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Intra‑ and peritumoral radiomics 
features based on multicenter 
automatic breast volume scanner 
for noninvasive and preoperative 
prediction of HER2 status in breast 
cancer: a model ensemble research
Hui Wang 1,2,7, Wei Chen 3,7, Shanshan Jiang 4,7, Ting Li 3, Fei Chen 1, Junqiang Lei 5, Ruixia Li 1, 
Lili Xi 6 & Shunlin Guo 5*

The aim to investigate the predictive efficacy of automatic breast volume scanner (ABVS), clinical 
and serological features alone or in combination at model level for predicting HER2 status. The model 
weighted combination method was developed to identify HER2 status compared with single data 
source model method and feature combination method. 271 patients with invasive breast cancer 
were included in the retrospective study, of which 174 patients in our center were randomized 
into the training and validation sets, and 97 patients in the external center were as the test set. 
Radiomics features extracted from the ABVS‑based tumor, peritumoral 3 mm region, and peritumoral 
5 mm region and clinical features were used to construct the four types of the optimal single data 
source models, Tumor, R3mm, R5mm, and Clinical model, respectively. Then, the model weighted 
combination and feature combination methods were performed to optimize the combination models. 
The proposed weighted combination models in predicting HER2 status achieved better performance 
both in validation set and test set. For the validation set, the single data source model, the feature 
combination model, and the weighted combination model achieved the highest area under the curve 
(AUC) of 0.803 (95% confidence interval [CI] 0.660–947), 0.739 (CI 0.556,0.921), and 0.826 (95% CI 
0.689,0.962), respectively; with the sensitivity and specificity were 100%, 62.5%; 81.8%, 66.7%; 
90.9%,75.0%; respectively. For the test set, the single data source model, the feature combination 
model, and the weighted combination model attained the best AUC of 0.695 (95% CI 0.583, 0.807), 
0.668 (95% CI 0.555,0.782), and 0.700 (95% CI 0.590,0.811), respectively; with the sensitivity and 
specificity were 86.1%, 41.9%; 61.1%, 71.0%; 86.1%, 41.9%; respectively. The model weighted 
combination was a better method to construct a combination model. The optimized weighted 
combination models composed of ABVS‑based intratumoral and peritumoral radiomics features and 
clinical features may be potential biomarkers for the noninvasive and preoperative prediction of HER2 
status in breast cancer.

Globally, breast cancer is the malignant disease with the highest incidence in  women1. Breast cancer is a highly 
heterogeneous disease, and individualized clinical decision-making is particularly vital. Human epidermal 
growth factor receptor 2 (Human epidermal growth factor receptor2, HER2) positive is a molecular subtype of 
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breast cancer. Compared with other subtypes, HER2-positive breast cancer has stronger heterogeneity, poorer 
prognosis, and lower survival  rate2. HER2 positivity has been confirmed to promote tumor neovascularization 
and lymphangiogenesis, thereby affecting tumor growth and  metastasis3. Chemotherapy combined with tras-
tuzumab and pertuzumab is currently a first-line targeted therapy program for HER2-positive patients and can 
significantly improve patient  outcomes4. Therefore, HER2 positive can reflect the information on tumor growth 
and metastasis, and its accurate judgment is crucial for the treatment and prognosis of breast cancer.

Automatic breast volume scanner (ABVS) automatically obtained three-dimensional ultrasound images of the 
breast using a standardized procedure. ABVS can obtain continuous ultrasound images, which are not influenced 
by the sonographer’s operating technique and clinical experience. ABVS was found to have a higher value than 
conventional ultrasound in breast cancer  screening5, observer  consistency6, and preoperative prediction of neoad-
juvant chemotherapy  response7. Radiomics can analyze the potential relationship between medical imaging and 
tumor phenotype through high-throughput extraction of a large number of medical imaging  features8. Previous 
studies on molecular subtypes of breast cancer had focused on the internal features of breast tumors, ignoring 
the peritumoral  information9,10. Peritumoral tissues contain higher levels of markers for transcription factor 
activators, angiogenesis, proliferation, and invasion than tumor tissues, which determine tumor  recurrence11,12. 
Studies had also demonstrated that peritumoral features were associated with the tumor necrosis factor (TNF) 
signaling pathway, which was involved in tumor angiogenesis, invasion, and  metastasis13. Thus, the peritumoral 
region may embed biological information about tumor growth, invasion, and metastasis and may be a potential 
biomarker. In addition, studies also confirmed differences in Magnetic resonance imaging (MRI) findings of 
intratumoral and peritumoral among different molecular subtypes of breast  cancer14. Therefore, the utilization 
of intratumoral and peritumoral features to predict HER2 status should have strong theoretical feasibility.

