model sampled with parameters p2 = 1 and p3 = 0.97 ; this achieved ARIs 
of 1.00, 1.00, and 1.00 for (a), (c), and (e), respectively. On the right hand side, we applied the degree-corrected 
mutual information clustering, simple projection spectral clustering, and multi-edge projection spectral 
clustering on a 200 vertex hypergraph stochastic block model sampled with parameters p2 = 1 and p3 = 0 ; this 
achieved ARIs of 1.00, 0.00, and 0.00 for (b), (d), and (f), respectively. Representative run times for the degree-
corrected, simple projection spectral clustering, and multi-edge projection spectral clustering in seconds are 
35.551 s, 0.036 s, and 0.043 s, respectively.
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However, this experiment provides further evidence that there are hypergraph clustering problem instances that 
cannot be solved by simple graph or multi-graph methods.

Results: experiments on data
Primary school contact hypergraph
The primary school contact data set obtained from Stehlé et al.29 provides a hypergraph with 242 vertices. Edges 
in this hypergraph correspond to groups of students and teachers that were within 1.5 m of each other and fac-
ing each other. The ground truth for this data set assigns students to one of 10 classrooms, while teachers are all 
assigned to their own cluster. Running our algorithm on this data using 11 clusters resulted in an ARI of 0.88 
after selecting the lowest-entropy cluster assignment from 50 runs with 20, 000 steps each (Fig. 8e). We also 

Figure 8.  Inferred and ground-truth clusters for the primary school contact data  set29. Each matrix is the 
lowest entropy of 50 independent runs of 20,000 steps. The cluster heatmap for (e) uses collected ground truth; 
this includes a cluster label for teachers within the primary school. The cluster heatmaps for (b), (c), and (d) 
are compared against a modified ground truth where the teachers’ cluster from the ground truth is divided up 
among the classrooms according to the assignments in (a). The ARI values are (a) 0.66, (b) 0.93, (c) 0.76, (d) 
1.00, and (e) 0.88. The line graph in (f) shows the entropy at each step of the simulated annealing minimization 
process. The sharp drop in entropy is typical behavior. We tuned the number of steps and the annealing schedule 
so that the early portion of simulation explores the state space, the descent is (relatively) gradual, and the end of 
the simulation settles into a local minimum.



14

Vol:.(1234567890)

Scientific Reports |         (2024) 14:6933  | https://doi.org/10.1038/s41598-024-55934-5

www.nature.com/scientificreports/

studied our model’s performance on a modified version of the data set in which each teacher vertex is given the 
label of their classroom, resulting in 10 clusters. The non-degree corrected algorithm did not perform well on this 
modified data set (scoring an ARI of 0.66 in Fig. 8a). Running our degree corrected algorithm on the modified 
data set cluster recovery with an ARI of 0.93, again after 50 runs with 20, 000 steps (Fig. 8b).

We compared our algorithm to two simulated annealing algorithms defined on projections of the data. A 
chain on a simple graph projection obtained an ARI of 0.76 (Fig. 8c), while a chain defined on a multi-edge 
projection scored an ARI of 1.00 (Fig. 8d). These results indicate the value of higher-order relationships in clus-
tering hypergraph data and are qualitatively aligned with prior hypergraph algorithms applied to this data  set5.

The multi-edge projection outperformed the simple projection, and scored better than the degree-corrected 
hypergraph chain. This is particularly interesting in the context of our results on synthetic data, where there 
appears to be no significant difference between simple and multi-edge projections. One possible explanation is 
that the multi-edge projection of the synthetic hypergraphs produces a simple graph, without multiple edges, 
since sparse hypergraphs have few overlapping hyperedges. We caution against drawing a strong conclusion in 
favor of the multi-edge projection chain over the degree-corrected chain from Fig. 8. In particular, Fig. 8a shows 
that the error the degree-corrected chain made is in splitting a cluster, which it will not always do. Stronger evi-
dence for using the hypergraph degree-corrected model versus the multi-edge projection is provided by Figs. 5 
and 10. For comparison we ran a Scikit-learn30 Spectral Clustering implementation on both simple and multi-
edge projections (.93 and .91 ARI resp.) and a best of 50 runs Hy-MMSBM (hypergraph mixed-membership 
stochastic blockmodel)9(.171 ARI).

