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Ising‑like model replicating 
time‑averaged spiking behaviour 
of in vitro neuronal networks
Cesar I. N. Sampaio Filho 1*, Lucilla de Arcangelis 2, Hans J. Herrmann 1,3, Dietmar Plenz 4, 
Patrick Kells 4, Tiago Lins Ribeiro 4 & José S. Andrade Jr. 1

We analyze time‑averaged experimental data from in vitro activities of neuronal networks. Through 
a Pairwise Maximum‑Entropy method, we  identify through an inverse binary Ising‑like model the 
local fields and interaction couplings which best reproduce the average activities of each neuron as 
well as the statistical correlations between the activities of each pair of neurons in the system. The 
specific information about the type of neurons is mainly stored in the local fields, while a symmetric 
distribution of interaction constants seems generic. Our findings demonstrate that, despite not 
being directly incorporated into the inference approach, the experimentally observed correlations 
among groups of three neurons are accurately captured by the derived Ising‑like model. Within the 
context of the thermodynamic analogy inherent to the Ising‑like models developed in this study, our 
findings additionally indicate that these models demonstrate characteristics of second‑order phase 
transitions between ferromagnetic and paramagnetic states at temperatures above, but close to, 
unity. Considering that the operating temperature utilized in the Maximum‑Entropy method is T

o
= 1 , 

this observation further expands the thermodynamic conceptual parallelism postulated in this work 
for the manifestation of criticality in neuronal network behavior.

In 1985 Amit et al.1 for the first time drew a connection between neural networks and Ising spin glasses. Both 
systems have in common an energy landscape of many valleys and offer the possibility of delocalized storage 
of patterns. These analogies were explored further since  then2,3. Subsequently, 1991 Miranda and  Herrmann4 
suggested that the brain operates at criticality in the sense that it exhibits avalanches of activity following power-
law distributions for their size and duration, with exponents around − 1.5 and − 2.0, respectively. Alternative 
proposals were made later by Chialvo and  Bak5. These theoretical predictions were experimentally confirmed 
by the seminal work of Beggs and  Plenz6. By recording spontaneous local field potentials using a 60 channel 
multielectrode array on mature organotypic cultures of acute slices of rat cortex, they found power-law 
distributions in avalanche size and duration with similar exponents values as reported  in4,5. Since then, many 
authors have confirmed signs of criticality in the  brain7–9 overcoming the substantial challenges of studying 
scaling laws reported at criticality in the face of experimental constraints when assessing brain  dynamics10,11.

Models from Statistical Physics, when used in conjunction with the Maximum Entropy Method (MEM) 
developed in information theory, provide a conceptual framework to understand, from experimental data, a 
given natural process in terms of the “interactions” among its many elementary  units12–14. The principle of 
maximum entropy, by itself, contains the essence of the so-called Inverse Ising Problem solution, in which a 
“Hamiltonian” associated with a given complex system can be inferred from observed statistical correlations 
among its components. This method is frequently referred to as the Boltzmann machine, since the Boltzmann 
distribution is present at its core. Generally speaking, the MEM has been applied to systems that can be mapped 
to Ising-like models, namely, models in which the interacting elements are in an active or inactive state, i.e., a 
lattice of dipole moments with spins states that are either up or down under the action of an external field and 
their mutual interactions. For instance, when dealing with neuronal networks, the interactions between neurons 
reacting to some stimuli are inferred from their firing  patterns15–21, in which the firing of a spike equate to the 
spin up state. This strategy has also been successful in characterizing protein–protein  interactions22,23, the genetic 
interaction networks from gene expression  patterns24–26, the collective responses exhibited by flocks of  birds27,28, 
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and the emergence of collective behavior from the eye movement patterns of a group of people while watching 
commercial  videos29 or reading  texts30.