Some recent studies that predicted HER2 status in breast cancer focused only on radiomics features and did 
not involve clinically relevant data, which might affect model  performance15,16. Model ensemble was an important 
strategy to optimize models, but the method of model weighted combination belonged to the model ensemble 
category was less applied in the field of predicting of HER2 status in breast cancer. Therefore, the present study 
aimed to construct models to predict the HER2 status of breast cancer by utilizing model weighted combination 
and feature combination methods based on ABVS intratumoral and peritumoral imaging features and clinically 
relevant features, to obtain the optimal model and provide the best basis for clinical decision-making for breast 
cancer patients.

Materials and methods
The study was conducted in accordance with the Declaration of Helsinki and approved by the Review Board 
of the First Hospital of Lanzhou University. Because of the retrospective study, the Ethics Committee of the 
First Hospital of Lanzhou University exempted written informed consent. Figure 1 showed a flow chart of the 
research protocol.

Patients
174 patients with invasive breast cancer confirmed in the First Hospital of Lanzhou University from July 1th, 
2016 to April 30th, 2022 and 97 patients with invasive breast cancer confirmed in the Ningxia Hui Autonomous 
Region People’s Hospital were collected in this study, which were conducted on May 1–5th, 2022. We had access 
to the information identifying each patient during or after data collection. Of these, 174 patients in our hospital 
were randomly divided into the training set and validation set (ratio 8:2), and 97 patients in the external hos-
pital as the test set. Inclusion criteria were: (1) female patients aged between 18 and 80 years; (2) pathologically 
confirmed invasive breast cancer; (3) ABVS examination before treatment. Exclusion criteria were: (1) radiation 
therapy, neoadjuvant chemotherapy, or interventional therapy before ABVS examination (n = 48); (2) incom-
plete clinical, pathological, and serological information (n = 15); and (3) significant artifacts of the tumor area 
on ABVS images (n = 8). Finally, 174 patients with invasive breast cancer (all female, mean ± standard deviation: 
48.8 ± 10.8 years) were included (Fig. 2, Table 1).

Data acquisition
All patients underwent continuous cross-sectional scanning of each breast (interlayer spacing set at 0.5 mm) 
using a 14L5BV probe (7 MHz, dynamic range 50–55 dB) and a 14L5 linear probe (7–14 MHz frequency range 
and 10 MHz frequency center) of the ABVS (Siemens, AusonS2000, Munich, Bavaria, Germany), and the 
acquired axial plane images were transmitted to the workstation to automatically reconstruct sagittal plane and 
coronal plane images. All examinations were performed by a sonographer with 8 years of experience in ABVS 
examination. The results of immunohistochemistry (IHC) or fluorescence in situ hybridization (FISH) of breast 
cancer were considered the reference standard for HER2 status. The following clinical and serological indicators 
of patients were obtained from the electronic medical record system: age, erythrocytes, hemoglobin, hematocrit, 
mean erythrocyte volume, mean hemoglobin content, mean hemoglobin concentration, erythrocyte distribu-
tion width (standard deviation [SD]), erythrocyte distribution width (coefficient of variation [CV]), leukocytes, 
percentage of lymphocytes, percentage of monocytes, percentage of neutrophils, percentage of eosinophils, 
percentage of basophils, the absolute value of lymphocytes, the absolute value of monocytes, the absolute value of 
neutrophils, the absolute value of eosinophil, the absolute value of basophil, platelets, platelet ratio, mean platelet 
volume, platelet distribution width, large platelet ratio, cancer antigen 153(CA153), cancer antigen 125(CA125), 
carcinoembryonic antigen (CEA), total bilirubin, direct bilirubin, and indirect bilirubin.
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Region of interest (ROI) marking and ABVS ultrasonic feature extraction
Tumor ROIs were obtained through continuous manual 3D segmentation of breast tumors in the ABVS axial 
plane by two sonographers (with 8 years and 5 years of ABVS experience) using 3DSlicer version 4.11.2 (BWH, 
Boston, Massachusetts, USA), and then the ROIs of the 3 mm peritumoral and 5 mm peritumoral were acquired 
through the 3DSlicer editing function. Two sonographers assessed and recorded ABVS ultrasound features based 
on the Breast Imaging Reporting and Data System (Breast Imaging Reporting and Data System, BI-RADS), 
including tumor maximum diameter in the coronal plane, margin, shape, aspect ratio, halo, internal composition, 
echo, microcalcification, and convergence sign (coronal plane). For undetermined cases, the two sonographers 
reached a consensus through consultation. Two sonographers were unaware of the HER2 status of breast cancer.

