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Nondestructive material 
characterization and component 
identification in sheet metal 
processing with electromagnetic 
methods
Bernd Wolter 1*, Benjamin Straß 1, Kevin Jacob 1, Markus Rauhut 2, Thomas Stephani 2, 
Matthias Riemer 3 & Marko Friedemann 3

Electromagnetic methods for non-destructive evaluation (NDE) are presented, with which sheet 
metal components can be identified and their material properties can be characterized. The latter 
is possible with 3MA, the Micromagnetic Multiparametric Microstructure and stress Analyser. 
This is a combination of several micromagnetic NDE methods that make it possible to analyse the 
microstructure in a ferromagnetic material and to determine quantitative values of the mechanical 
material properties or the stress state. In the case of cold forming, the 3MA application for pre-process 
testing of sheet metal is discussed. Based on the 3MA information, the formability of the sheets 
can be predicted. To apply 3MA in-line, the influence of the relative speed and the relative distance 
between the 3MA probe head and the sheet was investigated. In a second study, a spatially resolved 
eddy current (EC) method was used to create an image of the intrinsic material microstructure of a 
component for its identification and traceability. It turned out, that these intrinsic fingerprint images 
can still be recognized even after subsequent plastic deformation or coating of the surface. This 
enabled the development of a marker-free traceability method for sheet metal processing. It is based 
on a low-cost array sensor and a specimen identification using robust and partly redundant features of 
the fingerprint images processed by machine learning (ML).

Increasing production flexibility is one of the most important trends in the development of modern sheet metal 
forming1. The change from rigid production chains to flexible production steps and ever more challenging sus-
tainability requirements increases the demand for new process monitoring and control strategies2. With regard 
to the material properties, open control loops have so far been used in sheet forming, i.e. there is no way to 
measure these properties in-line or even in-process and therefore there is no real-time feedback based on them3. 
However, flexible and agile manufacturing systems of the future require to comprehensively record critical mate-
rial properties at each stage in production. Then, material data from the semi-finished products could be used as 
individual input variables for ongoing and downstream processes. Hence, material, energy and emissions could 
be saved through avoiding of waste and inefficiency.

In addition, future production also requires a comprehensive traceability concept4. Each production part 
with its individual characteristics and its actual conditions should be identifiable at any point within the entire 
production chain and beyond. This is an essential prerequisite for highly flexible and individualized produc-
tion. Conventionally, for this purpose objects are marked with QR codes (Quick Response), laser markings, 
barcodes or RFIDs (Radio-Frequency Identification)5. The application of such artificial markers is an often 
time-consuming and costly additional process step and in most cases it is simply impossible for a single marker 
to remain as permanently readable information throughout all phases of the production process6. Ideally, natural 
and inherent characteristics of the component itself will be used for its identification. One possibility is to use 
the component’s characteristic surface microstructure, which reflects its individual manufacturing history7. To 
do this, an optical camera is used to record a high-resolution image of a selected area of the component surface, 
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from which a characteristic bit sequence is calculated and assigned to the component ID. In order to identify 
the component again later, the process is repeated and the captured image is compared with the database. It is 
clear that this approach only will work, if the majority of the surface remains visible and if it is changed only 
slightly during processing. However, if the component is subjected to process steps such as forming, machin-
ing or complete painting that significantly change the surface or even completely cover it, optical reading is no 
longer possible. Therefore, optical markers, whether artificial or natural, can only be used to a limited extent for 
traceability in sheet metal processing.

Electromagnetic testing includes a wide range of different non-destructive evaluation (NDE) methods. What 
they have in common is that they assess the condition of the test object by observing its electromagnetic reaction 
to electric currents and/or (electro-) magnetic fields generated in it8. It will be shown below that electromagnetic 
NDE offer solutions for both tasks described above, in-line material property assessment and traceability in 
sheet metal processing.

Methods
All electromagnetic NDE methods are based on the set of four coupled partial differential equations described 
by Maxwell9. A detailed description of the physical basis of electromagnetic NDE was given by Nagy10. Eddy 
current testing (ET) and magnetic flux leakage testing (MT) are established NDE methods for detecting sur-
face and subsurface defects11,12. However, it is also known that electromagnetic NDE, such as the so-called 
“micromagnetic” methods described below, can be used to characterize material properties as well as (applied 
or residual) stresses in the material13. These applications have intensively studied since many years, especially 
for ferromagnetic materials14.

