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Comparison of the CASA 
and InVEST models’ effects 
for estimating spatiotemporal 
differences in carbon storage 
of green spaces in megacities
Ruei‑Yuan Wang 1, Xueying Mo 1, Hong Ji 1, Zhe Zhu 1, Yun‑Shang Wang 2, Zhilin Bao 3 & 
Taohui Li 4*

Urban green space is a direct way to improve the carbon sink capacity of urban ecosystems. The 
carbon storage assessment of megacity green spaces is of great significance to the service function of 
urban ecosystems and the management of urban carbon zoning in the future. Based on multi‑period 
remote sensing image data, this paper used the CASA model and the InVEST model to analyze the 
spatio‑temporal variation and driving mechanism of carbon storage in Shenzhen green space and 
discussed the applicability of the two models to the estimation of carbon storage in urban green 
space. The research results showed that, from 2008 to 2022, in addition to the rapid expansion of 
construction land, the area of green space and other land types in Shenzhen showed a significant 
decrease trend. The estimation results of the carbon storage model showed that the carbon storage of 
green space shows a significant trend of reduction from 2008 to 2022, and the reduction amounts are 
0.8 × 106 t (CASA model) and 0.64 × 106 t (InVEST model), respectively. The evaluation results of the 
model show that, in megacities, the spatial applicability of InVEST model is lower than that of CASA 
model, and the CASA model is more accurate in estimating the carbon storage of urban green space. 
The research results can provide a scientific basis for the assessment of the carbon sink capacity of 
megacity ecosystems with the goal of "dual carbon".
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Since the industrial revolution, with the acceleration of urbanization and the intensification of human activi-
ties, global warming has become one of the most important climate problems in the  world1. Cities are the most 
frequent areas of human activity. Statistics show that more than 80% of global  CO2 emissions come from urban 
areas, and in the near-surface area, the concentration of  CO2 in the urban center is significantly higher than 
that in the urban  periphery2,3. As the only direct carbon sink, urban green space plays an important role in 
maintaining carbon balance and ecosystem  stability4. Nevertheless, the role of urban green space in the global 
carbon cycle has not been paid enough attention for a long time, and the estimation of carbon storage in ter-
restrial ecosystems is chiefly concentrated in natural areas such as forests, wetlands, and  grasslands5–7. With the 
expansion of urban areas and the popularization of the concept of eco-city, the increase of urban green space has 
significantly improved the carbon sink capacity of urban  ecosystems8,9. Therefore, the estimation of urban green 
space carbon storage is helpful to evaluate the carbon sink capacity of urban ecosystems.

In the early research on urban green space, scholars focused primarily on the theoretical demonstration of 
carbon sink capacity and the verification of carbon storage assessment  methods9,10. Among them, Nowak and 
 Crane10 were the first scholars to carry out quantitative analysis of carbon storage in urban green space, and the 

OPEN

1Department of Geographical Science, Guangdong University of Petrochemical Technology (GDUPT), 
Maoming  525000,  Guangdong  Province,  China.  2Graduate  Institute,  Fu  Jen  Catholic  University,  New  Taipei 
City  24205, Taiwan, China.  3Water Conservancy  and Civil  Engineering College,  Xinjiang Agricultural University, 
Urumqi  830052,  Xinjiang,  China.  4Key  Laboratory  of  Plateau  Geographic  Processes  and  Environment  Change 
of  Yunnan  Province,  Faculty  of  Geography,  Yunnan  Normal  University,  Kunming  650500,  China. *email: 
taohui0813@foxmail.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-55858-0&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2024) 14:5456  | https://doi.org/10.1038/s41598-024-55858-0

www.nature.com/scientificreports/

research results showed that urban green space can significantly regulate  CO2 concentration in urban areas. Since 
then, the study of urban green space carbon storage has mainly adopted the sample site inventory method to 
establish the estimation model. However, this method requires field investigation and has a long time period, so 
it is not suitable for the study of large-scale  space11,12. With the development of remote sensing technology, schol-
ars can efficiently obtain long-time series data in a large area using that technology, which promotes the rapid 
development of large-scale regional  research13. In recent years, scholars have begun to study the spatio-temporal 
characteristics and driving factors of urban green space carbon storage by using remote sensing  models14,15. Stud-
ies have established that there are obvious differences in the carbon density of green space in different areas of the 
city, and its change is affected by the spatial distribution of green space, the intensity of urban development, and 
the structure of the plant  community15,16. However, due to rapid urbanization and the lack of soil carbon pool 
data, there are significant differences in the estimation results of urban green space carbon storage by different 
remote sensing models (CASA and InVEST et al.), especially in megacities with rapid regional  expansion17,18.

