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Mapping the spatial disparities 
of HIV prevalence in Ethiopian 
zones using the generalized 
additive model
Seyifemickael Amare Yilema 1*, Yegnanew A. Shiferaw 2, Alebachew Taye Belay 1 & 
Denekew Bitew Belay 3

HIV is a worldwide social and health pandemic that poses a significant problem. This study contributes 
to the 2030 global agenda of reducing HIV prevalence. The study analyzed HIV prevalence using the 
2016 Ethiopian Demographic and Health Survey data. The study included men aged 15–54 years and 
women aged 15–49 years who responded to questions about HIV tests. A generalized geo-additive 
model (GAM) was fitted to HIV data using nonparametric smooth terms for geolocations. Two 
smoothing techniques were used in GAMs to evaluate spatial disparities and the probable effects of 
variables on HIV risk. There were certain areas in Ethiopia that were identified as hot spot zones for 
HIV, including Nuer and Agnuak in Gambella, West Wollega and Illubabor in Oromia, Benchi Maji and 
Shaka in SNNPR, Awsi, Fantana, Kilbet, and Gabi in the Afar region, Shinilie of the Somalia region, 
North and South Wollo, Oromia special zones of the Amhara region, Central Ethiopia, and Addis Ababa 
city. On the other hand, the eastern parts of Ethiopia, particularly most zones in the Somalia region, 
were identified as cold spot zones with the lowest HIV odds ratio. The odds of HIV+ were higher for 
those who reside in rural areas than in urban areas. Furthermore, people who have STIs, who used 
contraceptive methods, and who learned at the secondary level of education were more likely to 
be infected with HIV. After adjusting for confounding variables, the results indicated that there are 
substantially significant spatial variations in HIV prevalence across Ethiopian zones. These results 
provide essential information to strategically target geographic areas to allocate resources and policy 
interventions at zonal level administrations.
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The human immune deficiency virus (HIV), which causes acquired immune deficiency syndrome (AIDS), is 
among the world’s most critical public health  threats1. There is an international commitment to stop new HIV 
infections and to ensure that everyone with HIV has access to  treatment1. Since the beginning of the epidemic, 
84.2 million people have acquired HIV and approximately 40.1 million people have died from the disease. 
There were 38.4 million HIV-positive people on the globe as of the end of 2021, among whom 36.7 million 
adults and 1.7 million children under the age of 15 are HIV-positive, 25.6 million of whom are in the African 
Region. In the world, 0.7% of adults between the ages of 15 and 49 are estimated to have HIV, yet the intensity 
of the epidemic continues to vary widely between various countries and regions. Based on WHO reports, 3.4% 
of the population in the African region, or more than two-thirds of all HIV-positive people worldwide, are still 
infected with the  virus2.

Although only 11% of the world’s population lives in sub-Saharan Africa, this region is the epicenter of the 
HIV/AIDS epidemic. A pattern investigation of the HIV/AIDS prevalence in Ethiopia between 1982 and 2000 
revealed a consistent increase followed by a decline after  20003. According to reports from the Ethiopian DHS, 
the prevalence of HIV among adults was 0.2% in 1985, 3.2% in 1995, 3.3% in 2000, 1.4% in 2005, 1.5% in 2011, 
and 0.9% in  20163–7. The HIV prevalence was unevenly distributed among Ethiopia’s regions, with Gambella, 
Addis Ababa, Central Oromia, Dire Dawa, Harari, and Afar being the most seriously affected  regions7–9.
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HIV/AIDS quickly became a pandemic after the first AIDS case was reported in Ethiopia in  198610. Ethiopia, 
one of the most severely affected nations, has made significant investments in HIV/AIDS prevention and care 
since the 1990s. Ethiopia adopted the global target, which was originally introduced in 2014 by the Joint United 
Nations Programme on HIV/AIDS11, as one of the tactics intended to end the AIDS and HIV epidemics by 2030. 
Ethiopia has committed to lowering HIV infections and is working hard on a number of projects, including a 
national roadmap for HIV prevention and control in  201812 and a national strategic plan for HIV/AIDS from 
2021 to 2025 with the goal of having AIDS free Ethiopia by  203013. This study can support the global 2030 agenda 
of ending HIV prevalence.