Electromagnetic method for sheet material characterization
Micromagnetic methods of electromagnetic NDE can be used to characterize material properties, as described 
in the result chapter “Sheet material characterization”. It’s been more than 80 years since the idea of using such 
methods to determine the mechanical properties of a material, which define its behaviour under the action of 
external mechanical load, was born15. With the exception of eddy-current (EC) measurement, the application 
of these methods is restricted to ferromagnetic materials. Such materials are characterized by magnetic domains 
separated from each other by so-called Bloch walls16–18. Now a limited volume of this ferromagnetic material is 
cyclic magnetized. That is, an alternating external magnetic field H is applied, which causes a rearrangement of 
the domain structure, which is accompanied by Bloch wall movements and, at higher fields, by the rotation of 
the magnetization of the domains towards the H field direction. Macroscopically, this periodic magnetization 
will result in a magnetic hysteresis curve, showing a non-linear relation between the magnetic flux density B in 
the material and the applied magnetic field strength H (see Fig. 1b).

Most ferromagnetic materials used in industry, such as steels, are polycrystalline materials with "lattice 
defects" in a broad sense, such as solute atoms, immovable dislocations, grain boundaries, and precipitations. 
In steel production such lattice defects are artificially created during work hardening, precipitation hardening, 
solid solution strengthening and grain refinement in order to improve the mechanical properties of the metal. 
This is because lattice defects hinder or even prevent the movement of dislocations during plastic deformation19. 
The same lattice defects also temporarily impede the movement of the magnetic Bloch walls20. Therefore, the 
magnetization process and the hysteresis behaviour of the material is influenced by its microstructure, which also 
affects the mechanical-technological properties of the material. Models that describe the relationship between 
microstructural properties of steels and their magnetic hysteresis are known from literature21. In addition, the 

Figure 1.   Magnetic hysteresis measurements; (a) Measuring set-up for a standard magnetic hysteresis 
measurement; (b) Magnetic hysteresis loops for a hard material (with coercivity Hc,h) and a soft material (with 
Hc,s).
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magnetization process is also affected by the prevailing stress state in the material. Nevertheless, in many fer-
romagnetic materials (linear or non-linear) correlations can be observed between the mechanical-technological 
properties and the micromagnetic properties. Therefore, the later can be measured nondestructively in order to 
indirectly determine the former, if these correlations are known.

For example, harder steel grades typically have higher values of magnetic coercivity, Hc than softer steel grades 
(see Fig. 1b). In the magnetic hysteresis curve Hc can be determined as the value of H at the zero crossing of B. To 
determine the “true” Hc value, a material sample has to be placed a closed magnetic circuit, as shown in Fig. 1a. 
A homogenous magnetization of the sample is generated with a closed electromagnet, which consists of a mag-
netic yoke and an enclosing magnetization coil, operated at quasi-static conditions, i.e. at very low frequencies 
(e.g. f = 0.1 Hz). This ensures an uniform magnetic flux in the cross-section of the sample. A Hall probe is used 
to measure the component of the magnetic field H tangential to the sample surface, which corresponds to the 
value inside the sample. The magnetic flux density B is determined by using an enclosing receiver coil, in which 
a voltage signal proportional to the change in flux over time is induced.

Standardized hysteresis measurements are not useful for in-line material characterization in metal sheet 
processing. They would require a sample extraction, i.e. the destruction of the test object. For in-line applica-
tions, a probe head concept with an open U-shaped electromagnet is required, such as that used in the 3MA 
technology (Micromagnetic Multiparametric Microstructure and stress Analyser). This probe head concept is 
shown in Fig. 2a. For the study described below, the 3MA probe head of Fig. 2b and the measuring set-up of 
Fig. 2c were used (see chapter “Results”). The 3MA technology combines four micromagnetic methods, namely 
multi-frequency eddy current (EC), harmonic analysis (HA) of tangential magnetic field, incremental perme-
ability (IP) and magnetic Barkhausen noise (BN). These methods and the 3MA approach are described in detail 
elsewhere22–24.

The magnetic yoke of the 3MA probe head excites the low-frequency magnetization in the sample with a 
frequency f between 10 and 1,000 Hz and a high amplitude A up to 100 A/cm. A Hall probe and transmitter / 
receiver coils are attached in the middle between the pole shoes of the magnetic yoke. The coils are responsible 
for generating the high-frequency, low-amplitude magnetization for EC and IP as well as for receiving the sig-
nals from EC, IP and BN. The Hall probe is used to detect the tangential magnetic field (for HA) and to control 
the magnetization amplitude A. For an unambiguous determination of mechanical material properties, 3MA 
combines several measuring parameters from EC, HA, IP and BN (see Supplementary Information, Appendix 
1). The parameters provide partly complementary and partly redundant physical information about the mate-
rial being examined. By combining several of these parameters, quantitative values of a so called target quantity 
can be determined. A target quantity is a property or a feature of the material under investigation, which can be 
quantitatively determined with 3MA after it has been calibrated. Typical target quantities are hardness, hardening 
depth, characteristics of the tensile test (e.g. tensile strength, yield strength, fracture elongation, etc.), applied and 
residual stress or parameters of microstructure, like average grain size or content of martensite, retained austenite 
and cementite. Several target quantities can be determined at the same time. Prior calibration is required, which 
means that a model must be determined that describes the functional relationship between the target quantity 
and the 3MA parameters based on empirical data. To do this, the target quantity and the 3MA parameters must 
be measured on a set of calibration samples with graded values of the target quantity. The calibration model is 
then determined based on a regression analysis or other machine learning (ML) methods.