To sum up, the current research mainly uses a single remote sensing model to simulate and analyze, thus 
ignoring the differences between models. Although there are many models for predicting future carbon storage 
based on past carbon storage estimates (FLUS, CA, PLUS, etc.), the selection of the optimal model for estimating 
past urban carbon storage in the current study is still uncertain, which limits the accuracy of the results obtained 
in the combined study of prediction model and estimation model. Moreover, because CASA and InVEST models 
consider the influence of the mutual transformation between quantity, spatiotemporal distribution and LUCC, 
they simplify some structure construction mechanisms, break through the limitation of simulating nonlinear 
systems, and the simulation accuracy is high. In order to analyze the differences of remote sensing models and 
their applicability in megacities, we validate the estimates of CASA and InVEST models.

Shenzhen is one of the central cities of the Guangdong–Hong Kong–Macao Greater Bay Area, and it is also 
one of the four megacities in China. Statistics show that the urbanization rate of Shenzhen in 2021 has reached 
99.81%19. Under the goal of “dual carbon”, it is very important for Shenzhen to manage carbon storage in urban 
 areas20. Thus, the purpose of this paper is to clarify the evolution characteristics of urban green space carbon 
storage, which not only has important guiding significance for the future urban planning and urban carbon 
cycle research of Shenzhen, but also provides a new idea for the selection of carbon storage estimation model 
for megacities. This paper chooses this area as the research area, and its results of this study not only help to 
reveal the applicability of the two carbon storage models to the estimation of carbon storage of green space in 
megacities, but also have guiding significance for the assessment of carbon sink capacity in urban green space 
and urban spatial planning.

Materials and methods
Study area
Located in the southern part of Guangdong Province (113° 43′–114° 38′ E, 22° 24′–22° 52′ N), Shenzhen is one 
of the four special economic zones in China (Fig. 1). That belongs to the subtropical monsoon climate zone; the 
average annual temperature is 22 °C, the annual rainfall is 1900 mm, and it is concentrated in April to Septem-
ber. In the past few decades, it has experienced a rapid urbanization process, from agricultural land and natural 

Figure 1.  Location and terrain of the study area. (Note: The Arcgis10.8 software was used in this study. The data 
were obtained from The China Standard Map Service System. Drawing review No: GS(2020)4619.)
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vegetation to construction land and artificial ecological land. Therefore, Shenzhen is a typical study area for the 
dynamic change in green space carbon storage in  megacities19,20.

Data sources and preprocessing
The remote sensing images used in this study are from the Geospatial Data Cloud [http:// www. gsclo ud. cn 
(accessed on June 20, 2023)], and the dataset adopts remote sensing images of Landsat 5 and Landsat 8 (Table 1). 
The resolution of remote sensing images is 30 m, and the cloud coverage rate is less than 1%. Additionally, climate 
data are derived from the ERA5 monthly reanalysis dataset published by the European Center for Medium-Range 
Weather Forecasts [https:// cds. clima te. coper nicus. eu/ (acces sed on June 30, 2023)], which includes rainfall, tem-
perature, and solar radiation. And the forest carbon storage data are obtained from the National Tibetan Plateau 
Data Center [https:// data. tpdc. ac. cn/ (accessed on August 30, 2023)].

The purpose of preprocessing remote sensing image data is to eliminate irrelevant information and extract 
useful real-life information to improve the reliability of supervised classification. Firstly, the ENVI 5.3 software is 
used to correct and clip remote sensing images. Secondly, the Normalized Difference Vegetation Index (NDVI) 
is extracted from the preprocessed images. Finally, the images are classified according to land use model and 
feature. Land use types are divided into cropland, green space, construction land, water areas, and unused land.

Research methods
In this paper, the land use transfer matrix method is used to analyze the spatio-temporal evolution of land use in 
Shenzhen, and the CASA model and the InVEST model are used to estimate the carbon storage of green space. 
The research framework of this paper is shown in Fig. 2.