It is useful to map the crude and adjusted covariate spatial disparities of potential risk factors in spatial health 
studies for identifying infectious disease  problems14. Complex spatial patterns associated with disease risks are 
exposed to substantial fluctuation due to sparsity. Smoothing provides an effective way to address these problems 
by reducing variability while allowing non-parametric estimates by borrowing strength from nearby observations. 
For mapping individual level epidemiological data, generalized additive models (GAMs), first introduced 
by Hastie and  Tibshiran15, are frequently used model-based  techniques14,16–19. When examining geographic 
variability in a flexible approach, GAMs offer a unified statistical framework that enables individual-level risk 
factor  adjustment14. Modelling complicated spatial relationships is ideal for GAMs due to their versatility and 
intuitive smoothing approaches.

The Federal Ministry of Health decentralized the health service in accordance with the governmental 
structures (regions, zones, and woredas)20,21. Zones are the third level of governmental administrative hierarchies, 
responsible for operational planning, resource allocation, and healthcare implementation. Zonal governments 
act as a "milestone" between woreda (district) and regional administrations. Additionally, the zonal health 
department is responsible for monitoring and evaluating health activities at the district  level22. Therefore, analysis 
of HIV prevalence at the zonal level is a significant benefit for policy interventions.

HIV prevalence maps generated highlight the spatial disparities in the epidemic within sub-Saharan African 
(SSA) countries, and localized areas where both the burden and drivers of the HIV epidemic are  concentrated23. 
Research findings suggested a large geographical variation in the HIV epidemic across the SSA  countries23–25. The 
distribution of HIV infection in Ethiopia is varied in all its  regions7. These studies are based on HIV prevalence 
disparities at national and regional levels. However, adjusted covariates are not often considered in studies of 
spatial disparities at the lower level of government structures. Based on works of literature, there are very limited 
studies on the geospatial HIV prevalence using the GAM model in Ethiopian zones. As a result, our focus is on 
mapping the spatial variations in HIV prevalence across different Ethiopian zones and investigating the effects 
of sociodemographic, biological, and behavioral covariates.

Methods
Data sources
The 2016 Ethiopian demographic and health survey data was used in this study. For the purpose of analyzing 
the HIV prevalence, the individual women’s and men’s records and HIV files were merged. Overall, household 
respondents (women aged 15–49 years and men aged 15–59 years) were used for the analysis. There are 21 
sampling strata in the 2016 Ethiopian Demographic and Health Survey (EDHS). In two stages, samples of 
enumeration areas (EAs) were randomly chosen from each stratum. By classifying the sampling frame within 
each sampling stratum prior to sample selection, in accordance with administrative units at various levels, and 
by using a probability proportional to size selection at the first stage of sampling, implicit stratification and 
proportional allocation were achieved at each of the lower administrative  levels6. Then after, 645 EAs were 
separately selected in each stratum during the first stage, with the likelihood being inversely correlated to the size 
of the EAs. Of the total 645 EAs, 202 EAs and 443 EAs were urban and rural, respectively. Finally, 28 households 
per cluster were chosen in the second stage using a systematic sampling method with equal probability from the 
newly created households.

In order to get capillary blood for HIV testing, interviewers pricked the fingers of household respondents. 
The anonymously linked protocol developed for the DHS program served as the foundation for the protocol 
for collecting and analyzing blood samples. In accordance with this protocol, the data from the HIV testing 
can be combined with the anonymized survey data file via a unique identifier to enable analyses of HIV status 
by sociodemographic characteristics. However, the results are anonymous and not given to the  respondents26.

Spatial data
Ethiopia has been divided into nine regions and two administrative cities and further subdivided into 83 zones 
for administrative purposes. Each residential cluster housing was connected to all household attributes using 
GPS point data. For concerns of privacy of the respondents, the GPS urban/rural locations have been  masked27. 
To protect the privacy of respondents living in small administrative units, clusters of urban residences were 
displaced by up to 2 km, while clusters of rural residences were displaced by up to 5 km. Additionally, 1% of rural 
clusters were displaced by up to 10  km27. Figure 1 shows the regional and zonal maps of Ethiopia; the dot-like 
points in the zonal maps were the EAs.