Radiomics feature extraction and model construction
The radiomics features of tumor ROI, 3mm peritumoral ROI, and 5mm peritumoral ROI were extracted using 
the Radiomics module of IntelliSpace Medicina Scientia (ISMS) version 2.4.0 (Philips Healthcare, Beijing, China) 
developed based on  pyradiomics17. Image types included original, log, and wavelet images. Feature classes con-
tained three-dimensional shape, neighborhood gray-tone difference matrix (Neighboring gray-tone difference 
matrix, NGTDM), gray dependence matrix (Gray-level dependence matrix, GLDM), gray level co-occurrence 
matrix (Gray-level co-occurrence matrix, GLCM), first sequence (First order), gray-level run-length matrix 
(Gray-level run-length matrix, GLRLM) and gray level area matrix (Gray-level size zone matrix, GLSZM). Given 
the relatively small proportion of HER2-positive cases (45/139) in the training set, the models were trained using 
the method of  oversampling18. Through the Automatic Machine Learning (AML) function of ISMS version 
2.4.0, models were constructed based on the radiomics features of the tumor, 3mm peritumoral region, 5mm 

Figure 1.  Overview of research protocol. Notes: R3mm, model based on peritumoral 3 mm ring of breast 
tumor; R5mm, model based on peritumoral 5 mm ring of breast tumor; Tumor, model based on radiomics 
features of the tumor; R5mm+Clinical, model based on radiomics features of the peritumoral 5 mm ring of 
breast tumor combined with clinical, ABVS, and serology features of breast tumor; R3mm+Clinical, model 
based on radiomics features of the peritumoral 3 mm ring of breast tumor combined with clinical, ABVS and 
serology features of breast tumor; Tumor+Clinical, model based on radiomics features of the tumor combined 
with clinical, ABVS and serology features of breast tumor; Tumor + R5mm, model based on radiomics features 
of the tumor and those of peritumoral 5 mm ring of breast tumor; Tumor+R3mm, model based on radiomics 
features of the tumor and those of peritumoral 3 mm ring of breast tumor. ABC, Ada Boosting Classifier; 
Clinical, Model based on clinical, ABVS, and serology features of breast tumor; ETC, Extra Tree Classifier; GBC, 
Gradient Boosting Classifier; LGBM, Light Gradient Boosting Machine; RFC, Random Forest Classifier.
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peritumoral region, and the clinical features (clinical, ABVS ultrasound, and serological features), which were 
named as Tumor model, R3mm model, R5mm model, and Clinical model, respectively. Among the 13 classifiers 
of ISMS software, the best classifiers of four types of data sources (the highest sum of the AUC of the training set 
and the validation set of the classifiers) were selected for constructing four types of data source models.

