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Machine learning developed 
a  CD8+ exhausted T cells signature 
for predicting prognosis, immune 
infiltration and drug sensitivity 
in ovarian cancer
Rujun Chen 1,4, Yicai Zheng 2,4, Chen Fei 3, Jun Ye 1* & He Fei 1*

CD8+ exhausted T cells  (CD8+  Tex) played a vital role in the progression and therapeutic response of 
cancer. However, few studies have fully clarified the characters of  CD8+  Tex related genes in ovarian 
cancer (OC). The  CD8+  Tex related prognostic signature (TRPS) was constructed with integrative 
machine learning procedure including 10 methods using TCGA, GSE14764, GSE26193, GSE26712, 
GSE63885 and GSE140082 dataset. Several immunotherapy benefits indicators, including Tumor 
Immune Dysfunction and Exclusion (TIDE) score, immunophenoscore (IPS), TMB score and tumor 
escape score, were used to explore performance of TRPS in predicting immunotherapy benefits of OC. 
The TRPS constructed by Enet (alpha = 0.3) method acted as an independent risk factor for OC and 
showed stable and powerful performance in predicting clinical outcome of patients. The C-index of 
the TRPS was higher than that of tumor grade, clinical stage, and many developed signatures. Low 
TRPS score indicated a higher level of  CD8+ T cell, B cell, macrophage M1, and NK cells, representing a 
relative immunoactivated ecosystem in OC. OC patients with low risk score had a higher PD1&CTLA4 
immunophenoscore, higher TMB score, lower TIDE score and lower tumor escape score, suggesting 
a better immunotherapy response. Moreover, higher TRPS score indicated a higher score of 
cancer-related hallmarks, including angiogenesis, EMT, hypoxia, glycolysis, and notch signaling. 
Vitro experiment showed that ARL6IP5 was downregulated in OC tissues and inhibited tumor cell 
proliferation. The current study constructed a novel TRPS for OC, which could serve as an indicator for 
predicting the prognosis, immune infiltration and immunotherapy benefits for OC patients.
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Ovarian cancer (OC) is the leading cause of gynecological cancer death and the fifth most common cause of 
cancer death in women in the  USA1. A total of 19,880 cases are estimated to be initially diagnosed with OC and 
12,810 patients die from this malignancy in the USA in  20222. Despite many management approaches have been 
used for the treatment of ovarian cancer, including surgery, chemotherapy, and endocrine therapy, the clinical 
outcome of OC cases are still poor, with the 5-year survival rate less than 50%1. In addition to TNM staging 
system, there are few clinical markers for predicting the prognosis of OC patients. High recurrence and drug 
resistance remain the main reasons for the poor clinical outcomes for ovarian cancer  patients3,4. Due to lack of 
typical clinical symptoms in the early stage, many patients have advanced disease or distant metastasis by the 
time ovarian cancer is diagnosed. Recent study showed that immunotherapy could be a promising modality 
for many malignancies, especially for advanced  malignancies5. However, the evidences about OC response to 
immunotherapy and biomarkers for predicting the immunotherapy response are limited.

Dynamic interactions between OC and tumor microenvironment (TME) are vital for the heterogeneity and 
therapeutic response of OC. Previous study has highlighted the critical functions of tumor-infiltrating lym-
phocyte (TILs) in the progression and therapeutic response of  OC6. Different subtypes of TILs have different 
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functions.  CD8+ exhausted T cells  (CD8+  Tex) are a subtype of TILs characterized by weak ability in clearing a 
pathogenic threat, blockading surface co-inhibitory receptors, hypo-response to anti-tumor  immunotherapies7. 
 CD8+  Tex persist in the TME and interact with tumor cell and other subtype of TILs, which can affect the pro-
gression and therapeutic response of cancer. However, few studies have fully clarified the characters of  CD8+  Tex 
related genes (TRGs) in OC.

As shown in Fig. 1, we developed an 18-gene  basedCD8+  Tex related prognostic signature (TRPS) for OC using 
TCGA, GSE14764, GSE26193, GSE26712, GSE63885 and GSE140082 datasets. We then explored the correlation 
between TRPS and the prognosis, immune infiltration, immunotherapy benefits and signaling pathway in OC, 
offering insights into prognosis prediction and immune landscape in OC.