Land‑use transfer matrix
The land use transfer matrix can describe the change in direction of different land use types in the region over 
different periods. Nowadays, it is also the most widely used method in land use research and can better reveal 
the spatio-temporal evolution process of land use  patterns21. The calculation method is as follows:

where Sij is the state of land use at the beginning and end of the study. n is the number of types of land use.

CASA model
The Carnegie-Ames-Stanford Approach (CASA) model is a typical light energy utilization model that is widely 
used because of its few parameters and simple  calculation22. According to the results of land classification, this 
paper uses the CASA model to estimate the net primary productivity (NPP) of vegetation in Shenzhen. Finally, 
the carbon storage of green space was estimated by the carbon sequestration model of  vegetation23,24. The cal-
culation method is as follows:

(1) The Fraction of Photosynthetically Active Radiation (FPAR):

In this paper, the maximum (NDVImax, SRmax) and minimum (NDVImin, SRmin) values of NDVI and SR of 
vegetation types were calculated by the cumulative frequencies of 95% (high vegetation coverage) and 5% (low 
vegetation coverage), respectively.

(1)Sij =







S11 S12 . . . S1n
S21 S22 . . . S2n
. . . . . . . . . . . .

Sn1 Sn2 . . . Snn







(2)FPARNDVI =
NDVI(x,t) −NDVI(i,min)

NDVI(i,max) −NDVI(i,min)
× (FPARmax − FPARmin)+ FPARmin

Table 1.  Data sources and description.

Year Orbit number The receiving time of the image SENSOR_ID

2008
122/044 2008-12-01

TM
121/044 2008-12-10

2013
121/044 2013-10-05

OLI_TIRS
122/044 2013-11-29

2018
121/044 2018-03-09

OLI_TIRS
122/044 2018-02-12

2022
122/044 2022-12-24

OLI_TIRS
121/044 2022-04-05

http://www.gscloud.cn
https://cds.climate.copernicus.eu/(accessed
https://data.tpdc.ac.cn/
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where NDVI is the Normalized Difference Vegetation Index. NIR is the reflection value of the near infrared band. 
R is the reflection value of the red light band.

Since NDVI values are also generated in non-vegetated areas, this paper calculates FPAR partitions according 
to the status quo of land classification. The calculation method is as follows:

where FPAR represents the photosynthetically active radiation absorbed by all vegetation within the pixel (x) 
over a period of time (t) (MJ·m−2·t−1). α is the adjustment coefficient (0.5) between the two methods.

(2) The Absorbed Photosynthetically Active Radiation (APAR):

(3)FPARSR =
SR(x,t) − SR(i,min)

SR(i,max) − SR(i,min)
× (FPARmax − FPARmin)+ FPARmin

(4)FPAR(x, t) =

{

0 Construction land
αFPARNDVI + (1+ α)FPARSR Green space

(5)APAR(x, t) = SOL(x, t)× FPAR(x, t)× 0.5

Figure 2.  The framework of this study.
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where APAR represents the photosynthetically active radiation absorbed by all vegetation within the pixel 
(x) over a period of time (t) (MJ·m−2·t−1). SOL represents the total solar radiation received by the pixel (x) 
over a period of time (t) (MJ·m−2·t−1).

(3) The Net Primary Productivity (NPP) of vegetation:

where is the actual light energy utilization rate of vegetation in pixel (x) over a period of time (t) (g C  MJ−1). 
NPP(x, t) is the NPP of the vegetation within the pixel (x) within a period of time (t) (g C  m2).

(4) The Carbon Storage of Green Space (GSGP):

Based on the calculation of NPP with CASA model, this study uses the carbon sequestration model of vegeta-
tion to estimate the carbon storage of green space in the study  area25.

where E is the carbon sequestration amount of land cover type (t); T is the land area corresponding to the land 
cover type  (hm2); δ is the NPP of land cover type (g C·m2); C is the conversion factor between vegetation biomass 
and carbon content (0.45).