Radiomics model construction and optimization
The model weighted combinationand feature combination methods were used to construct and optimize the radi-
omics models. First, based on the four types of data source models, the weighted combination models of Tumor 
combined with Clinical (Tumor + Clinical), Tumor combined with R3mm (Tumor + R3mm), Tumor combined 
with R5mm (Tumor + R5mm), R3mm combined with Clinical (R3mm + Clinical), and R5mm combined with 
Clinical (R5mm + Clinical) were constructed and optimized using the method of a weighted combination of two 

Figure 2.  Flow chart of recruiting patients. HER2, Human epidermal growth factor receptor 2.

Table 1.  Clinicopathological characteristics of patients. Significant values are in bold. ALNM, axillary lymph 
node metastasis; ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor 
receptor 2. a T-test. b Chi-square test. *P value < 0.05.

Characteristics

Training set (N = 139)

P value

Validation set (N = 35)

P valueHER2+ (n = 45) HER2− (n = 94) HER2+ (n = 11) HER2− (n = 24)

Age (years) 48.11 ± 8.88 48.88 ± 12.07 0.703a 50.00 ± 7.44 49.21 ± 10.28 0.821a

Postoperative axillary lymph node metastasis 0.017a* 0.357a

 Positive 7 33 2 8

 Negative 38 61 9 16

Histological grade 0.601b 0.323b

 I 3 3 1 1

 II 24 55 3 13

 III 18 36 7 10

ER 0.000b* 0.000b*

 Positive 21 78 6 20

 Negative 24 16 5 4

PR 0.000b* 0.149b

 Positive 10 61 5 17

 Negative 35 33 6 7

Ki-67 0.096b 0.552b

 Positive (≥ 14%) 42 78 10 20

 Negative (< 14%) 3 16 1 4
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data source models. In the validation set, alpha-AUC scatter plots of weighted models were plotted depending 
on the weighting coefficients (alpha), where two model results were combined using alpha*model 1 + (1-alpha) 
* model 2, to determine the optimal weighting coefficient and AUC of the weighted combination models.

Then, for the above four types of features, Tumor + Clinical, Tumor + R3mm, Tumor + R5mm, R 3 mm, R 
5 mm + Clinical models were constructed and optimized using the feature combination method based on a 
variety of classifiers, and the performance of which was verified in the validation set.

Radiomics model testing
In the test set, the weighted combination models and feature combination models were tested for predictive 
performance.

Statistical methods
Statistical analyses were performed using SPSS version 24.0 (IBM, Armonk, NY, USA) and R software version 
4.0.2 (MathSoft, Seattle, Washington, USA). For non-normally distributed variables, the Mann Whitney U test 
was utilized to compare statistical differences between the two groups. For normally-distributed variables, t-tests 
or chi-square tests were conducted. SPSS version 24.0 was performed to draw the Receiver operating character-
istic curve (ROC). When the optimization function (0.6 * sensitivity + 0.4 * specificity) was maximum, the cutoff 
value, sensitivity, and specificity of weighted combination models were taken, and while the Yoden Index was 
maximum, those of the single data source model and feature combination model was acquired. Delong test was 
performed to compare the differences in AUCs between two models. R software version 4.0.2 was conducted to 
draw the scatter plots of the alpha-AUC.

Results
Baseline characteristics of patients
The baseline characteristics of the patients were listed in Table 1, S1 Table, and S2 Table, respectively. There were 
significant differences (P < 0.05) in shape, aspect ratio, mean erythrocyte volume, and mean hemoglobin content 
between HER2-positive and HER2-negative groups in the training and validation sets. In the training set, there 
were significant differences (P < 0.05) in margins, halos, microcalcifications, leukocytes, and the absolute value 
of neutrophils between the two groups. In the validation set, there were significant differences (P < 0.05) between 
the two groups in tumor maximum diameter in the coronal plane, hemoglobin, erythrocyte pressure, basophil 
percentage, platelet ratio, platelet distribution width, and large platelet ratio. In the training and validation sets, 
45 cases (45/139) and 11 cases (11/35) patients were HER2-positive breast cancers, respectively.