Table 1 reports the model selection procedure for the primary school contact data set; as seen therein, the 
procedure suggests 6 clusters whereas the ground truth for this data set is 10.

High school contact hypergraph
The High School Contact data set produced by Mastrandrea et al.31 provides a hypergraph with 327 vertices. 
Edges in this hypergraph correspond to groups of students that were within 1.5 meters of each other and facing 
each other. The ground truth for this data set assigns students to one of 9 classrooms.

Preliminary exploration of this data set found that the non-corrected chain did not perfectly recover the 
ground truth clusters. For a representative illustration of the performance of the non-corrected chain, see Fig. 9a. 
In that particular experiment, we obtained an ARI of 0.84 by selecting the lowest entropy observed across 50 
independent runs with 20,000 steps each. This suggests that the non-corrected chain is detecting communities, 
but that there is room for improvement.

Figure 9.  As in Figure 8, using the high-school contact data  set31. The ARI values are (a) 0.84, (b) 0.94, (c) 0.97, 
and (d) 0.93.
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We run the degree-corrected algorithm described in Section “Degree-corrected entropy”, which leads to bet-
ter community detection. This is illustrated by the cluster heat map (b) in Fig. 9, which achieves an ARI of 0.94.

As with the Primary School Contact Data in Section “Primary school contact hypergraph”, we ran the degree-
corrected chain on the simple and multi-edge projections of the data set. The simple projection and multi-edge 
projection performed comparably with ARIs of 0.97 and 0.93, respectively.

Though the clusterings in Fig. 9 suggest that the degree-corrected hypergraph and the degree-corrected multi-
edge projection chains are comparable, there is evidence to suggest that the degree-corrected chain is better. The 
scatter plot in Fig. 10 suggests that the degree-corrected hypergraph chain has the best chance of finding the 
ground truth clustering, as compared to the other chains. Furthermore, the scatter plots show that the entropy of 
a clustering is inversely correlated with the ARI. Notably, out of the 400 attempts with both the degree-corrected 
and non-corrected chains, the highest ARI is achieved by the run with the lowest entropy. The box and whisker 
plot of the top quartile of the degree-corrected hypergraph chain has a higher maximum and mean ARI with 
more high ARI outliers than the degree-corrected multi-edge projection chain. Since the highest performing 
ARI runs are of interest, these statistics about the top quartile suggest that an arbitrary run on a degree-corrected 
hypergraph chain is slightly more likely to yield a better ARI than on a degree-corrected multi-edge projected 
chain, although the improvement is modest.

For comparison we ran a Scikit-learn30 Spectral Clustering implementation on both simple and multi-edge 
projections (0.95 and 0.981 ARI resp.) and a best of 50 runs Hy-MMSBM (hypergraph mixed-membership 
stochastic blockmodel)9(0.090 ARI).

The model selection results presented in Table 1 suggests 6 clusters for the high school contact data set, 
whereas the ground truth for this data set is 9.

Clustering magic: the gathering cards
Magic: the Gathering draft is a trading card game where eight players open randomized packs of cards and take 
turns picking cards in a hidden draft. After picking 45 cards, players build 23 card decks with which they compete. 
Cards have associated colors; either black, blue, green, red, white, or any subset thereof (including the empty 
subset). Due to the mechanics of the game, it is typically extremely disadvantageous to have cards from more 
than 2 color classes in a deck. This gives players an incentive to draft their cards concentrated around a pair of 
colors (for example, one player may concentrate on drafting only white, red, and white-red cards).