In the case of regression analysis, the calibration model can be written as

where y is the target quantity xi are the 3MA measuring parameters and qi their modifiers. Usually the qi are 
limited to the values 1, 2 or 1/2. The coefficients ai (i = 1,…, n) have to be determined by a least squares error 
minimization and n stands for the dimensionality, i.e. the total number of 3MA parameters (incl. modifiers) 
used in the model.

(1)y = a0+ a1 · x
q1
1 + · · · + an · x

qn
n

Figure 2.   3MA technology for in-line sheet testing; (a) Principle construction of a 3MA probe head with an 
open U-shaped electromagnet; (b) Dimensioned image of the used 3MA probe head; (c) Measuring set-up for 
investigating the influence of variations of relative velocity v and lift-off d between probe-head and sample.



4

Vol:.(1234567890)

Scientific Reports |         (2024) 14:6274  | https://doi.org/10.1038/s41598-024-55927-4

www.nature.com/scientificreports/

Electromagnetic method for sheet metal part identification
The following describes the electromagnetic method used for the results in the chapter “sheet metal part iden-
tification”. In sheet metal processing a reliable method is needed to identify an individual metallic component 
before forming and recognize it again after forming, respectively after surface coating. In principle, spatially 
resolved measurements with the micromagnetic methods described above could be a possible solution for this 
task. Such measurements are suited for imaging the irregularities of the material microstructure beneath the 
surface up to a skin depth between a few tenths of a millimetre and a few millimetres, depending on the magneti-
zation frequency f and the electromagnetic material properties, i.e.  the electric conductivity σ and the magnetic 
permeability µr. These of the intrinsic microstructure features can be used as an unique “fingerprint image” in 
order to identify the component.

A similar approach was already described by D. Mascareñas et al.25. They scanned ferromagnetic components 
with a Barkhausen noise (BN) probe head, which consists of a U-shaped electromagnet for magnetization and 
a pick-up coil for the BN signals. However, this approach has limited applicability for sheet metal processing 
for several reasons. Since the BN signal is very sensitive to lift-off fluctuations, the probe head was pressed to 
the sample using a pressure spring throughout the entire measurement. It is obvious that this is difficult to 
achieve with industrial sheet metal or already formed components.

Own investigations began with scanning 3MA measurements on modified tensile specimens cut from sheets 
(see Fig. 3a). Results are shown in appendix 3 of the Supplementary Information. However, in later studies the 
eddy-current (EC) method was exclusively used to generate fingerprint images. This is justified as follows. EC 
does not require an electromagnet, thus allowing simple construction of probe head arrays. EC is generally also 
applicable on electric conductive materials that are not ferromagnetic, i.e.  basically also on aluminium sheets. 
Additionally, because low-frequency yoke magnetization is not required, EC measurements are faster than the 
other micromagnetic methods. Therefore, 2D meander scans were subsequently performed using a conventional 
single-coil EC system, as shown in Fig. 3b.

The meandering 2D scans with a single-coil EC sensor are very time-consuming. A single fingerprint image 
takes several minutes and therefore this approach is not suitable for industrial production. For that reason, a new 
array probe based on an customized 48-fold sensor array was developed, which is shown in Fig. 4a. Each coil has 
an outer diameter of 2.5 mm. The coils are arranged in three rows of 16 coils on an area of 20 × 100 mm2. The 
distance between coils is 6 mm. From line to line the coils are offset from each other by 2 mm, resulting in a pixel 
resolution of 2 mm in the scanning direction. In addition, the classic EC device technology has been replaced 
by a cost-effective alternative, namely an LDC (Inductance to Digital Converter) from Texas Instruments®. In 
case of an LDC, the electronic components required to measure the energy dissipation and resonant frequency 
of an LC resonator are integrated on a microchip26. The array probe was attached on a robot arm for use in an 
industrial setting (see Fig. 4b). This set-up was used for measurements on blank sheets and on formed parts, e.g. 
on B-pillar, which were automatically scanned before and after forming.