Materials and methods
Datasets sources
Single cell expression data of OC tissues was obtained from GSE184880 dataset (n = 7). Bulk RNA-seq data of OC 
cases and normal ovarian cases were obtained from TCGA database (n = 374) and GTEx database (n = 64), respec-
tively. Five GEO datasets, including GSE14764 (n = 80), GSE26193 (n = 107), GSE26712 (n = 185), GSE63885 
(n = 75) and GSE140082 (n = 380), were used for TRPS validation. To explore the role of TRPS in predict-
ing immunotherapy benefit, we also downloaded two immune therapy datasets, including IMvigor210 dataset 
(n = 298) and GSE91061 dataset (n = 98). These two immunotherapy datasets included clinical information about 
the patients treated with anti-PD-L1 and anti-CTLA4 agents.

scRNA-seq analysis
scRNA-seq data was used for cell marker identification. Further detail was shown in Supplementary methods 
and results. The “FindAllMarkers” function of the Seurat package was used for cell marker identification with the 
minimum cell population fraction in either of the two populations of 0.25. TRGs were identified as the marker 
genes of  CD8+  Tex corresponding to clusters.

Machine learning algorithms developed a TRPS
Differentially expressed genes (DEGs) in OC were identified used “limma” package using |LogFC| ≥ 1.5 as the 
cutoff. Univariate cox analysis was performed to identify potential biomarkers. Prognostic biomarkers were then 
submitted to integrative analysis procedure for developing a TRPS. Further detail was shown in Supplementary 
methods and results. We then calculated the Harrell’s concordance index (C-index) of all models in training 
(TCGA) and testing (GEO) cohort based on the expression of candidate genes and corresponding coefficient. 
The prognostic TRPS with the highest average C-index was regarded as the optimal prognostic signature.

Evaluation of the performance of TRPS
Using the “surv_cutpoint” function of the R package “survminer”, we obtained the best cut-off and separated OC 
cases into low and high TRPS score (risk score) groups. As many prognostic signatures have been developed for 
OC, we then collected 45 prognostic signatures randomly (Supplementary Table 1) and calculated their C-index 
using “rms” package, with which we could compare their performance in predicting the clinical outcome of OC 
patients. Univariate and multivariate cox analysis were conducted to explore the risk factor for the overall survival 
rate of OC patients. Using “nomogramEx” R package, we then developed a predicting nomogram.

Immune infiltration analysis
Immunedeconv was used to explore the correlation between risk score and immune cells (Supplementary meth-
ods and results). To evaluate ESTIMATE score of each OC case, we then applied “estimate” R  package8. Hallmark 

Figure 1.  Workflow of our study.
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gene set was downloaded from Molecular Signatures Database (MSigDB). ssGESA was conducted to detect the 
score of hallmark gene set, immune cells and related functions of each OC case.

Immunotherapy benefit and drug sensitivity
Several immunotherapy benefits indicators, including the Tumor Immune Dysfunction and Exclusion (TIDE) 
score, immunophenoscore (IPS), tumor mutation burden (TMB) score and tumor escape score, were used to 
explore performance of TRPS in predicting immunotherapy benefits of OC. From the Cancer Immunome Atlas 
(https:// tcia. at/ home), we downloaded the IPS of ovarian cancer cases. TIDE score and T cells exclusion scores 
of ovarian cancer cases were downloaded from TIDE (http:// tide. dfci. harva rd. edu). The oncoPredict R package 
was used to calculate the IC50 of drugs in each OC case using the data of Genomics of Drug Sensitivity in Cancer 
(https:// www. cance rrxge ne. org/).

Cell lines and overexpression of ARL6IP5
Normal ovarian cell line (Hs823.Tc) and OC cell lines (ES-2, OV90, TOV21G, CaOV-3, SKOV3, TOV112D) were 
purchased from Shanghai Institute of Biochemistry and Cell Biology (Shanghai, China). Cells were maintained 
in circumstances containing 5%  CO2 and 95% saturated humidity at 37 °C using respective ATCC recommended 
medium. Fetal bovine serum (FBS; Gibco) and 1% penicillin–streptomycin (Sigma-Aldrich, St. Louis, USA) were 
added to the medium. A pcDNA3.1 plasmid encoding the human ARL6IP5 and empty vector was purchased 
from GenScript (Nanjing, China). Lipofectamine 3000 transfection reagent (Invitrogen, Thermo Fisher Scientific) 
was used to transfect the plasmid into OV cell lines based on the manufacturer’s instructions.