Generalized geo additive statistical model
Generalized additive models (GAMs) were initially developed by Hastie and  Tibshiran15. These models 
presuppose that a link function connects an additive predictor to the mean of the response variables. Similarly 
to the generalized linear model, generalized additive models allow any member of the exponential family of 
distributions for the response probability distribution. The GAM allows for an unknown smooth function in 
the linear predictor, the only distinction between GLM and  GAM15,28. In general, GAM has the interpretability 
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advantage over the general linear models (GLM) since it is substantially more flexible because the independent 
and dependent variables are not rigidly defined as  linear28–30. The random component of the GLM identifies the 
probability distribution of response Y, which is assumed to belong to the exponential family with the density 
function of the form as follows.

where θ is the natural parameters of the exponential family, φ is a scale or dispersion parameter common to all 
respondents, c(.) are functions depending on the specific exponential family. Let us define the respondents of 
HIV infectious for in ith EA as

We consider modeling of respondents that are distributed on a map with spatial coordinates ui and vi denoting 
the geo location for the ith EAs for Ethiopian zones. Furthermore, the distribution of the outcome variable 
belongs to the exponential family, and therefore the GAM for a spatial effect analysis can be specified as

where logit(πij) is the logit link function and Y is the response  variables31. The response variable Y is the binary in 
HIV prevalence data and therefore, logit(πij) is the logit link function. ηij is an additive predictor model, β denotes 
a vector of coefficients associated with adjustment covariate Xij . S(ui , vj) is a 2-dimentional non parametric 
smooth function that is used to model geographical location of respondents, a nonlinear function of geo location 
and finally ui and vj are the coordinates of longitude and latitude  respectively32.

In the context of HIV data, GAMs have been used to evaluate spatial disparities and understand how 
sociodemographic, biological, and behavioral factors contribute to the spatial patterns of HIV  prevalence33. 
This analysis primarily assesses the relationship between geographic location and HIV prevalence in Ethiopian 
zones. To achieve this, a 2-dimensional locally weighted regression smoother (LOESS) was used to smooth over 
the longitude and latitude of the respondent’s  geolocation14,16. The implementation of GAMs in this context 
involves several steps, including:

Primary data source
As stated in the data section, this study uses data from the 2016 EDHS. The data includes HIV test results 
and responses from men aged 15–59 and women aged 15–49 who participated as household respondents 
(Supplementary material).

Model fitting
As stated in the “Methods” section, GAMs were utilized to analyze the data in this study. GAMs incorporate 
nonparametric bivariate smooth terms of spatial location parameters, which are X and Y coordinates, to 
investigate the patterns without relying on strong assumptions about the underlying functions. The MapGAM 
package is used to fit a GAM and map smoothed spatial effect estimates from respondents to HIV risk. MapGAM 
was developed to provide a single R package that allows for estimating, predicting, and visualizing covariate-
adjusted spatial effects using individual-level data. The package estimates covariate-adjusted spatial associations 
and the odds ratio of HIV prevalence via GAMs that include a non-parametric bivariate smooth term of 
geolocation  parameters14,30,34.

p(y; θ;φ) = exp

{

[yθ − b(θi)]

a(φ)
+ c(y,φ)

}

yij =

{

1, if respondents in the ith EA is HIV+

0, Otherwise

logit(πij) = ηij = Xt
ijβ + S(ui , vi), i = 1, 2, . . . , n

Figure 1.  Regional and zonal maps of Ethiopia.
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Model evaluation
The least absolute shrinkage and selection operator (LASSO) regression technique was used to select significant 
variables for further analysis. It is commonly used for linear and logistic regression. The performance of the 
GAMs was evaluated using cross-validation, which helps to choose the best model based on AIC and deviance 
values.

Interpretation
The GAMs results can be used to identify high-risk HIV regions and analyze the impact of various factors on 
HIV  prevalence33.

The GAM framework is a versatile and sturdy statistical method that can effectively analyze complex 
relationships between various factors and a dependent variable. This approach has proved to be helpful in 
studying HIV data as it can identify spatial disparities and potential factors contributing to the spatial patterns 
of HIV prevalence. The insights obtained from such analysis can help in designing intervention and control 
programs that are geographically targeted and more  effective33.