Due to the rigid structure of the array probe, local unevenness in the sample cannot be compensated. A varia-
tion of the lift-off from coil to coil within the array and thus local signal fluctuations could be the result. Therefore, 
a method was developed that aims to compensate for the measurement effects due to lift-off variations. First, the 
measuring system must be trained on a single reference sample from the sheet material being examined. For this 
purpose, numerous measurements are carried out at different positions of the reference sample by measuring the 
position-dependent lift-off signals. This means that for each coil the change in the complex-valued impedance 
Z = R + iX is recorded, as the array probe is gradually lifted from the material. This data is then shifted to a 

Figure 3.   Eddy current measurements for component identification; (a) modified tensile samples and (b) 
measuring set-up with scanning robot.
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quadrant of the coordinate system and converted to polar coordinates (R, X) →
(
Z,φ

)
 , where −Z is the absolute 

value of Z and φ is its phase angle. Now φ̂(
−

Z ) , the mean lift-off curve, is determined via regression as a function 
of the absolute value −Z as shown in Fig. 5a.

After this training, φ̂(
−

Z ) is used to calculate the lift-off corrected signal images as follows. Given a spatially 
resolved grid measurement (R, X)k,l , where k, l are the pixel indices for each complex valued pixel (R, X)k,l . 
Again a transformation into polar coordinates takes place, (R, X)k,l → (

−

Z ,φ)k,l Then the difference between 
the measured angle φk,l and the angle of the mean lift-off curve φ̂(

−

Zk,l) is calculated, which corresponds to the 
lift-off corrected pixel value uk,l measured at this position, i.e.

With this approach it is possible to compensate for lift-off fluctuations up to d = 1 mm. Above 1 mm, the 
signal-to-noise ratio (SNR) is too low (< 4) for compensation, as shown in Fig. 5b. The SNR is calculated as the 
ratio of the mean absolute signal amplitude to the standard deviation of the noise. For SNR < 4 the fingerprint 
images are too low-contrast for further processing. At this point, temperature-related signal fluctuations were 
not taken into account. Since the calibration function was determined at a fixed temperature, it is not fully 
applicable at other temperatures.

The lift-off compensated fingerprint image, which represents the component as an unique individual, is stored 
in a feature space. In order to unambiguously identify these fingerprint images, special image processing methods 
are applied now. Different approaches were tested. First, a direct comparison of the images by using an image 
correlation technique was applied. Since plastic deformation can occur, this correlation analysis was combined 
with an optical flow estimation27. The classifier used was based on a combination of optical flow to account for 
the deformation and the Euclidian distance for the actual comparison. The optical flow between the two pictures, 
i.e. u(1) = u(

1)(k, l) = u
(1)
k,l  , and u(2) = u(

2)(k, l) = u
(2)
k,l  , was determined with Farnebäck’s algorithm28. Again k, l 

(2)uk,l = φk,l - φ̂(
−

Zk,l)

Figure 4.   Equipment for fast measurement of electromagnetic fingerprint images; a) Multi-coil array probe; b) 
Robot guided measurement with the array probe at a B-pillar base.

Figure 5.   Lift-off compensation; (a) Determination of the mean lift-off curve for lift-off compensation in the 
array probe, (b) signal-to noise ratio (SNR) as a function of lift-off d and associated fingerprint images of a 
sample at d = 0.0, 0.7 and 1.4 mm. The SNR here is defined as the ratio of the mean absolute signal amplitude to 
the standard deviation of the noise. The scale is linear.
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are the pixel indices. From this, the Euclidean distance of the reconstruction of the second measurement (first 
measurement + optical flow) was calculated, which should be small when comparing two measurements of the 
same specimen and large when comparing measurements from different specimens are compared. The Euclidian 
distance between the first image and the reconstruction is given as

where u(Reconstruction)(k, l) = u(
1)(k − vk(k, l), l − vl(k, l)) and v is the optical flow displacement field. If u(1) and 

u
(2) represent fingerprint images of the same specimen before and after forming, the optical flow displacement 

field corresponds to the plastic deformation that the specimen underwent and can be used to reconstruct the 
second image from the first ( u(2) ≈ u

(Reconstruction) ). Therefore, for measurements on identical specimen before 
and after plastic elongation, the Euclidian distance should be small. When comparing images from different 
specimen, the second image can only be inadequately reconstructed from the first using the displacement field, 
which should lead to a large Euclidean distance. This assumption is confirmed in the results.

On the other side, this “correlation analysis with optical flow” algorithm is only suitable for small data sets 
and simple plastic deformation. Therefore, another approach was to use low-level scale-invariant features, e.g. 
so-called SURF features in combination with machine learning (ML) methods, such as random forest classifiers29. 
The advantage over correlation analysis is that the image is not compared pixel by pixel, but based on character-
istic features. In recent years, Machine Learning (ML) has established itself as a successful tool for image analysis 
and computer vision, especially for classification tasks30,31 and object recognition32,33. Classification results based 
on these features have shown promising results, but tend to be unstable and do not translate well to new images.