InVEST model
The InVEST model’s carbon storage module categorizes ecosystem carbon storage into four categories: above-
ground carbon storage, underground carbon storage, soil organic carbon storage, and dead organic matter car-
bon storage. According to land use classification, the average carbon density of four basic types of different land 
classes was calculated to obtain the total carbon storage in the study  area26,27. The specific calculation formula is:

where i is the average carbon density of the earth class, Ai is the area of the earth class, and Ctoal is the total carbon 
storage of all land types (t·hm−2), Cabove is the aboveground carbon storage (t·hm−2), Cbelow is the underground 
carbon storage (t·hm−2), Csoil is the soil organic carbon storage (t·hm−2), Cdead is the dead organic matter carbon 
storage (t·hm−2).

According to the needs of the research and the requirements of the model, the carbon density data of differ-
ent land classes in this paper came from the National Ecological Science Data Center [http:// www. cnern. org. 
cn/ (accessed on June 25, 2023)], and were combined with the research results of Lin et al.28. The carbon density 
data of different land classes in Shenzhen was calibrated (Table 2).

Evaluation indicators of the model
In this study, the coefficient of determination (R2), Mean Absolute Deviation (MAE), Root Mean Squared Error 
(RMSE) and Nash–Sutcliffe efficiency coefficient (NSE) were used to evaluate the estimates of the CASA model 
and the InVEST  model29,30. The specific calculation formula is:

(6)NPP(x, t) = APAR(x, t)× ε(x, t)

(7)E = T× δ× C

(8)Ctotal = (Cabove + Cbelow + Csoil + Cdead)× Ai

(9)R2 =
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(10)MAE =

∑N
i=1 |Xi − Yi|

N

(11)RMSE =

√

∑N

i=2

1

N
(Xi − Yi)

2

Table 2.  Carbon density values of various land use types (Unit: t·hm−2).

Land use type Aboveground carbon storage Belowground carbon storage Soil organic carbon storage
Dead organic matter 
carbon storage

Cropland 16.56 3.31 10.84 0

Green space 20.57 6.17 22.57 4.71

Water area 0.01 0 0 0

Construction land 8.69 1.74 15.88 0

Unused land 13.55 2.71 0.83 0

http://www.cnern.org.cn/
http://www.cnern.org.cn/
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where Xi is the measured value of i the time series, Yi is the simulated value of i the time series, N is the number 
of samples, i is the time series.

Results
Spatio‑temporal characteristics of land use
This paper uses the support vector machines (SVM) of the supervised classification method to obtain land use 
data for Shenzhen in four periods, then carries out classified statistics (Table 3), and characterizes the spatial 
distribution map of land use in multiple periods (Fig. 3). The results showed that the land use in Shenzhen was 
mainly construction land and green space (accounting for more than 90% of the total area), and the proportion 
of water area, unused land, and cropland was relatively low. In terms of spatial distribution, the eastern region is 

(12)NSE = 1−

∑N
i=1 (Xi − Yi)

2

∑N
i=1

(

Xi − X
)2

Table 3.  Area changes of different land types from 1990 to 2020 (Unit:  km2).

Land use type

2008 2013 2018 2022

Area Percentage (%) Area Percentage (%) Area Percentage (%) Area Percentage (%)

Cropland 2161 1.1 3384.9 1.7 2003.0 1.03 1271.0 0.7

Green space 91677.6 46.9 89531.3 45.8 79990.0 40.94 79640.9 41

Water area 6997.5 3.6 6925.3 3.5 5832.6 2.99 6187.5 3.2

Construction land 85490.7 43.8 89056.0 45.6 102989.5 52.27 106957.2 55

Unused land 9039.1 4.6 6468.4 3.3 4549.0 2.33 1309.1 0.7

Figure 3.  Land use distribution map of Shenzhen from 2008 to 2022 (a–d shows 2008, 2013, 2018, and 2022).
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dominated by green space (high vegetation coverage rate), while the western region is dominated by construc-
tion land (high population density).

The results show that from 2008 to 2022, the area of construction land in Shenzhen presents a significant 
upward trend (+ 11.2%), in which the area of construction land increases by 21466.5  hm2. This phenomenon is 
related to the sea reclamation project implemented in  Shenzhen31. Among them, Baoan District and Nanshan 
District are the main concentrations of sea reclamation. Due to the adjustment of Shenzhen’s industrial structure 
and economic model, the cropland showed an increasing trend (+ 0.6%) from 2008 to 2013 (+ 1223.9  hm2), and 
then showed a decreasing trend (− 1%) from 2013 to 2022 (− 2113.9  hm2). The area of green space (− 5.9%), water 
area (− 0.4%), and unused land (− 3.9%) showed a significant downward trend from 2008 to 2022, indicating 
that with the development of urbanization, Shenzhen’s land demand increased, and green space, unused land, 
and water area were developed into construction land.