Results
The descriptive analysis of HIV coverage with the corresponding sociodemographic factors (such as region, 
place of residence, educational level, literacy, wealth index, and current marital status), biological factors (such 
as age at first sex and having a genital sore or ulcer in the last 12 months), and behavioral factors (such as ever 
using a contraceptive method and ever hearing of AIDS) of participants were presented in Table 1 below. The 
variables were chosen based on the review of works of  literature28,35–37. Based on this study, Gambella (4.4%), 
Addis Ababa (3.48%), Dire Dawa (2.72%) and Harari (2.67%) were reported as having high percentages of HIV 
positives. On the other hand, Somalia (0.12%) and Southern nation’s nationalities and people’s region (SNNPR) 
(0.35%) reported low coverage of HIV negative in the country.

Variable selection
Significant variables for further analysis were selected using least absolute shrinkage and selection operator 
(LASSO) regression. Nowadays LASSO is a widely used technique of variable selection for linear and logistic 
 regression38. Consequently, region, place of residence, current marital status, educational level, had a sexually 
transmitted disease for the last 12 months, age at first sex, ever been tested for HIV/AIDS, ever heard HIV 
and ever used contraceptive method are selected as important variables for fitting GAM model. PROC 
HPGENSELECT in the SAS university edition is used for the selection process.

Interpretations for geo spatial analysis
After controlling for disease related characteristics, the final GAMs result shows that individuals who lived in 
rural areas were 4 (AOR = 4.183, CI = 3.47, 4.90) times more likely being infected by HIV as compared to those 
living in urban areas (Table 2). Respondents who learned secondary education were 2 (AOR = 2.15, CI = 1.33, 
2.97) times more likely to be infected by HIV than those who were none educated persons. Respondents who 
had any STI in the last 12 months prior to the survey were found to have higher odds of HIV+ (AOR = 4.34; 
CI = 3.09, 5.60) than those of STI-negative individuals. Individuals who were of other marital status (divorced, 
widowed, etc.) had higher odds of HIV+ than the single individuals. There were significant positive effects of 
contraceptive methods on HIV prevalence; the study found that those contraceptive users were (AOR = 1.23, 
CI = 1.04, 1.93) more likely to be HIV+ than those noncontraceptive users (Table 2).

The p value (0.000) used to test the global spatial effect with the smallest deviance statistic shows that it is 
highly significant for the crude analysis, which indicates that the prevalence of HIV was significantly associated 
with the spatial locations (longitude, latitude) of the respondents. Before adjustment of covariates for spatial 
confounding, geographic variations were statistically significant. The optimal scan size, which minimized the 
AIC, was found to be 0.15, indicating that 15% of the adjacent dataset was used for smoothing the geo-location 
parameters (Table 3).

This study mapped both unadjusted (crude) and adjusted with covariate spatial confounding effects to explain 
the characteristics of HIV infectious to geo locations across Ethiopian zones (Fig. 2 at the left). The spatial 
distributions of the crude odds ratio (COR) map of HIV infectious shows the risk of HIV infections in different 
parts of the country. In western parts of the country, the hot spot zones were Nuer and Agnuak from the Gambella 
region, parts of the west Wollega and Illubabor of the Oromia region, parts of the Benchi Maji and Shaka of 
SNNPR, with the highest odds ratio. In the North Eastern parts of the country, Awsi, Fantana, Kilbet, parts of 
Hari and Gabi zones of Afar region, Shinilie of Somalia region, North and South Wollo, Oromia special zones of 
Amhara region have among the highest HIV odds ratio. Furthermore, in Central parts of Ethiopia, Addis Ababa 
city, West, East and North Shewa zones of the Oromia region have the highest HIV odds ratio (Maximum AOR 
is 7.44, global p value = 0.000 and span size = 0.15). In contrast, the cold spot zones were mostly found in the 
eastern parts of Ethiopia, particularly most zones in the Somalia region, which have the lowest HIV odds ratio.

The local test noticed areas with statistically and significantly higher and lower HIV prevalence, which are 
denoted by black lines in Fig. 2. The crude map showed a spatial pattern of HIV prevalence that was consistent 
with the geographic distributions of the respondents who had HIV+ results.