RT-qPCR and proliferation assay
Using TRIzol (Takara Bio, Dalian, China), we extracted RNA from cells, which were reversely transcribed into 
cDNA using an oligo (dT) primer subsequently. Based on the ABI 7900HT detection system (Thermo Fisher 
Scientific Inc.), we then performed RT-qPCR with SYBR Premix Ex Taq (Takara Bio). Gene expression levels 
were normalized to the endogenous GAPDH. For proliferation assay, OV cell lines were plated in 96-well plates 
(5000 cells/well in triplicates). Cell Counting kit-8 (CCK-8; Beyotime) was added to cells at indicated times. 
Proliferation index was calculated as the ratio of OD value at the indicated time/OD value of the input cells.

Statistical analysis
Statistical analyses were performed with R software (version 4.2.1). The difference between continuous variables 
was evaluated with Wilcoxon rank-sum test or Student t test. Pearson’s or Spearman’s rank correlation analysis 
was conducted to analyze the correlations between two continuous variables. The two-sided log-rank test was 
used to test the difference in different Kaplan–Meier survival curve.

Results
Identification of TRGs and their prognostic value
From the data obtained from the single-cell RNA-seq analyses of OC tissue (GSE184880 dataset), we identified 
six major types of cells, including T/NK cells, myeloid cells, Epithelial cells, Fibroblasts, B cells and endothelial 
cells (Fig. 2A). Figure 2B showed the expression of cell markers. We then extracted T/NK cells for further analysis. 
As result, T/NK cells could be re-clustered into  CD8+ cytotoxic T,  CD8+ exhausted T, NK,  CD4+ exhausted T and 
 CD4+ naïve T based on expression pattern of cell markers (Fig. 2C,D). Development trajectory analyses of T/NK 
cells unveiled that  CD4+ naïve T,  CD8+ cytotoxic T, and NK were enriched in initial differentiation phase while 
 CD4+ exhausted T and  CD8+ exhausted T were enriched in terminal differentiation phase (Fig. 2E). Based on 
the “FindAllMarkers” function of the Seurat package, we identified 384 TRGs. Compared with normal tissues, 
we obtained 9638 DEGs in OC tissues (Fig. 2F), including 248 TRGs (Fig. 2G) in TCGA dataset. Among these 
differentially expressed TRGs, a total of 41 genes were significantly associated with the prognosis of OC patients 
in TCGA dataset (Fig. 2H, P < 0.05).

Integrative machine learning algorithms developed a TRPS
These 41 potential prognostic biomarkers were submitted to an integrative machine learning procedure including 
10 methods, with which we developed a stable TRPS. As a result, we obtained a total of 101 kinds of prognostic 
models and their C-index in training and testing cohorts were shown in Fig. 3A. The data suggested that the 
prognostic signature constructed by Enet (alpha = 0.3) method was considered as the optimal TRPS with a highest 
average C-index of 0.58 (Fig. 3A). The optimal TRPS was developed by 18 TRGs. The formula of the risk score 
was shown in Supplementary methods and results. Using the best cut-off value, we then divided into ovarian 
cancer cases into high and low TRPS score. As expected, OC patients with high risk score had a poor OS rate 
in TCGA cohort (P < 0.001), GSE14764 cohort (P = 0.0146), GSE26193 cohort (P = 0.0039), GSE26712 cohort 
(P = 0.0013), GSE63885 cohort (P < 0.001) and GSE140082 (P = 0.0032) cohort (Fig. 3B–G), with the AUCs of 
2-, 3-, and 4-year being 0.728, 0.783, and 0.773 in TCGA cohort; 0.629, 0.642, and 0.739 in GSE14764 cohort; 
0.617, 0.644, and 0.616 in GSE26193 cohort; 0.607, 0.587, and 0.591 in GSE26712 cohort, 0.672, 0.646 and 0.721 
in GSE63885 cohort, 0.608 and 0.617 in GSE140082 cohort, respectively (Fig. 3B–G).