In order to understand the change direction of different land types and the evolution process of regional land 
types, this paper conducted a quantitative analysis of the transfer types of land use in Shenzhen over multiple 
periods. The results show that (Fig. 4): (1) In 2008–2013, the retention rate of construction land was relatively 
high. Green space is the main type of land transfer, and the area of green space transformed into construction 
land accounts for 67.8% of the total area transferred out. The area of cropland converted into construction land 
(897.1  hm2), and the area converted into green space (815.4  hm2). The unused land and water area were con-
verted into construction land. (2) In 2013–2018, construction land and green space were the main types of land 
transfers. The cropland was transformed into construction land and green space. The water area and unused land 
were converted into construction land. (3) In 2018–2022, there is a phenomenon of mutual conversion between 
green space and construction land. The water areas were converted into construction land. The unused lands were 
converted into construction land (2861  hm2). The cropland is converted to construction land and forest land.

Overall, in 2008–2022, except for the construction land, other land use types showed a trend of decrease. 
Especially after 2013, construction land showed a significant growth rate. Cropland, green space, and unused land 
are the main sources of construction land. The phenomenon was due to the increasing demand for construction 
land in the process of urbanization. Among them, construction land is one of the main factors affecting carbon 
emissions, and the increase in construction land will lead to an increase in urban carbon emissions. Meanwhile, 
as the main carbon sink of urban ecosystems, the reduction of vegetation in green spaces will significantly reduce 
the carbon storage of urban ecosystems and the carbon sequestration capacity of soil.

Estimation of carbon storage of the green space by CASA model
Based on the CASA model and the carbon sequestration equation of vegetation, the carbon storage of Shen-
zhen’s green space was calculated. The results show that (Table 4): In 2008–2022, the carbon storage of green 
space showed a trend of fluctuation reduction (0.8 ×  106 t). Among them, the highest value of carbon storage 
in Shenzhen’s green space appeared in 2008 (3.31 ×  106 t), and the lowest value appeared in 2022 (2.51 ×  106 t). 
Combined with relevant  studies32, the expansion of cities and the reduction of green space are the main reasons 
for the decline of green space carbon storage. In addition, climate effects such as global warming and urban heat 

Figure 4.  Land use transfer in Shenzhen from 2008 to 2022.
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island may lead to inter-annual changes in regional rainfall, temperature, solar radiation, and other climate fac-
tors, which in turn affect the seasonal growth and development of vegetation, resulting in inter-annual changes 
in carbon storage in green  space26,33.

The spatial distribution of carbon storage in Shenzhen’s green space (Fig. 5) showed that the spatial distribu-
tion of carbon storage in green space during 2008–2022 was basically the same, with the overall distribution 
characteristics of “low in the west and high in the east” (The distribution range of carbon storage in green space 
is 31.53 to 38.92 t  hm−2). The regions with high carbon storage value are mainly distributed in the mountainous 
areas in the east of Shenzhen (such as Dapeng District and Yantian District), which have strong carbon storage 
capacity due to their large slope and high vegetation  coverage20. However, the regions with low carbon storage 
values are distributed in the western and central areas of Shenzhen (such as Baoan District and Pingshan Dis-
trict, etc.), which have weak carbon storage capacity due to their lower altitude and higher urbanization  level19.

Estimation of carbon storage of the green space by InVEST model
In order to estimate the carbon storage of Shenzhen’s green space (Table 5), this paper first calculates the total 
carbon storage (7.42 ×  106 to 7.17 ×  106 t) during 2008–2022 through the carbon module of the InVEST model. 
Secondly, this paper used ArcGIS 10.8 software to statistically partition the carbon storage of green space. Finally, 
according to the results, we presented the spatial distribution of carbon storage in Shenzhen green space (Fig. 6). 
The results showed that the carbon storage in Shenzhen’s green space decreased from 4.95 ×  106 to 4.84 ×  106 t 
(2008–2013), decreased from 4.84 ×  106 to 4.32 ×  106 t (2013–2018), and decreased from 4.32 ×  106 to 4.31 ×  106 t 
(2018–2022). In general, the change trend of green space carbon storage is consistent with that of the green space 

Table 4.  Statistical of carbon storage and green space area from 2008 to 2022 (CACS model).