Methods
Our initial goal here is to investigate the experimental data reported in Ref.6 on the transient synchronization 
of local neuronal groups, i.e., “spikes”, recorded with microelectrode arrays in neuronal cultures, but from the 
perspective of a pairwise Maximum-Entropy method. As we show next, we follow the approach proposed in 
Refs.16,31–36 to build an Ising-like model that reproduces the same time-averaged spiking rates and pairwise 
correlations as the experimental data set, and then evaluate its behaviour in the analogous framework of the 
corresponding thermal equilibrium properties. Accordingly, let the variable si(t) be the binarized time series 
of spikes of neuron i observed at a discretized time t = 1, 2, . . . ,M , such that si = +1 if it fires and si = −1 if it 
does not fire. From these series, we can calculate the time-averaged activity for each neuron i,

and the covariances between the spiking sequences of neurons i and j

where 
〈

sisj
〉

= 1
M

∑M
t=1 si(t)sj(t) . Moreover, to model these experimental sequences, we consider that si 

corresponds to Ising-like variables on a fully connected network of N sites. Therefore, {s} = {s1(t), . . . , sN (t)} 
can describe the system’s state at a given time t. The probability distribution P({s}) with the smallest number of 
parameters that represents our system is the one that maximizes the entropy, while reproducing our observations, 
i.e., 〈si〉obs for all N neurons and all N(N − 1)/2 pairs of Cobs

ij  . Given these constraints, the form of P({s}) is the 
Boltzmann’s probability distribution,

where T is analogous to a temperature, H to a  Hamiltonian32, and we have set kB = 1 . This distribution 
corresponds to the least biased representation for an Ising-like system like ours, with known first and second 
moments. Specifically, as a first approximation, the energy term has the same form of the Ising model,

This mathematical correspondence naturally leads us to interpret hi as the action of a local external stimulus on 
neuron i, analogous to a “random field”, and Jij as a “coupling coefficient” between neurons i and j. Such pairwise 
couplings or interactions between the neuronal activities give rise to the observed correlations among them. At 
this point, we compute the local fields hi and the interactions Jij by directly solving the inverse problem given 
by Eq. (4). For simplicity, here we arbitrarily set the “operating temperature” to To = 1 . On their turn, the local 
fields hi and interaction constants Jij are obtained through the following iteration scheme:

where n is the iteration parameter and we start with n = 1 and hi(n = 1) = 0 . The covariance CMC
ij  between two 

sites i and j of the Ising network of Eq. (4) is given by CMC
ij =

〈

sisj
〉MC

− �si�
MC

〈

sj
〉MC , where the statistical 

average �· · · �MC is obtained by performing a Monte Carlo simulation of the model Eq. (4) at temperature To = 1 
using hi(n) and Jij(n) . The function η(n) is a learning rate which decays like 1/n0.437. Typically, we iterate till 
n = 80,000 . Once we infer the values of hi and Jij that better reproduce the experimentally observed time-averaged 
activities 〈si〉obs and covariances Cij , while maximizing the entropy, the Boltzmann probability distribution of 
Eq. (3) characterizes the statistics of the in vitro datasets.

We analyzed six in vitro samples (called “1” to “6”) consisting of 60 time series of binarized electrode spikes of 
1 s divided in 20, 000 time bin  each6 (see Figs. 1a–c, S1a, S1b, and S1c, for samples 1, 2, 3, 4, 5, and 6, respectively). 
They were obtained from coronal slices from rat dorsolateral cortex grown at 35.5 ◦ C for 4–6 weeks before 
recording, as reported in Ref.6.

Results and discussion
In vitro sample characterization
In Fig. 2a–c we show the probability P(K) that K electrodes fire simultaneously for in vitro sample 1, 2, and 3, 
respectively. The data follow an exponential decay P(K) = αe−βK , whose parameters depend on the sample 
considered. From the least-squares fit to the data points we obtained α = 0.50 and β = 0.35 for sample 1, α = 0.21 
and β = 0.25 for sample 2, and α = 0.31 and β = 0.30 for sample 3. The exponential fittings were confirmed by 
the Kolmogorov–Smirnov (KS) test, yielding a p value > 0.05 in all cases. Therefore, the data exhibit a Poisson-
like distribution, which would suggest uncorrelated events. We calculate next for every pair of sites {ij} the 

(1)�si�
obs =

1

M

M
∑

t=1

si(t),

(2)Cobs
ij =

〈

sisj
〉obs

− �si�
obs

〈

sj
〉obs

,

(3)P({s}) ∼ e−H/T
,

(4)H = −

N
∑

i=1

hisi −

N
∑

i>j

Jijsisj .