Ultimately, Convolutional Neural Networks (CNN) were used, in which not only the classifier but also the 
features are trained based on data. This approach has also provided better and more stable results in other image 
classification tasks34. Now, these deep neural networks have proven to be successful in many kinds of image 
processing applications35,36. Traditional CNNs are used to train a classifier. This means that the desired output 
classes must be known in advance. In contrast, Siamese Convolutional Networks (SCNNs) represent a special 
form of a neural network architecture in which a similarity function between images is trained. In the applica-
tion shown here there are no fixed classes, but rather new instances each time, which is why a Siamese network 
is advantageous here instead of a standard CNN. SCNNs have already been used for similar purposes37,38.

The basic functionality of the used SCNN is shown in Fig. 6. To determine whether two measurements 
("Measurement A" and "Measurement B") come from the same specimen, the lift-off-compensated fingerprints 
( uk,l ) are first calculated as described above. These fingerprints now represent the input of the SCNN. The SCNN 
itself consists of three subnetworks, the first two being identical and responsible for extracting a feature vector 
from each of the two fingerprints, which are then compared by the third subnetwork, which acts as a regression 
network. The output is a number between 0 and 1, where 0 represents no match (the two fingerprints come from 
different specimens), and 1 represents a match (the two fingerprints come from the same specimen). The transi-
tion to SCNN can also be justified by its ability to learn the typical changes resulting from plastic deformation 
from the provided training data, instead of estimating them as in the case of the optical flow based method.

One of the biggest challenges in applying deep learning methods to real-world applications is the large amount 
of data required. The procedure for acquiring this amount of data is described below. On 16 plane sheets (which 
later were formed to rear light pots), 3 measuring areas were determined in advance in each case. 120 repeated 
measurements were carried out on each of these measuring areas, varying various parameters. The parameter lift-
off d was varied between 0 and 1 mm. The feed rate at which the measurement areas were scanned was varied 

(3)�u(1) − u
(Reconstruction)�2 =

√∑

k,l

(
u(1)(k, l)− u(Reconstruction)(k, l)

)2
,

Figure 6.   Functional principle of a Siamese Convolutional Neural Network (SCNN). Two measurements are 
compared, either from different specimens or from the same specimen and after different production steps. The 
output is a number between “0” (measurement A and measurement B come from different specimens) and “1” 
(measurement A and B come from the same specimen).
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from 50 to 500 mm/s. In addition, the angle (within a plane parallel to the measuring area) was varied from 
− 20° to + 20°. By this 5,760 fingerprint images were measured in total. In order to provide a sufficient amount 
of data as well as a sufficient amount of variance within the data, so-called data augmentation was applied, i.e. 
additional training data were created synthetically based on existing training data. In addition to photometric 
augmentations (brightness, contrast, gamma, sharpness, noise) and geometric augmentations (perspective trans-
formations, non-linear distortions), problem-specific transformations (stretching, compression) were also used39.

To store and structure the recorded data (set-up parameters, raw signals, fingerprint images and extracted 
features), a digital object memory based on Semantic Web technologies was implemented, which represents the 
data as a link of self-descriptive elements. In order to enable identification, even if only some of the characteristic 
features of the electromagnetic images can be detected, stable and partially redundant features are generally used 
to enable identification. Identification is supported by a digital object memory and the additional use of pro-
cess and quality data of the specimen added to the feature data space. Ultimately, the fingerprint sensor system 
includes a cloud-based data management system for managing and tracing the fingerprint data.

Results
Sheet material characterization
The aim of the following work was to use the 3MA technique in order to predict the forming behaviour of a steel 
sheet for a feed-forward control of its forming process. For this purpose, several mechanical material properties 
should be known. Hardness, yield strength, tensile strength and percent elongation are required to assess sheet 
metal formability. For most steels the r-value and the n-value should also be known.

The r-value, also called the plastic strain ratio, describes the tendency of the material to flow out of the sheet 
plane or out of the sheet thickness.The n-value is the work hardening exponent and is mathematically defined 
as the slope of the true stress—true strain curve in a double logarithmic coordinate system. 3MA was calibrated 
to all these target quantities.