Year 2008 2013 2018 2022

Area  (hm2) 9.17 ×  104 8.95 ×  104 7.99 ×  104 7.96 ×  104

Carbon storage of the green space (t) 3.31 ×  106 2.91 ×  106 3.11 ×  106 2.51 ×  106

Figure 5.  Carbon storage distribution map of green space in Shenzhen from 2008 to 2022 based on CASA 
model (Figure a-d shows 2008, 2013, 2018, and 2022).
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area. As the InVEST model mainly estimated carbon storage by land type area, the covered area of green space 
determined the carbon storage in the region.

The spatial distribution of carbon storage in Shenzhen’s green space (Fig. 6) showed that the spatial distribu-
tion of carbon storage based on the InVEST model is consistent with the CASA model, with the overall distribu-
tion characteristics of “low in the west and high in the east” (The distribution range of carbon storage in green 
space is 53.98 to 54.15 t  hm−2). This result is related to the spatial distribution of green space in Shenzhen. Among 
them, the carbon storage of Shenzhen’s green space accounts for more than 60% of the total carbon storage. 
Combined with the data in Table 3, it is shown that the decline rate of total carbon storage from 2008 to 2022 is 
lower than that of the carbon storage of green space (Table 5) because the decline rate of water area, cropland 
and unused land is lower than that of green space. By comparing the results in Tables 4 and 5, it can be seen that 
the estimated result on the InVEST model is significantly higher than that of the CASA model.

Comparison of the InVEST model and the CASA model
In this paper, two estimation models (CASA model and InVEST model) were used to estimate the carbon stor-
age of Shenzhen’s green space, respectively. The spatial distribution of carbon storage showed consistent changes 
in the two models (Figs. 5, 6), that is, the overall spatial pattern was “low in the west and high in the east”. This 
result is related to the spatial distribution of green space in Shenzhen. Therefore, in order to analyze the appli-
cability of different models in urban green space carbon storage estimation, this paper adopts different index 
methods to analyze the estimation results of different models. Because the observed data cannot be analyzed at 
a spatial scale, we used a dataset for forest carbon stocks (published in February 2023). Although this dataset 

Table 5.  Statistical of carbon storage from 2008 to 2022 (InVEST model).

Year 2008 2013 2018 2022

Carbon storage of the green space (t) 4.95 ×  106 4.84 ×  106 4.32 ×  106 4.31 ×  106

Total carbon storage (t) 7.42 ×  106 7.40 ×  106 7.17 ×  106 7.18 ×  106

Figure 6.  Carbon storage distribution map of green space in Shenzhen from 2008 to 2022 based on InVEST 
model (Figure a-d shows 2008, 2013, 2018, and 2022 respectively).
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cannot cover all vegetation types, it does include spatial trends of forest carbon stocks over different time series 
and the accuracy of this data set can meet the needs of current  research34. In summary, we use this data set as 
the true value to verify the spatial accuracy of different models. The results in Table 6 show that, overall, In the 
CASA model,  R2, MAE, RMSE and NSE are superior to the INVEST model. This shows that the CASA model 
has better spatial applicability than the InVEST model.

Although both the CASA model and the InVEST model estimate the carbon storage of green space based 
on the area of green space, the estimation results of the CASA model are significantly lower than the InVEST 
model (Tables 4, 5). This is because there are significant differences in the thickness of vegetation in different 
months, which leads to differences in NDVI and SR index in the region, resulting in lower carbon storage results 
calculated by the CASA model combined with the carbon sequestration  model35,36. According to existing research 
results, there are certain differences in carbon sink capacity among different vegetation types (Table 7)37,38. 
Therefore, although the InVEST model is a mature carbon storage estimation model, there is high uncertainty in 
the assessment of the carbon storage of a single land class, especially in urban areas with rapid land circulation. 
The results of the carbon storage of urban green space estimated by the CASA model combined with the carbon 
sequestration model may be better than the InVEST model.