(5)Jij(n+ 1) =Jij(n)− η(n)
[

CMC
ij − Cobs

ij

]

,

(6)hi(n+ 1) =hi(n)− η(n)
[

�si�
MC − �si�

obs
]

,
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corresponding time-averaged correlation Cobs
ij  . Their distributions are shown in Fig. 2d–f for the in vitro samples 

1, 2, and 3, respectively. All three in vitro samples have their maximum around zero, but with skewness towards 
positive values. Moreover, the in vitro distributions are qualitatively different from each other. The question that 
naturally arises is how this difference will be expressed by the Ising-like models that we construct next.

Distributions of the learned parameters of the model in Eq. (4)
In order to apply the Boltzmann machine, we solved Eqs. (5) and (6) simultaneously to calculate for each 
sample the local fields hi and the coupling constants Jij . Their distributions are shown in Fig. 3. We see that, for 
all samples, the fields hi are mostly negative but the most likely values depend on the sample considered. For 
samples 1 (Fig. 3a) and 2 (Fig. 3b) these are close to zero on the negative side while for sample 3 (Fig. 3c) the 
most likely value is close to zero on the negative side. Furthermore, all distributions exhibit a skewness towards 
negative fields. Since our system has only 60 electrodes, the sample to sample variations are considerable. As 
also shown in Fig. 3d–f the distributions of the interaction constants Jij are in all cases symmetrically centered 
around zero. Moreover, from the Kolmogorov–Smirnov (KS) test, Gaussian fittings appropriately describe the 
data for all samples.

Figure 1.  The ensemble of investigated time series of binarized spikes spanning a total of 1 s for 60 electrodes 
of the in vitro samples 1, 2 and 3 are shown in (a–c)6, respectively. Each horizontal line represents the temporal 
spiking series of a local group at an electrode or single neuron, respectively, whereas each vertical line represents 
the state of the system at time t. A blue point corresponds to a spike ( + 1 ) and an empty place to no spike ( − 1).

Figure 2.  The distribution P(K) of the measured K simultaneous spikes for the in vitro samples 1, 2, and 3 are 
shown in (a–c), respectively. The solid black line in each figure is the least-squares fit to the data points of the 
exponential function p(K) = αe−βK , with (a) α = 0.50 and β = 0.35 for sample 1, (b) α = 0.21 and β = 0.25 
for sample 2, and (c) α = 0.31 and β = 0.30 for sample 3. The exponential fittings were confirmed by the 
Kolmogorov–Smirnov (KS) test, yielding a p value > 0.05 in all cases. In (d–f) are the distributions of correlation 
coefficients Cobs

ij  between pairs of electrodes for the in vitro samples 1, 2 and 3, respectively.
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Test to verify how well the Ising‑like model of Eq. (4) can reproduce the measured time 
averages
To verify how well the Ising-like model Eq.  (4) is able to reproduce the measured time averages of the 
experimental data, we show in Fig. 4a–c 〈si〉MC against 〈si〉obs for every site i of the in vitro sample 1, 2, and 3, 
respectively, and in Figs. S2a, S2b, and S2c for the samples 4, 5 and 6, respectively. The same is shown in Fig. 4d–f 
but for the two-point correlations CMC

ij  against Cobs
ij  for every pair of sites i and j of the samples 1, 2, and 3, 

respectively, and in Figs. S3a, S3b, and S3c for the samples 4, 5 and 6, respectively. Clearly, the agreement is 
excellent in all cases. For samples 1, 2, and 3, as illustrated in Fig.  5a–c, respectively, the model demonstrates 
remarkable accuracy in predicting the experimentally observed correlations among triplets of neurons. The 
precision of these predictions is quantitatively supported by the relative errors, 