The Magic: the Gathering drafting community collects data on the outcomes of online drafts and the sub-
sequent games. This data is publicly available through 17Lands.com32. In particular, we used the Dominaria 
United Premier Draft data, which contains the card names (including multiplicity) of all the cards in a player’s 
card pool after a draft. We ignored the multiplicity to make a hypergraph where the vertex set is the set of all 

Figure 10.  (Left) Each scatter plot consists of 400 points and plots the entropy against the ARI. Each point is 
obtained by running the corresponding chain for 20,000 steps and keeping the lowest entropy observed on that 
run. Then, the ARI is calculated using the corresponding clustering. Entropy values are shifted to fall within the 
interval [0, 10000). We see that the distributions of ARI between degree-corrected and multi-edge clustering 
are similar, with slight differences occuring in the regime of high ARI. (Right) A box and whisker plot of the 
top quartile of ARI for degree-corrected and multi-edge clustering. We see that degree-corrected clustering 
produces the top ARI, is more likely to have exceptional high ARI outcomes, and has a larger mean than the 
multi-edge clustering.
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cards that could possibly be drafted, and a hyperedge is a player’s card pool (without multiplicity) after a draft. 
We ran two experiments with this data.

In the first experiment, we clustered the hypergraph into 5 clusters assuming that a reasonable ground truth 
would be the colors of the cards. Multi-colored and colorless cards make this notion of ground truth ambiguous. 
Therefore, we scored the clustering only on how the mono-colored cards are partitioned. The algorithm only 
mis-classifies a single mono-colored card: the card “Coral Colony” is a blue card that gets clustered with black 
cards. Results can be found in Fig. 11.

The second experiment applied the minimum description length criterion to determine the number of clus-
ters that are present in the hypergraph. This is motivated by the fact that choosing 8 clusters for the clustering 
algorithm reveals different deck archetypes. In particular, there are some multi-color strategies that require 
certain key cards to enable them. Recognizing these archetypes as the “themes” of the clusters requires some 
domain knowledge, and is therefore, hard to verify independently. However, it does suggest that the minimum 
description length could reveal a “better” ground truth than card color classes. Unfortunately, our experiment 
testing different cluster numbers suggests that the 3 clusters provide the shortest description length. This is seen 
in Table 1 where the suggested number of clusters is 3 on the basis of minimal description length, however, 5 is 
in some sense the “obvious” number of clusters.

Discussion
In this document, we establish a novel information-theoretic framework for clustering hypergraph data general-
izing the graph theoretic framework established by Rosvall and  Bergstrom10 while incorporating degree correc-
tion methods driven by stochastic blockmodel generative models in the style of  Piexoto11. We have found that 
our algorithm is able to recover structures in synthetic and real-world hypergraphs, with performance that is 
often competitive with methods based on projections of dyadic graphs. Importantly, we find that degree correc-
tion leads to modest improvements over non-degree-corrected methods on empirical data sets. We also offer a 
method based on minimum description-length (MDL) for estimating the appropriate number of communities 
in data when this is not known a priori.

Our results pose several directions of future work. First, our algorithm for clustering is relatively slow. This 
is due in part to the complicated, highly nonconvex structure of the energy landscape of the entropy minimiza-
tion objective. Furthermore, our proposed algorithm considers only single-vertex transitions between cluster 
labels. Merge-split methods such as those discussed by Peixoto (2020) for dyadic graphs may improve perfor-
mance  dramatically33. Second, we found further evidence for the established phenomenon of MDL suggesting 
fewer clusters than ground truth, which warrants further study. Moreover, it would be of considerable interest 
to empirically benchmark our proposed algorithm in both speed and clustering performance against the many 
existing hypergraph clustering and partitioning methods in a variety of application areas. Of special interest 
are algorithms designed for specific domains, such as balanced  partitioning7, image  segmentation34, or circuit 
 design35 and to theoretically prove consistency as discussed in Section “Results: experiments on data”. Finally, 
the framework of data analysis as a compression-motivated optimization problem is one which may have use 

Figure 11.  Results from running the degree-corrected chain on the Dominaria United Premier Draft data for 
10, 000 steps. The clustering algorithm was looking for 5 clusters, which we break apart into the 5 mono-colored 
classes and “other” which includes multi-colored and colorless cards.
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in other directions. Formulating more analysis problems in terms of compression would allow us to deploy 
combinatorial optimization techniques in the service of complex systems science.

Data availability
 The data used in Section “Results: experiments on data” consists of the Primary School Contact data and High 
School Contact data 31 as well as the Magic: The Gathering data. 32 The first two are available through Austin 
Benson’s data web page, 36,37 while the Magic: The Gathering data is directly available through https:// www. 17lan 
ds. com/. 32
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