Discussion
Driving factors of carbon storage of in urban green space
Urban green space is one of the important components of carbon sink function in urban  ecosystems37. According 
to the conclusion in “Comparison of the InVEST model and the CASA model” section and previous  studies39–43, 
the carbon storage of urban green space is jointly affected by social factors and natural factors (Fig. 7). From the 
perspective of social factors, the encroachment of construction land on green space, the change of soil structure, 
deforestation, and urban planting will significantly change the carbon storage of urban green space in a short 
period of time, resulting in a significant decrease in the carbon storage of urban green space on a long-term scale 
and a fluctuating trend on a short-term  scale39–41. From the perspective of natural factors, the change in urban 
climate caused by the rain island effect, the maintenance of the optimal temperature of vegetation by the heat 

Table 6.  Accuracy verification of model results.

Model R2 MAE RMSE NSE

CASA 0.997 0.123 0.162 0.989

InVEST 0.982 0.251 0.273 0.978

Table 7.  Carbon density of different green space types in Shenzhen (Mg C/hm2).

Types of the green space 2005 year 2010 year Change rate (%) Average value

Arborous layer 21.62 24.42 12.95 23.02

Shrub layer 4.18 4.12 -1.44 4.15

Herb layer 0.54 0.5 -7.41 0.52

Litter layer 2.98 3.13 5.03 3.06

Average value 7.33 8.04 9.69 7.69

Figure 7.  Driving mechanism of the carbon storage in urban green space.
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island effect, and the enrichment of urban green space structure also affect the growth and development of vegeta-
tion to a certain extent and thus lead to the change in carbon storage of urban green  space42,43. In contrast, under 
similar climatic conditions, the carbon storage of urban green space may be influenced more by human activities.

Limitations and future studies
The current problem is that it is difficult to obtain long time series and large space measured data, which hin-
ders the development of models and the accuracy of estimation  results17,18. At the same time, without accurate 
assessment of urban green space carbon storage, it will be difficult for us to accurately formulate urban carbon 
management policies. In addition, urban green space differ significantly from natural green space, and urban 
green space has a high degree of fragmentation. In contrast, the natural green space with concentrated spatial 
distribution has a relatively high exchange rate of matter and  energy46. Therefore, we believe that the spatial frag-
mentation of urban green space can be reduced through reasonable urban planning and management measures, 
so as to improve the carbon sink capacity of urban green space.

In summary, as the region with the fastest urbanization process, the transfer rate of land use type in megacity 
is significantly higher than that of other urban areas in a short time, in which makes it more difficult to estimate 
the carbon storage of urban green  space44,45. Meanwhile, as the most important component area of urban eco-
systems, the carbon storage assessment of megacity green spaces is of great significance to the service function 
of urban ecosystems and the management of urban carbon zoning in the  future46,47. However, due to the regional 
urbanization level and the inconsistency of impact indicators, the driving factors of urban green space carbon 
storage cannot be quantified. This is one of the problems that needs to be solved in the future.

Conclusion
This study first interpreted the land use type of Shenzhen from 2008 to 2022 through remote sensing image data, 
then estimated the carbon storage of Shenzhen’s green space using the CASA model and the InVEST model, 
respectively, and finally discussed the driving factors of carbon storage in urban green space. The following three 
conclusions can be drawn:

(1) From 2008 to 2022, the area of urban green space, unused land, water area, and cropland in Shenzhen 
showed a significant decrease trend, while the construction land showed a rapid expansion trend to the 
surrounding areas. Among them, the land type in the eastern region is mainly urban green space, and the 
land type in the western region is construction land.

(2) In terms of temporal, the carbon storage of green space in Shenzhen showed a significant decrease trend 
from 2008 to 2022, and the reduction of carbon storage was 0.8 ×  106 t (the CASA model) and 0.64 ×  106 t 
(the InVEST model), respectively. Among them, the estimated result by the CASA model is lower than 
that of the InVEST model.

(3) In terms of spatial distribution, the spatial distribution of carbon storage in Shenzhen’s green space by the 
CASA model and the InVEST model is quite consistent, showing a spatial pattern of “low in the west and 
high in the east”. The high-value area of carbon storage is distributed in the mountainous area in the east of 
Shenzhen, and the low-value area of carbon storage is distributed in the plain area in the west and middle.

(4) The evaluation results of the model show that in the CASA model,  R2, MAE, RMSE and NSE are superior 
to the INVEST model. The CASA model has better spatial applicability than the InVEST model.

Data availability
The data is available from the corresponding authors upon request.
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