The spatial distribution of the covariate adjusted HIV odds ratio for respondents across Ethiopian zones 
was also displayed in Fig. 2. The spatial patterns of the adjusted HIV odds ratio across Ethiopian zones showed 
significant variations in HIV prevalence. After adjusting for confounding variables, the results indicated that 
there were substantially significant spatial variations between location and HIV prevalence since the p value to 
evaluate the global spatial effect of HIV was 0.000 (Table 3). The optimal span size increased from 15% (in crude) 
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to 50% of the data following the adjustment for variables, and the global residual deviance value was decreased 
(Table 3). The range of odds ratios in the study areas was also substantially narrowed after adjustment (AOR, 
range: 0.05–4.31), compared to an unadjusted (COR, range: 0–7.44). Moreover, the first quartile, the mean, 

Table 1.  Percentage distributions in social, biological and behavioral characteristics of HIV positive and HIV 
negative participants from EDHS data.

Variables Categories

Frequency Percentage

HIV− HIV+ HIV− (%) HIV+ (%)

Region

Tigray 2941 32 98.924 1.076

Afar 1766 23 98.714 1.286

Amhara 3479 42 98.807 1.193

Oromia 3331 23 99.314 0.686

Somalia 1664 2 99.880 0.120

Benshangul 1965 18 99.092 0.908

SNNPR 3333 12 99.641 0.359

Gambella 1740 80 95.604 4.396

Harari 1238 34 97.327 2.673

Addis Ababa 2605 94 96.517 3.483

Dire Dawa 1608 45 97.278 2.722

Place of residence
Urban 7891 288 96.479 3.521

Rural 17,779 117 99.346 0.654

Educational level

No education 10,972 75 99.321 0.679

Primary 9287 166 98.244 1.756

Secondary 3698 119 96.882 3.118

Higher 1713 45 97.440 2.560

Literacy
Cannot read at all 13,428 111 99.180 0.820

Able to read 12,242 294 97.655 2.345

Wealth index

Poorest 6152 40 99.354 0.646

Poorer 3750 26 99.311 0.689

Middle 3427 25 99.276 0.724

Rich 3637 26 99.290 0.710

Richest 8704 288 96.797 3.203

Current marital status

Single 7334 132 98.232 1.768

Married 15,888 203 98.738 1.262

Other 2448 70 97.220 2.780

Ever heard of AIDS
No 1889 20 98.952 1.048

Yes 23,781 385 98.407 1.593

Have you had a sexually transmitted infection (STI) in the last 12 month
No 25,587 398 98.468 1.532

Yes 83 7 92.222 7.778

Had a genital sore/ulcer in last 12 months
No 25,157 394 98.458 1.542

Yes 402 7 98.289 1.711

Ever been tested for HIV
No 13,178 122 99.083 0.917

Yes 12,492 283 97.785 2.215

Age at first sex

Not had sex 6441 103 98.426 1.574

Below 15 4053 59 98.565 1.435

15–19 11,746 189 98.416 1.584

Above 20 3430 54 98.450 1.550

Ever used contraceptive method
No 20,055 285 98.599 1.401

Yes 5615 120 97.908 2.092

Number of sexual partners, excluding spouse, in last 12 months

Not had 24,901 370 98.536 1.464

One sex partner 721 33 95.623 4.377

Two and more 48 2 96.000 4.000

Number of sex partners, including spouse, in last 12 months

Not had 9348 176 98.152 1.848

One sex partner 16,228 225 98.632 1.368

Two and more 94 4 95.918 4.082
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and the third quartile of the variables effect prediction for both crude and adjusted covariates, showing that the 
adjusted one is contracted.

In general, spatial adjustment for covariates decreased the size with geographical zones of higher odds ratio 
compared to the counter parts of the crude. In Central Ethiopia, the odds ratio for HIV was significantly reduced 
after adjusting for covariates. Additionally, it has slightly decreased in the North Eastern regions of the nation and 
the Gambella regional zones. The lower odds ratio of HIV was also slightly shifted from the eastern to southern 
parts of Somalia region.

The p value of the effects of the prediction of variables and adjusting for individual covariates are presented in 
Table 4. The p values for each variable under the GAMs model are significant, which indicates that each variable 
has a potential contribution to the prevalence of HIV risk. Therefore, using these prediction points and the odds 
mapping smoothed spatial effect estimates from individual-level data were successful.