For calibration, 25 steel sheets of 1 mm thickness and 700 × 500 mm2 area were used. The steel material was 
a galvannealed dual phase steel. The reference values of the target quantities were determined using destructive 
tests. An off-line 3MA calibration was used, i.e. the 3MA measurements for calibration were carried out under 
stationary conditions, i.e. without relative movement between steel sheet and 3MA probe head (v = 0 m/s). The 
lift-off (distance between probe head and sheet) during calibration measurement was d = 5 mm. The magnetiza-
tion frequency and amplitude of the 3MA measurements were f = 200 Hz and A = 30 A/cm (for all methods). 
The calibration functions had a dimensionality of n = 9. The calibration functions and the parameters included 
therein are described in Appendix 2 of the Supplementary Information. The statistical characteristics of these 
calibration functions are presented in Table 1.

Each row in this table shows the correlation coefficient R2 and the root-mean-square error Δy of the cor-
relation between calibrated 3MA values and destructively tested reference values. The off-line calibrated 3MA 
system was then applied in-line to moving sheets. The influence of the relative velocity v and variations of lift-
off d on the measurements with the calibrated 3MA system was now investigated, as both parameters can vary 
during in-line application. For this purpose, the measuring set-up in Fig. 2c was used. A strong robot moves the 
probe head over the sheet with different lift-offs d and different velocities v. The reference point was always the 
initial “calibration situation” with v = 0 m/s and d = 5 mm.

Figure 7 shows the percentage change of the target quantities values, when v is varied between 0 and 1 m/s, 
which is a typical range for the sheet transport velocity in industrial environments. For comparison, the error 
bars at the measuring points show the percentage deviation within a measurement at constant v. The dashed lines 
in the diagrams show the + / − 5% variation limit, which is accepted as the usual permissible margin of error in 
sheet steel processing. The same procedure was used to lift-off d. These results are shown in Fig. 8. 

Sheet metal part identification
This section describes the results of the (marker free) part identification. Initial measurements were carried out 
on modified tensile specimens cut from sheets. The sheets were made of steel grade HC280LAD with a thickness 
of 1.2 mm. The measurement setup consisted of a robot that guided a 3MA probe head in a 2D meandering scan 
over an area of x*y = 40 mm*90 mm on the tensile samples. The dot spacing was 0.1 mm in the transverse direc-
tion and 0.25 mm in the scan direction. A total of 50 samples in their initial states (undeformed) have been used 
for teaching the equipment. Based on these measurements the feature data space was created. Subsequently, 10 
of the samples have been stretched up to different degrees of permanent elongation. i.e. 2.5%, 5.0%, 7.5% and 

Table 1.   Results of 3MA calibration to different mechanical material parameters.

Material parameter Correlation coefficient, R2 Root-mean-square error, Δy

Hardness, H 0.975 1.9 HV

Yield strength, Rp0.2 0.996 4.4 MPa

Tensile strength, Rm 0.995 1.9 MPa

Elongation, A 0.974 0.7%

r-value 0.983 0.032

n-value 0.987 0.003
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10.0% elongation. The plastically stretched samples were measured again to see if they can still be recognized 
based on their electromagnetic signals. Initially, parameters from all four  3MA micromagnetic methods were 
used for these investigations. Results from all 3MA parameters are shown in Appendix 3 of the Supplementary 
Information. The first evaluation showed that the highest recognition rate after plastic deformation can been 
achieved with the measuring parameters from the EC method. The parameters of the other micromagnetic 
methods were less suitable, probably due to their higher sensitivity to residual stress, which is considerably 
changing during plastic deformation40.

As already explained in chapter “Methods”, there were also other, more practical reasons to use EC only for 
further investigations. The pictures in Fig. 9 show some of the first EC fingerprint images. Both images show 
results from the same sample. Figure 9a shows the fingerprint image captured from a conventional EC 2D scan 
with a single coil. Figure 9b shows the result of a fast 2D scan with the low-cost array probe.

Some “fingerprint features” visible to the human eye in the images are encircled and numbered. However, 
this does not mean that exact these encircled features will be used by the machine learning (ML) algorithm to 
determine the feature vector. However, it demonstrates the similarity of the measuring information of both 
images. The pictures in Fig. 10 show the electromagnetic fingerprint images of a tensile sample before (a) and 
after (b) 7.5% plastic elongation.

Here too, some “fingerprint features” are encircled and numbered. What is interesting is that the visible 
features have been moved and their shape has been slightly changed. However, they are still detectable for the 
naked eye and also for the ML algorithm. Based on the optical flow method described in chapter “Methods” (see 
Eq. (3)) the specimen measured before stretching have been identified after stretching.