Comparison of the single data source models
The single-data source models were constructed respectively based on ISMS software. The ROCs of these models 
in the training set, validation set, and test set are shown in Fig. 3, Table 2. Thus, random forest classifier (RFC), 
light gradient booster (LGBM), gradient enhancement classifier (GBC), and Extra tree classifier (ETC) were the 
best classifiers to construct the Tumor model, R3mm model, R5mm model, and Clinical model, respectively. 

Figure 3.  (A) ROCs of the optimal Tumor, the optimal R3mm, the optimal R5mm, and the optimal Clinical 
model in the training set. (B) ROCs of the optimal Tumor, the optimal R3mm, the optimal R5mm, and the 
optimal Clinical model in the validation set. (C) ROCs of the optimal Tumor, the optimal R3mm, the optimal 
R5mm, and the optimal Clinical model in the test set. R3mm, model based on peritumoral 3 mm ring of breast 
tumor; R5mm, model based on peritumoral 5 mm ring of breast tumor; Tumor, model based on radiomics 
features of the tumor. ABC, Ada Boosting Classifier; AUC, area under the curve; CI, confidence interval; 
Clinical, model based on clinical, ABVS, and serology features of breast tumor; ETC, Extra Tree Classifier; GBC, 
Gradient Boosting Classifier; LGBM, Light Gradient Boosting Machine; RFC, Random Forest Classifier.
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Overall, the AUCs of models decreased sequentially in the training, validation, and test sets. In the validation 
set, the Clinical model was the highest in terms of AUC 0.803 (95% confidence interval [CI] 0.660–0.947), with 
a sensitivity of 100% and specificity of 62.5%, followed by R5mm, R3mm, and Tumor models. In the test set, the 
Clinical model acquired the highest AUC of 0.695 (95% CI 0.583–0.807), the sensitivity of 86.1%, and specificity 
of 41.9%, followed by the Tumor, R3mm, and R5mm models.

Comparison of the weighted combination models
In the validation set, the model weighted combination method was adopted. It could be seen from the alpha-AUC 
scatter plots that Tumor + Clinical, R3mm + Clinical, and R5mm + Clinical achieved higher AUC when alpha was 
0.10, 0.15, and 0.05; Tumor + R3mm owned higher AUC when alpha was 0.05, 0.25, and 0.35; Tumor + R5mm 
acquired better AUC when alpha was 0.40, 0.45 and 0.50 (Fig. 4, Table 3). In the validation set, the R5mm + Clini-
cal model acquired the highest AUC, 0.826 (95% CI 0.689–0.962), the sensitivity of 100%, and specificity of 62.5%, 

Table 2.  Predictive performance for HER2 state of single data source models based on a variety of classifiers, 
in the training, the validation, and the test set. Bold characters represented the classifier with the highest sum 
of AUCs in the validation set and the test set. R3mm, model based on peritumoral 3 mm ring of breast tumor; 
R5mm, model based on peritumoral 5 mm ring of breast tumor; Tumor, model based on radiomics features 
of the tumor; ABC, Ada Boosting Classifier; AUC, the area under the curve; CI, confidence interval; Clinical, 
model based on clinical, ABVS, and serology features of breast tumor; ETC, Extra Tree Classifier; GBC, 
Gradient Boosting Classifier; LGBM, Light Gradient Boosting Machine; RFC, Random Forest Classifier.

Single data source models Classifiers Data sets AUC (95% CI) Cutoff Sensitivity Specificity