This study examined the potential contributions of each sociodemographic predictors on HIV prevalence. 
Figure 3 shows the potential contributions of predictors such as place of residence, current marital status, 
educational level, had a sexual transmitted disease for the last 12 months, age at first sex, had ever been tested 
for HIV/AIDS, having ever heard HIV and had ever used contraceptive method to geographical patterns of 
HIV odds ratio associated with the geo locations (longitude, latitude). The highest odds ratios of HIV for each 
predictor variable were smaller than the crude odds ratio and larger than the summary adjusted for covariates 
HIV odds ratio. In addition, the spatial disparities of the HIV odds ratio of each variable have a similar pattern 
as the adjusted covariates map in Fig. 2. Also, the HIV odds ratio of each potentially contributing variable was 

Table 2.  Adjusted HIV+ odds ratio and a 95% confidence interval for GAMs model.

AOR Lower Upper

Place of residence
Urban (ref)

Rural 4.183 3.469 4.897

Educational level

No education (ref)

Primary 1.703 0.937 2.470

Secondary 2.148 1.330 2.966

Higher 1.471 0.554 2.388

Current marital status

Single

Married 0.840 − 0.062 1.742

Other 1.294 1.052 2.237

Had any STI in the last 12 month
No (ref)

Yes 4.342 3.085 5.599

Age at first sex

Not had sex

Below 15 1.331 0.342 2.320

15–19 1.238 1.12 2.164

Above 20 0.844 − 0.129 1.817

Ever been tested for HIV
No (ref)

Yes 1.360 0.648 2.071

Ever heard of AIDS
No (ref)

Yes 0.547 − 0.443 1.537

Ever used contraceptive method
No (ref)

Yes 1.233 1.035 1.931

Table 3.  Comparisons of unadjusted and adjusted covariate spatial effects with geo location coordinates.

Parameters Unadjusted (crude) Adjusted for covariates

Deviance statistic 3952.13 3795.30

AIC 3895.86 3751.33

p value 0.000 0.000

Span size 0.15 0.50

All variables effect predictions

 Minimum − 7.84 − 3.07

 1st quartile − 1.23 − 0.87

 Mean − 0.74 − 0.29

 3rd quartile 0.38 0.37

 Maximum 2.00 1.46
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slightly different from each other in spatial distributions. The spatial patterns of the HIV odds ratio adjusting 
for place of residence were significantly reduced from the crude odds ratio. The highest odds ratio of HIV was 
significantly reduced in the Eastern, Central and Western parts of the country for adjusting the place of residence.

Discussion
This study used the 2016 EDHS data adopted with GAMs to smooth the two dimensional spatial effects. The 
spatial components were the bivariate location (longitude, latitude) associated with the respondents and the 
zonal shape files to produce zonal-level results. The result found spatial disparities of HIV prevalence based on 
the individual level geo locations and adjusted for covariates. Variations of geo locations and magnitudes of HIV 
odds ratio were observed in both crude and adjusted spatial effects. Spatial variations among HIV prevalence 
revealed a significant shift in spatial patterns of HIV prevalence.

For crude analysis, the odds of HIV infection were significantly higher in western, central, and eastern parts 
of the country. It is a similar spatial pattern for covariate adjustments by reducing the odds ratio from the crude 
analysis. After adjusting for covariates, either for all variables (Fig. 2) or each individual variable (Fig. 3), the 
odds ratio of HIV prevalence was reduced. In addition to reducing the odds, we found that significant zones 
with the lowest odds ratio of HIV (low HIV risk zones) were shifted from the Degahabur zone to the Shebelle 
and Liben zones in the eastern parts of the country.

The results of adjusting for individual covariates for significant factors displayed substantial spatial variations 
across zones. As of the adjusted for covariates HIV odds ratio mapping, the individual adjustment variable had 
significant spatial variations across the Ethiopian zones. Our findings agree with similar  studies17,33,39. We found 
that the higher or lower HIV prevalence adjusted for place of residence had significant spatial disparities, which 
reduced the odds ratio of crude analysis.