Figure 11 shows the colour-coded Euclidian distances between different samples and identical sample, before 
and after stretching. The Euclidian distances for 5 samples and 4 repeated measurements per sample are shown as 
examples. Identifiers of type n.m are used in order to describe the measurement at sample number n and at 
repetition number m. These notations are used for the x- and y-axis. Green colour represents low distances and 

Figure 7.   Influence of velocity variation; Percentage change from the value measured at v = 0 m/s as a function 
of feed velocity v for (a) hardness H and tensile strength Rm; (b) yield strength Rp0.2 and percentage elongation 
A; (c) r- and n-value.

Figure 8.   Influence of lift-off variation; Percentage change from the value measured at d = 5 mm as a function 
of lift-off d for (a) hardness H and tensile strength Rm; (b) yield strength Rp0.2 and percentage elongation A; (c) 
r- and n-value.
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red colour large distances, while black colour indicates that the measurements were compared with themselves 
(“Euclidean distance” = 0). It can be observed, that all samples were identified correctly and in addition there is 
a large gap between the distances of repeated measurements on the same sample to the distances of measure-
ments on different samples.

As described above, a Siamese network (SCNN) was used for larger data sets. In this study test measure-
ments were carried out on formed parts from industrial production. First, 16 flat blanks (before forming) were 
measured, each at 3 selected scan areas. In these scan areas the local plasticity was homogeneous, so that the 
resulting fingerprint images remained as similar as possible despite deformation of the component. Each blank 
was scanned 120 times,  varying the lift-off (0 to 1 mm), feed speed (50 to 500 mm/s) and scanning angle (− 20° 
to + 20°). The recorded data were stored in the digital memory with the parameters used in each case. Some 
measurement results are shown in Figs. 12 and 13. 

In both cases the left images (a) show the electromagnetic fingerprint image captured in the selected scanning 
area of a blank. The blanks were then formed into pressed components and scanned again on the previously 
selected scanning areas. The middle pictures (b) show the formed component with scanning area (red rectangle 
in Fig. 12b and rectangle no. 2 in Fig. 13b). The right images (c) show the electromagnetic fingerprint images of 
the formed components made from the corresponding blanks. Only in case of Fig. 12 it is also possible to visually 

Figure 9.   Electromagnetic fingerprint images: (a) result of a 2D scan a conventional EC; (b) result of a 
2D scan with the low-cost LDC probe of the same area. In both cases the scanned area is approximately 
x*y = 50 mm*40 mm.

Figure 10.   Electromagnetic fingerprint images of a stretched sheet sample: (a) before and (b) after 7.5% plastic 
elongation. The scanned area is approximately x*y = 50 mm*80 mm.
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Figure 11.   Colour-coded Euclidian distances for the comparisons: 1.1, 1.2, … show repeated measurements on 
the same sample, 1.1, 2.1, … show measurements on different samples.

Figure 12.   Application on industrial formed parts; (a) Electromagnetic fingerprint image ( uk,l from Eq. (2), the 
colour represents the value of uk,l at that pixel) from blank sheet; (b) Formed component with marked scan area; 
(c) Electromagnetic fingerprint image from the formed component.

Figure 13.   Application on industrial formed parts; (a) Electromagnetic fingerprint image from blank sheet; 
(b) Formed component with marked scan area no. 2; (c) Electromagnetic fingerprint image from the formed 
component.
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recognize some similarities between the fingerprints of the blank (a) and formed component (c). Nevertheless, 
most of the formed components could be traced back to the blanks by using SCNN, but the recognition rate was 
below 90%. It was observed that this poor recognition was due to a temperature-related signal drift, which was 
not yet compensated for at this time. With the sensor technology used, it could also be possible to display the 
local strain of the material in a spatially resolved manner, but this is not investigated here.

Finally, the application on painted sheets was investigated. Again, sheets, that have been imaged in their initial 
states should be still recognizable after processing, in this case after complete coating of the surface. In such a case 
it is obvious, that optical methods are completely unsuitable. But on the other hand, here the recognition rate of 
the electromagnetic method was excellent again, since the coating behaves just like a lift-off in the measurement 
signals. The prediction score after painting was above 99.9% for all parts.

Discussion
The first part of the results showed how the 3MA system can be used for material characterization of sheet steel. 
All mechanical properties of the material relevant to assessing formability could be determined by using 3MA 
measurements (see Table 1). The observed linear correlations between predicted and destructively tested mechan-
ical properties were excellent. Depending on the material parameters, correlation coefficients R2 between 0.974 
and 0.996 have been observed. As already found in other studies, the worst correlation was determined for 
elongation A, which is probably due to the high relative error in the reference measurements.