〈

(TMC
ijk − Tobs

ijk )/Tobs
ijk

〉

 , which 
amount to 0.095% , 0.091% , and 0.120% for samples 1, 2, and 3, respectively. These deviations are unusually smaller 
than those observed in previous  studies16, highlighting the adequacy of the Ising-like model to describe the 
time-averaged spiking behavior of these in vitro neuronal networks. Moreover, since the three-point correlations 
were not explicitly utilized in the correlation function matching procedure, these findings strongly indicate that 
the machine demonstrates a robust level of generalization for these samples, providing us with a solid basis to 
confidently infer thermodynamic properties from the learned parameters. In the case of samples 4, 5, and 6, as 
depicted in Figs. S4a, S4b, and S4c, respectively, the models accurately reflect the rankings of the triplets, in the 
sense that triplets observed experimentally to be more strongly correlated are also predicted to be relatively more 
strongly correlated within the set of model predictions. Nonetheless, the models’ inability to quantitatively 
replicate the observed three-point correlations prevents our examination of their thermodynamic properties.

Critical properties of the Ising‑like model
After showing that the Ising-like model describes to a satisfactory degree the time-averaged properties of our 
experimental samples, we now proceed with a more detailed investigation of its properties in terms of the implicit 
thermodynamic analogy brought about  naturally33. The model adopted here is in fact an extension of the famous 
Sherrington-Kirkpatrick (SK) spin  glass12 without averaging over quenched disorder, but including a random 
field. Since the coupling constants of our model are distributed around zero, we expect frustration effects and, 
due to the long-range interactions, the occurrence of mean-field behaviour. In addition to the SK spin glass, 
however, we have a predominantly negative quenched random field. This extension of the SK model was in fact 
studied by  Hadjiagapiou13 for the case in which both the interaction constants and the local fields are Gaussian 
distributed. We assume that, despite some differences in the distributions, our model should have a similar 
phase diagram as in Ref.13, namely, as a function of temperature, either a spin glass to paramagnetic transition 
for weak negative fields (below the de Almeida–Thouless (AT)  line14) or a ferromagnetic-paramagnetic phase 

Figure 3.  Figures (a–c) show the distributions of local fields hi after learning for in vitro samples 1, 2, and 3, 
respectively. All distributions display skewness towards negative values. Figures (d–f) show the distributions of 
the coupling coefficients Jij between N = 60 electrodes for in vitro samples. The black continuous lines in (d–f) 
correspond to a Gaussian fitting and the adequacy of this model was confirmed by the Kolmogorov–Smirnov 
(KS) test.
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transition for stronger negative fields (above the AT line). Moreover, the upper critical dimension should be that 
of the random field Ising  model38.

Under this analogous thermodynamic framework, for every spin configuration {si} , one can define its 
magnetization M(T) = (1/N)

∑

i si and its energy E(T) = (1/N)
∑

ij Jijsisj + (1/N)
∑

i hisi . The order 
parameter for a ferromagnetic phase transition is given by the average magnetization 〈M(T)〉MC , and the 
fluctuation-dissipation theorem provides the following expression for the specific heat:

and the susceptibility

In Fig. 6a the ferromagnetic order parameter 〈M(T)〉MC is plotted against temperature T for the three in vitro 
samples. We have verified that these curves do not depend on the initial configuration used in the Monte Carlo 

(7)C(T) =
1

T2

(

〈

E(T)2
〉MC

− (�E(T)�MC)2
)

,

(8)χ(T) =
1

T

(

〈

M(T)2
〉MC

− (�M(T)�MC)2
)

.