The findings of the SSA  study23 revealed that HIV prevalence maps produced spatial disparities in the 
epidemic within a nation and localized areas where both the burden and causes of the epidemic are concentrated. 
According to research  by40, recently pregnant women in a rural area of Kenya reported spatial variability in the 
reporting of externalized HIV stigma. The studies conducted in South Africa examined spatial differences in 

Figure 2.  Map of the spatial distributions of crude HIV odds ratio (on the left) and adjusted covariates HIV 
odds ratio (at the right).

Table 4.  Adjusted for each variable prediction effect and statistic.

Deviance AIC p value

Variables effect predictions

Minimum Mean Maximum

Place of residence 3813.96 3833.00 0.000 − 3.43 − 0.35 1.57

Current marital status 4005.82 4027.00 0.000 − 3.38 − 0.32 1.73

Had any STI in the last 12 month 4021.03 4041.15 0.000 3.49 − 0.34 1.70

Educational level 3925.09 3949.14 0.000 − 3.16 − 0.31 1.61

Age at first sex 4030.84 4054.95 0.000 − 3.45 − 0.34 1.73

Ever been tested for HIV 3977.53 3997.65 0.000 − 2.97 − 0.27 1.75

Ever heard of AIDS 4026.13 4046.22 0.000 − 3.30 − 0.31 1.81

Ever used contraceptive method 4018.90 4039.01 0.000 − 3.30 − 0.31 1.78
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prevalence in South African provinces, and their findings indicate spatial variability in HIV  prevalence33. In 
addition, their study looked at how the GAM model could be used to smooth out the effects of geographical 
location by increasing and decreasing the chances of HIV in statistically significant areas. Our investigation 
supported these findings, showing that there were geographic disparities in the highest and lowest odds of HIV 
prevalence in Ethiopian zones.

There have been geographical analysis studies connected to community and regional levels in Ethiopia, even 
though we are aware of no studies using spatial disparities of HIV prevalence throughout the nation’s geographic 
zones. According to the research  of7, there are significant spatial variations in the national HIV risk at the 
subnational and local levels. Furthermore, their study found an association between demographic factors and 
the spatial distribution of HIV, with the Gambella region having the highest prevalence of the disease. Agnuak 

Figure 3.  Contributions of potential risk factors to the spatial distributions of HIV prevalence in terms of Odds 
Ratio. The bold black contour lines indicate areas where the upper and lower bands exclude one.
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and Nuer zones of the Gambella region were found to have the highest HIV prevalence according to our study, 
which was consistent with their findings. In Ethiopia, trends and spatial distributions of HIV prevalence have 
been  studied7. Their findings, which are consistent with ours, show that Addis Ababa and the neighboring 
regions of the Afar, Tigray, and Amhara regional states, as well as central Oromia, consistently have high clusters 
of HIV cases.

Our study had some quality in assessing the geo-mapping of the HIV odds ratio for unadjusted and adjusted 
covariates using a recently developed MapGAM package. We use GAMs to find geographical disparities in HIV 
risk at the zonal level. GAMs allowed us to identify geographical variations and support local regression and 
spatial splines with nonparametric smoothing effects. We still have some limitations despite our strengths. Due 
to our study being limited to the EDHS data, some medical prevention intervention factors, such as those related 
to anti-retroviral (ART) therapy, were left  out26.

Conclusion
HIV prevalence is spatially varied in Ethiopian zones. Some zones were highly affected by HIV risk, and others 
were looking safe. The study displayed significant areas of high and low HIV prevalence zones. In particular, 
the western, part of eastern to the north and central parts of Ethiopian zones were affected by HIV, while part 
of Eastern to the southern Ethiopia had low HIV prevalence. People who were living in the rural areas, had a 
secondary educational level, had had any STIs for the last 12 months prior to the survey, and used contraceptive 
methods were more likely to be affected by HIV disease than their respective counterparts. Health policy makers 
should intervene in high-HIV prevalence zones to achieve the strategies designed to eliminate HIV/AIDS 
endemics by 2030.

Data availability
The 2016 EDHS HIV data was accessed from the DHS program website https:// www. dhspr ogram. com and also, 
the enumeration area and zones shapefiles were accessed from https:// www. dhspr ogram. com and https:// afric 
aopen data. orgg websites respectively, after a request for registration.
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