An important result was observed that it is possible to perform an off-line calibration under stationary and 
constant conditions (v = 0 m/s, d = const.) applicable for later in-line measurements (v > 0 m/s, d ≠ const.), if the 
variations of v and d are moderate. This makes the application of 3MA much easier, as the measurements for 
calibration can be done in the laboratory. In the considered velocity range between 0 and 1 m/s, the permissible 
deviation limit of +/− 5% is only slightly exceeded at v = 1 m/s (see Fig. 7). However, it should be noted that the 
maximum permissible velocity is additionally limited by the sheet length lS and the time for a 3MA measure-
ment t3MA, i.e. v ≤ lS/t3MA must also be fulfilled. In this study t3MA was approximately 0.7 s and lS was 700 mm, 
limiting v to 1 m/s. On the other hand, even small variations in the lift-off d seem to have a strong effect on the 
measuring results, especially for r- and n-values. In order to keep the values within the +/− 5% limit, the d vari-
ation should not exceed +/− 0.2 mm. For 3MA in-line applications, this can be achieved by stabilizing the sheet 
vibration during the measurement by using guiding rollers.

In the second part, eddy-current (EC) method was used for sheet metal part identification. In Fig. 9 it was 
demonstrated, that electromagnetic fingerprint images can be captured either by conventional EC equipment or 
by a low-cost alternative with a fast measuring sensor array. The images are almost identical and show character-
istic features that are unique to each sheet component and therefore suitable for its identification. These features 
origin form intrinsic microstructure heterogeneities and they are still detectable after stretching, i.e. plastic 
deformation (see Fig. 10). However, the exact physical origin of these variations is not yet clear. It is obvious that 
they reflect microstructure features affecting the EC impedance, like local variations of electrical conductivity σ 
and magnetic permeability µr. Other “irregularities”, like small cracks, pores and inclusions could also contribute 
to the contrast of the fingerprint images. On the other hand, the optically accessible surface microstructure does 
not seem to have a significant effect on the images. This was confirmed by comparing the electromagnetic images 
with optical images of some samples and no correlation could be found. This and the fact that the features are 
still detectable after painting / coating confirm that they originate from sub-surface material features.

One way to check whether a fingerprint image comes from the same component (e.g. before and after stretch-
ing) or not is to use an algorithm based on a correlation analysis with optical flow, as shown in the results (see 
Fig. 11). In each case, the Euclidean distance between different samples was much higher than the distance of 
an identical sample, compared before and after stretching. All specimen measured before stretching could be 
identified after stretching (100% detection) for every degree of stretching. But the optical flow approach is limited 
to small data sets. In case of large data sets, there is an increasing risk for “false positive” results, i.e. two measure-
ments from different components will be incorrectly identified as two measurements from the same component. 
This can be avoided by application of the SCNN approach. Even in case of the large data set described in the 
results, a 100% identification of each blank could be achieved in each situation, i.e. for each parameter set. Nev-
ertheless, for formed components the recognition rate was below 90%. This was due to temperature variations, 
which had an adverse effect on the recognition rate. The temperature-related signal drift has to be compensated 
in the future. Furthermore, the resolution of the array needs to be improved to achieve better recognition rates.

Conclusion
Electromagnetic NDE methods are capable of characterizing and identifying an individual production part within 
a sheet metal processing line. The 3MA method can be used for nondestructive characterization of mechanical 
properties of sheet metal parts. This can be used not only for quality control at the end of production line, but 
also at the beginning on cut blanks or even complete coils. With these information it will be possible to predict 
the behaviour of an individual sheet in subsequent forming process for the purpose of a feed-forward control. 
In general, it is aimed to determine the forming limit and the spring-back in order to avoid any defects, like 
cracks, neckings, wrinkles or shape deviations during forming. Based on the 3MA information, it will be possible 
to exclude “high risk” material from further processing in order to avoid the production of scrap or a machine 
breakdown resulting in a costly production stoppage. Moreover, the formability information determined with 
3MA could be used to adjust the parameters of the forming machine to each individual sheet. This makes it pos-
sible to reduce the forming defects described above. Finally, such a feed-forward control of the forming process 
would allow to use material grades of lower specification, i.e. cheaper material grades in order to reduce costs. 
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In order to use initially determined sheet properties for downstream production steps, e.g. forming but also 
welding and coating, the individual sheet also have to be traceable.

On the other side, it seems to be possible to track a sheet during several processing steps (cutting, forming, 
painting) based on a spatially resolved eddy-current (EC) method. This traceability is an essential enabler for 
closed material cycles. In the area of sheet metal forming, remanufacturing, i.e. the production of new compo-
nents from old sheet metal components without having to go through the production of a new semi-finished 
sheet metal product, is currently the preferred approach. This approach could be implemented supported by 
the EC traceability system. The combination of sensor-based material characterization with a sensor-based 
intrinsic traceability system could enable completely new concepts for self-controlled, agile production in metal 
processing.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request. See also Supplementary Information.
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