Evaluation of the performance of TRPS
To compare the performance of TRPS with other prognostic signatures in predicting the OS rate of OC cases, we 
randomly collected 45 OC-related prognostic signatures (Supplementary Table 1) and calculated their C-index. 
As a result, the C-index of TRPS was higher than most of these prognostic signatures in TCGA dataset (Fig. 4A). 

https://tcia.at/home
http://tide.dfci.harvard.edu
https://www.cancerrxgene.org/
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Moreover, the C-index of TRPS was higher than that of tumor grade and clinical stage in training and testing 
cohorts (Fig. 4B–F). These evidences suggested that the predictive value of TRPS in predicting the clinical out-
come of OC patients was higher than most of signatures and clinical characters. However, we could not evaluate 
the predictive value of TRPS in predicting the OS rate of OC patients in GSE26712 cohort due to the missing data 
of tumor grade and clinical stage. Based on the result of univariate and multivariate cox regression analysis, TRPS 
served as an independent risk factor for the clinical outcome of OC patients in TCGA, GSE14764, GSE26193, 
GSE63885 and GSE140082 cohort (Fig. 4G,H, all P < 0.05). To predict the 1-year, 3-year and 5-year OS rate of 
OC patients, we then constructed a nomogram based on TRPS, clinical stage and tumor grade using TCGA 
dataset (Fig. 4I). The comparison between the predicted curve and the ideal curve showed a high coincidence 
in TCGA dataset (Fig. 4J). Compared with TPRS, clinical stage and tumor grade, the AUC of nomogram were 
higher in TCGA dataset (Fig. 4K).

The distinct immune microenvironment in OC patients with different TRPS score
As shown in Fig. 5A, TRPS showed significant correlation with the abundance of immune cells in TCGA dataset 
(all P < 0.05). More specifically, TRPS showed a negative correlation with immuno-activated cell infiltration, such 
as  CD8+ T cells, plasma cells, macrophage M1 and NK cells in TCGA dataset (Fig. 5B–E, all P < 0.05). Interest-
ingly, higher risk score indicated a higher level of cancer-related fibroblasts in TCGA dataset (Fig. 5F). Similar 

Figure 2.  Identification of TRGs and their prognostic value. (A) t-SNE plot showing the identified cell types of 
from 7 ovarian cancer sample. (B) Dotplot showing average expression levels of cell marker. (C,D) SNE plot of 
sub-cell types of T cells and dotplot of expression pattern of cell markers. (E) Developmental trajectory of T cells 
inferred by monocle, colored by pseudotime and cell subtype. (F) Volcano plot showing DEGs in ovarian cancer. 
(G) Overlap between DEGs and TRGs. (H) Potential biomarkers identified by univariate cox analysis.
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results were obtained in ssGSEA analysis, suggesting a higher abundance of immuno-activated cells in low risk 
score group, including aDCs, B cells,  CD8+ T cells, Neutrophils, NK cells, Tfh and TIL in TCGA dataset (Fig. 5G, 
all P < 0.05). Previous studies showed that macrophage M2/M1 polarization played a vital role in the progression 
of  cancer9,10. Our study showed that OC patients with high risk score had a higher macrophage M2/M1 polari-
zation in TCGA, GSE26712, and GSE140082 cohort (Fig. 5H, all P < 0.05). Further analysis suggested a higher 
stromal score, immune score and ESTIMAE score in low risk score group in TCGA dataset (Fig. 5I, all P < 0.001). 
Moreover, higher risk score indicated a higher APC co-stimulation score, CCR score, cytolytic activity score, 
para-inflammation promoting score, parainflammation and T cell co-stimulation score in TCGA dataset (Fig. 5J).

Figure 3.  Identification of TRPS by machine learning. (A) The C-index of 101 kinds prognostic models 
constructed by 10 machine learning algorithms in training and testing cohort. (B–G) The survival curve of 
ovarian cancer patients with different TRPS score and their corresponding ROC curve in TCGA, GSE14764, 
GSE26193, GSE26172, GSE63885 and GSE140082 cohort.
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Figure 4.  Evaluation the performance of TRPS in predicting prognosis of OC patients. (A) C-index of TRPS 
and other 45 established signatures in predicting the prognosis of OC patients. (B–F) The C-index of TRPS, 
tumor grade and clinical stage in predicting prognosis of OC patients in TCGA, GSE14764, GSE26193, 
GSE63885 and GSE140082 cohort. (G,H) Univariate and multivariate cox regression analysis considering grade, 
stage and TRPS in training and testing cohort. (I,J) Predictive nomogram and calibration evaluating the 1-y, 
3-y and 5-y overall survival rate of OC patients. (K) ROC curve evaluated the performance of nomogram in 
predicting prognosis of OC patients.
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Figure 5.  Correlation between immune microenvironment and TRPS in OC. (A) Seven state-of-the-art 
algorithms evaluating the correlation between TRPS and immune cell infiltration in OC. (B–F) The correlation 
between TRPS and the abundance of  CD8+ T cells, plasma cells, macrophage M1 and CAFs. (G) The level of 
immune cells in different TRPS score group based on ssGSEA analysis. (H) The macrophage M2/M1 ratio in 
different TRPS score group in TCGA, GSE26712 and GSE140082 dataset. (I,J) The stromal score, immune 
score, ESTIMAE score and immune-related functions score in different TRPS score group. *P < 0.05, **P < 0.01, 
***P < 0.001.
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TRPS could predict the therapy benefits of OC patients
High HLA-related gene expression indicated wider range of antigen presentation, increasing the likelihood of 
presenting more immunogenic antigens, and the likelihood of benefiting from  immunotherapy11. We found 
that OC patients with low risk score had a higher HLA-related genes in TCGA dataset (Fig. 6A, all P < 0.05). 
Immune checkpoints played a vital role in immune escape of cancer. Based on our results, the expression of 
most of immune checkpoints was higher in high risk score groups in OC in TCGA dataset (Fig. 6B, all P < 0.05). 