Tumor

RFC

Training 0.973 (0.954, 0.922) 0.4966 1.000 0.832

Validation 0.598 (0.393, 0.804) 0.4258 0.545 0.250

Test 0.559 (0.443, 0.675) 0.3001 0.694 0.548

ETC

Training 0.977 (0.973, 0.985) 0.4755 1.000 0.957

Validation 0.555 (0.371, 0.739) 0.4055 1.000 0.292

Test 0.516 (0.392.0.640) 0.3497 1.000 0.016

ABC

Training 1.000 (1.000, 1.000) 0.5024 1.000 0.000

Validation 0.549 (0.336, 0.763) 0.4841 0.636 0.625

Test 0.531 (0.410, 0.652) 0.4265 0.944 0.177

Clinical

ETC

Training 1.000 (1.000, 1.000) 0.5996 1.000 0.000

Validation 0.803 (0.660, 0.947) 0.3358 1.000 0.625

Test 0.695 (0.583, 0.807) 0.2803 0.861 0.419

RFC

Training 1.000 (1.000, 1.000) 0.5706 1.000 0.000

Validation 0.754 (0.595, 0.913) 0.4457 0.909 0.667

Test 0.705 (0.601, 0.809) 0.3522 0.889 0.468

LGBM

Training 1.000 (1.000, 1.000) 0.5302 1.000 0.000

Validation 0.667 (0.479, 0.855) 0.0608 0.909 0.417

Test 0.722 (0.613, 0.831) 0.0373 0.972 0.258

R5mm

GBC

Training 1.000 (1.000, 1.000) 0.5003 1.000 0.000

Validation 0.625 (0.430, 0.820) 0.0058 1.000 0.250

Test 0.465 (0.346, 0.585) 0.000 1.000 0.000

ETC

Training 1.000 (1.000, 1.000) 0.5667 1.000 0.000

Validation 0.625 (0.409, 0.841) 0.1939 1.000 0.125

Test 0.472 (0.352, 0.593) 0.0582 1.000 0.032

ABC

Training 1.000 (1.000, 1.000) 0.5046 1.000 0.000

Validation 0.606 (0.372, 0.840) 0.4815 0.727 0.500

Test 0.472 (0.349, 0.596) 0.3547 1.000 0.016

R3mm

LGBM

Training 1.000 (1.000, 1.000) 0.5293 1.000 0.000

Validation 0.619 (0.393, 0.845) 0.4159 0.545 0.833

Test 0.487 (0.368, 0.606) 0.000 1.000 0.000

RFC

Training 1.000 (1.000, 1.000) 0.5064 1.000 0.000

Validation 0.614 (0.414, 0.813) 0.3730 1.000 0.292

Test 0.494 (0.374, 0.614) 0.1290 1.000 0.048

ABC

Training 0.998 (0.996, 1.000) 0.4945 1.000 0.968

Validation 0.606 (0.422, 0.790) 0.4707 1.000 0.250

Test 0.483 (0.368, 0.599) 0.4088 1.000 0.032
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which was sequentially higher than the R3mm + Clinical model, Tumor + Clinical model, Tumor + R5mm model, 
and Tumor + R3mm model (Fig. 5, Table 3).

In the test set, the Tumor + Clinical model owned the highest AUC, 0.700 (95% CI 0.590–811), the sensitivity 
of 86.1%, and specificity of 41.9%, which was higher than those of the R3mm + Clinical model, R5mm + Clinical 
model, Tumor + R5mm model and Tumor + R3mm model (Fig. 6 and Table 3).

In the validation and test set, the AUCs of the weighted combination models T + Clinical, T + R5mm, and 
T + R3mm were better than those of the corresponding single data source model.

Comparison of the feature combination models
The AUC, sensitivity, and specificity of the feature combination models in the validation and test sets were shown 
in S3 Table. In the validation set, the Tumor + Clinical model had the highest AUC, 0.739 (95% CI 0.556–0.921), 
with a sensitivity of 81.8% and specificity of 66.7%. In the test set, the Tumor + R3mm model owned the best 
AUC, 0.668 (95% CI 0.555, 0.782), with a sensitivity of 61.1% and specificity of 71.0%.