Figure 4.  In (a–c) are shown the magnetizations 〈si〉MC versus 〈si〉obs for the in vitro samples 1, 2, and 3, 
respectively. The same in (d–f), but for the correlations CMC

ij  versus Cobs
ij  obtained from the in vitro samples 1, 

2, and 3, respectively. The error bars represent the standard deviations calculated from 105 samples generated 
through repeated Monte Carlo runs. The solid black lines correspond to the function y = x.

Figure 5.  Test to verify if the three-point correlations TMC
ijk  from the Monte Carlo simulations of the Ising-like 

model of Eq. (4) are able to reproduce the three-point correlations Tobs
ijk  of the experimental in vitro samples 1, 2 

and 3, in (a–c), respectively. The solid black lines correspond to the function y = x . The triplets are binned into 
100 populated bins and the error bars are the standard deviations across the bins.
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simulation. The fact that we do not observe hysteresis indicates that the transition might be  second order and 
not  first order as observed, for example, in retinal ganglion cell spike  trains21. Figure 6b shows the specific heat 
C(T) as a function of temperature for the three in vitro samples. The curves attain maxima at a temperature T∗

c  
that depends on the sample considered, with T∗

c = 1.18 for sample 1, T∗
c = 1.20 for sample 2, and T∗

c = 1.27 for 
sample 3. Also shown in Fig. 6b is the dependence of the specific heat on temperature obtained by randomly 
shuffling the spikes in the time series of the in vitro sample 1, i.e., by suppressing the intrinsic correlations present 
in the spike sequence. We see that, in this case, the sharp maximum of the specific heat is dramatically attenuated, 
which means that there is no ferromagnetic phase transition any more as a function of temperature. Possibly, this 
case falls below the AT line and might exhibit a spin glass phase at low temperatures. Higher order correlations 
seem important for neurons that are close to each  other36. In order to take those into account, the method can 
be generalized to multi-spin  interactions35. We also studied the susceptibilities χ(T) of the Ising-like models for 
samples 1,2, and 3, shown in Fig. 6c. They also exhibit a maximum at a given temperature T∗

c  , but unlike specific 
heat curves, the maxima of the susceptibility occur at the same value T∗

c = 1.34 . Furthermore, the maxima of 
the susceptibility χmax are quite different between the samples, despite having the same number of spins, with 
χ(3)
max > χ(2)

max > χ(1)
max for sample 3, 2, and 1, respectively.

Conclusion
In summary, we analyzed time-averaged experimental data from the activities of in vitro neuronal networks. 
By implementing a Pairwise Maximum-Entropy method alongside an inverse binary Ising-like model, we 
successfully identified the local fields and interaction couplings that best represent the average neuronal activities 
and the statistical correlations between neuronal pairs. This approach confirmed the model’s effectiveness 
in capturing the inherent complexities of neuronal network dynamics, where specific information about 
neuron types is reflected in the local fields, and a symmetric distribution in interaction constants emerges as a 
characteristic trait of the network’s interaction framework.

The investigation into the thermodynamic properties of these models revealed typical features of second-order 
phase transitions between ferromagnetic and paramagnetic states at temperatures T∗

c  above, but not far from 
unity, which corresponds to the operating temperature, To = 1 , utilized in the Maximum-Entropy method. This 
finding extends the thermodynamic analogy within our Ising-like models, giving support to the hypothesis of 
criticality in neuronal network behavior. It points out the relevance of critical phenomena in understanding the 
functionality and complexity of neuronal networks.

The exceptional alignment between our model predictions and experimental observations, particularly in 
the accurate rendering of three-point correlations, demonstrates a case of success of the methodology. This 
precision emphasizes the Ising-like model’s adequacy in representing the nuanced spiking behavior of neuronal 
networks, surpassing previous modeling attempts in terms of accuracy and reliability. These findings not only 
validate the criticality hypothesis in neuronal networks, but also highlight the potential of using thermodynamic 
and statistical physics concepts to explore neural computation and information processing.

Data availability
The source data for all figures in this study are provided for this paper. Source data are provided with this paper. 
The in vitro data is available at https:// github. com/ cesam paiof/ Ising- like- model- neuro nal- netwo rks.
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