Figure 6.  TRPS as an indicator for immunotherapy response in OC. (A,B) The level of HLA-related genes 
and immune checkpoints in different TRPS score group. (B–F) The TMB score, immunophenoscore, immune 
escape score and TIDE, T cell dysfunction and exclusion score in different TRPS score group. (G,H) The overall 
rate and immunotherapy response rate in patients with high and low risk score in GSE91061 and IMvigor210 
cohort. *P < 0.05, **P < 0.01, ***P < 0.001.
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Previous study showed that high TMB score was correlated with a better response to  immunotherapy12. IPS was a 
superior predictor of response to anti-CTLA-4 and anti-PD-1 antibody and high IPS indicated a better response 
to  immunotherapy13. High TIDE score indicated a greater likelihood of immune escape and less effectiveness 
of ICI  treatment14. As showed in Fig. 6C–F, OC patients with low risk score had a higher TMB score, higher 
PD1 immunophenoscore, CTLA4 immunophenoscore, and PD1&CTLA4 immunophenoscore, lower immune 
escape score, lower TIDE score, lower T cell exclusion and dysfunction score in TCGA dataset. Thus, OC patients 
with low risk score may have a better immunotherapy benefit. To further verify the predictive value of TRPS in 
immunotherapy benefits, we then applied two immunotherapy cohorts to further verify our results. As shown in 
Fig. 6G, the risk score in non-responders was significantly higher than that in responders in IMvigor210 cohort 
(P < 0.01). Moreover, high risk score indicated a poor clinical outcome and lower response rate in IMvigor210 
cohort (Fig. 6G). Similar results were obtained in GSE91061 cohort (Fig. 6H). As the vital role of chemotherapy, 
targeted therapy and endocrinotherapy for the treatment of OC, we also detected the IC50 value of common 
drugs in OC patients. We found that the IC50 value of 5-Fluorouracil, Camptothecin, Cisplatin, Gemcitabine, 
Foretunib, KRAS inhibitor, Erlotinib, and Tamoxifen were higher in in OC patients with high risk score in TCGA 
dataset (Fig. 7A, all P < 0.05). Moreover, positive correlation was obtained between risk score and these drugs in 
TCGA dataset (Fig. 7B). Thus, OC patients with low risk score may be better sensitivity to chemotherapy and 
targeted therapy.

The distinct difference in cancer related hallmarks in OC patients with different TRPS score
We finally performed gene set enrichment analysis to explore the potential mechanism mediating the difference 
of OC patients in clinical outcome, immune infiltration, and therapy response. High risk score indicated a higher 
sore of angiogenesis, DNA repair, EMT, G2M checkpoint, glycolysis, hypoxia, IL2-STAT5 signaling, IL6-JAK-
STAT3 signaling, MTORC1 signaling, NOTCH signaling, P53 pathway, and P13K-AKT-mTOR signaling in OC 
in TCGA dataset (Fig. 8A–L, all P < 0.05).

Biological functions of the selected gene
To further verify the performance of TRPS, we selected ARL6IP5 that contributed the most to the TRPS for 
further analysis. We first examined the expression of ARL6IP5 in OC cell lines, which showed that the expression 
of ARL6IP5 was lower in OC cell lines (Fig. 9A). Typical immunohistochemical of ARL6IP5 in OC and normal 
tissues were showed in Fig. 9B. In the follow-up study, the results of the CCK-8 assay proved that overexpression 
of ARL6IP5 obviously inhibited the proliferation of SKOV3 and TOV21G (Fig. 9C,D).