Comparison among the single data source model, the feature combination models, and the 
weighted combination model
Overall, the AUCs of the weighted combination model were higher than most of the corresponding feature 
combination models and single data source models in both the validation set and the test set. In the validation 
set, the AUC of the optimal weighted combination model was superior to the optimal feature combination model 

Figure 4.  Scatter plots of alpha-AUC of weighted combination models in the validation set. (A) Scatter plots 
of alpha-AUC of the Tumor model combined with the Clinical model in the validation set. (B) Scatter plots 
of alpha-AUC of the Tumor model combined with the R5mm model in the validation set. (C) Scatter plots of 
alpha-AUC of the Tumor model combined with the R3mm model in the validation set. (D) Scatter plots of 
alpha-AUC of the R5mm model combined with the Clinical model in the validation set. (E) Scatter plots of 
alpha-AUC of the R3mm model combined with the Clinical model in the validation set. Notes: The two single 
data source models were combined through the formula of alpha*model 1 + (1-alpha) * model; Alpha, weighted 
coefficient. AUC, the area under the curve.
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(0.826 vs. 0.739, P = 0.038), and the optimal single data source model (0.826 vs.0.803, P = 0.446); in the test set, 
the AUC of the optimal weighted combination model was higher than the optimal feature combination model 
(0.700 vs. 0.668, P = 0.054), and the optimal single data source model (0.700 vs. 0.695, p = 0.501).

Features analysis of models
R5mm + Clinical and Tumor + Clinical were the optimal radiomics models in the validation and test sets, respec-
tively. Important features for constructing R5mm, Tumor, and Clinical models were shown in S4 Table. For the 
Clinical model, microcalcifications and aspect ratios were important features in predicting HER2 status, and 
HER2-positive breast cancers were more likely to show intralesional microcalcifications and growth perpen-
dicular to the skin, as shown in Fig. 7A–C. For the R5mm and Tumor models, Shape_Spherical Disproportion, 
Shape_Compactness 1, Shape_Compactness 2, and Shape_Elongation features representing tumor shape were 
key features in predicting HER2 status, and HER2-positive breast cancers tended to be more irregular shapes in 
the tumor, peritumoral areas (Fig. 7D–F), and ROIs (Fig. 7G–H).

Discussion
It is an indisputable fact that HER2 is a key therapeutic target for breast cancer. HER2 status is clinically crucial 
for delaying HER2-positive breast cancer progression, reducing the risk of  recurrence19,20, improving treatment 
 outcomes21, and  survival19,21. We explored the efficacy of ABVS imaging in predicting HER2 status in breast 

Table 3.  Predictive performance for HER2 state of weighted combination models based on different alphas, in 
the training, the validation, and the test set. The bold characters represented the AUCs of the optimal models 
in the validation and test sets. R5mm + Clinical, model based on radiomics features of the peritumoral 5 mm 
ring of breast tumor combined with clinical, ABVS, and serology features of breast tumor; R3mm + Clinical, 
model based on radiomics features of the peritumoral 3 mm ring of breast tumor combined with clinical, 
ABVS and serology features of breast tumor; Tumor + Clinical, model based on radiomics features of the 
tumor combined with clinical, ABVS and serology features of breast tumor; Tumor + R5mm, model based on 
radiomics features of the tumor and those of peritumoral 5 mm ring of breast tumor; Tumor + R3mm, model 
based on radiomics features of the tumor and those of peritumoral 3 mm ring of breast tumor; AUC, area 
under the curve; CI, confidence interval.

Weighted combination models Sets Alpha AUC (95% CI) Cutoff Sensitivity Specificity