Discussion
In our study, we developed a TRPS by using 10 integrative machine learning methods in TCGA dataset. The TRPS 
acted as an independent risk factor for OC and showed stable and powerful performance in predicting the clinical 
outcome of OC patients. Compared with clinical stage, and tumor grade, our TRPS had a higher C-index. These 
findings were also verified in GSE14764, GSE26193, GSE63885 and GSE140082 cohort. Further analysis showed 
that TRPS serve as an indicator for predicting the immune infiltration, immunotherapy benefits of OC patients.

The TRPS was developed based on 18 TRGs, including CXCL3, ALOX5A, CD3G, ETV7, ISG20, STAT1, 
BLOC1S1, NDUFV2, PSMA2, PSMA5, ZFP36L1, SERPINB1, KRAS, SPCS, ARL6IP5, GBP2, SRP9, FLEKHF1. 
Previous studies have showed that these genes played a vital role in the development of OC or other types of 
cancer. ETV7 could result in doxorubicin resistance by mediating DNAJC15 repression in breast  cancer15. ISG20 
promoted tumor progression in ccRCC and acted as a potential  biomarker16. STAT1-induced upregulation 
lncRNA LINC00958 and promoted the tumorigenesis of OC via Wnt/β-Catenin  signaling17. PSMA5 accelerated 
the tumorigenic process and involved in bortezomib resistance in prostate  cancer18. ZFP36L1 accelerated tumor 
progression by mediating JNK and p38 MAPK signaling pathways in gastric  cancer19.

Immunotherapy was one of the best treatment options for cancer patients with advanced  disease20,21. Recent 
study highlighted the vital function of activation of anti-tumor immunity in eradicating tumor  cells22. How-
ever, the evidence on the sensitivity of ovarian cancer to immunotherapy was still relatively limited, needing 
further exploration. High TIDE score indicated a greater likelihood of immune escape and less effectiveness 
of ICI  treatment14. IPS was a superior predictor of response to anti-CTLA-4 and anti-PD-1 antibody and high 
IPS indicated a better response to  immunotherapy13. High TMB score was correlated with a better response to 
 immunotherapy12. OC patients with low risk score had a higher PD1&CTLA4 immunophenoscore, higher TMB 
score, higher HLA-related genes, lower TIDE score, lower tumor escape score and lower immune checkpoints 
expression, suggesting TRPS as an indicator for predicting immunotherapy benefit.

To explore the potential mechanism leading to the difference of different TRPS score in clinical outcome, 
immune infiltration, and therapy response, we then analyzed the cancer-related gene set score in different TRPS 
score group in OC. The data demonstrated that high TRPS score indicated higher score of angiogenesis, DNA 
repair, EMT, glycolysis, hypoxia, IL2-STAT5 signaling, IL6-JAK-STAT3 signaling, NOTCH signaling, P53 path-
way, and P13K-AKT-mTOR signaling. These signaling played a vital role in the development and immune 
response of OC. Angiogenesis acted as therapeutic targets in OC and involved in tumor  metastasis23. Glycolysis 
was correlated with chemoresistance and T cell function in  OC24,25. Previous study also highlighted the vital role 
of NOTCH signaling immune responses and tumor progression of  OC26. Moreover, hypoxia in the microenvi-
ronment could affect the immunotherapy outcome of  OC27.

Some limitations and shortcomings remain in our study. The expression and prognosis of TRPS genes should 
be verified by using clinical tissues. Moreover, it would be better to explore the mechanism of TRPS in the pro-
gression of OC.
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Conclusion
The current study constructed a novel TRPS for OC, which could serve as an indicator for predicting the prog-
nosis, immune infiltration and immunotherapy benefits of OC patients.

Figure 8.  Gene set enrichment analysis in different TRPS score group. High risk score indicated a higher score 
of angiogenesis (A), DNA repair (B), EMT (C), G2M checkpoint (D), glycolysis (E), hypoxia (F), IL2-STAT5 
signaling (G), IL6-JAK-STAT3 signaling (H), MTORC1 signaling (I), NOTCH signaling (J), P53 pathway (K), 
and P13K-AKT-mTOR signaling (L).
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