R3mm + Clinical

Validation

0.10 0.818 (0.681, 0.956) 0.365 1.000 0.667

0.15 0.811 (0.671, 0.950) 0.349 1.000 0.625

0.05 0.814 (0.675, 0.954) 0.351 1.000 0.667

Test

0.10 0.690 (0.579, 0.801) 0.291 0.861 0.435

0.15 0.685 (0.574, 0.796) 0.276 0.889 0.419

0.05 0.696 (0.586, 0.807) 0.304 0.861 0.435

R5mm + Clinical

Validation

0.10 0.826 (0.689, 0.962) 0.331 1.000 0.625

0.15 0.826 (0.689, 0.962) 0.396 0.909 0.750

0.05 0.822 (0.685, 0.959) 0.343 1.000 0.667

Test

0.10 0.690 (0.580, 0.800) 0.251 0.889 0.371

0.15 0.681 (0.570, 0.792) 0.264 0.889 0.387

0.05 0.695 (0.585, 0.806) 0.274 0.861 0.403

Tumor + Clinical

Validation

0.10 0.811 (0.670, 0.951) 0.302 1.000 0.583

0.15 0.803 (0.660, 0.946) 0.285 1.000 0.583

0.05 0.803 (0.660, 0.946) 0.327 1.000 0.625

Test

0.10 0.695 (0.584, 0.805) 0.321 0.833 0.419

0.15 0.699 (0.589, 0.809) 0.306 0.889 0.387

0.05 0.700 (0.590, 0.811) 0.305 0.861 0.419

Tumor + R3mm

Validation

0.05 0.633 (0.414, 0.851) 0.427 0.545 0.833

0.25 0.621 (0.402, 0.840) 0.162 0.818 0.417

0.35 0.629 (0.415, 0.842) 0.174 0.818 0.458

Test

0.05 0.488 (0.370, 0.607) 0.010 1.000 0.016

0.25 0.504 (0.384, 0.624) 0.073 0.917 0.145

0.35 0.517 (0.396, 0.637) 0.039 0.944 0.113

Tumor + R5mm

Validation

0.40 0.674 (0.492, 0.856) 0.066 1.000 0.375

0.45 0.670 (0.485, 0.856) 0.060 1.000 0.375

0.50 0.659 (0.477, 0.841) 0.055 1.000 0.375

Test

0.40 0.531 (0.417, 0.645) 0.015 1.000 0.113

0.45 0.530 (0.416, 0.644) 0.014 1.000 0.113

0.50 0.528 (0.413, 0.642) 0.176 0.806 0.435
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Figure 5.  ROCs of weighted combination models based on different alphas in the validation set. (A) ROC 
of the R3mm model combined with the Clinical model in the validation set. (B) ROC of the R5mm model 
combined with the Clinical model in the validation set. (C) ROC of the Tumor model combined with the 
Clinical model in the validation set. (D) ROC of the Tumor model combined with R3mm model in the 
validation set. (E) ROC of the Tumor model combined with R5mm model in the validation set. Notes: Alpha, 
weighting coefficient. AUC, the area under the curve.
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Figure 6.  ROCs of weighted combination models based on different alphas in the test set. (A) ROC of the 
R3mm model combined with the Clinical model in the test set. (B) ROC of the R5mm model combined with 
the Clinical model in the test set. (C) ROC of the Tumor model combined with the Clinical model in the test 
set. (D) ROC of the Tumor model combined with R3mm model in the test set. (E) ROC of the Tumor model 
combined with R5mm model in the test set. Notes: Alpha, weighting coefficient. AUC, the area under the curve.
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cancer. Research related to the current study focused on the internal features of breast cancers, ignoring peritu-
moral  information9,10. We concluded that peritumoral tissue could provide as much important information as 
the tumor itself. In the current research, R5mm + Clinical was the optimal weighted combination model in the 
validation set, and R3mm + Clinical was the weighted combination model second only to Tumor + Clinical in 
the test set. This was in part consistent with the previous view that peritumoral information has diagnostic and 
predictive value for molecular typing of breast  cancer22–24.

The study confirmed that the model weighted combination method had more advantages than the fea-
ture combination method in optimizing the model, and we speculated that the model weighted combination 
method could preserve and optimize the vital features of the single data source  model25. Some studies that pre-
dicted HER2 status in breast cancer focused only on image features and did not include relevant clinical data as 
 predictors15, which might lead to the low performance of the model (AUC:0.650). In this study, clinical models, 
as the optimal single data source model, contributed significantly to the predictive performance of weighted 
combined models. The reason might be that the ABVS ultrasound features included in the Clinical model could 
largely reflect tumor  heterogeneity26, which was also identical to the findings of Zheng et al27. ABVS, as a three-
dimensional breast ultrasound, could provide more comprehensive breast tumor information than conventional 
ultrasound, which was presumed to be the reason why the AUC of the ABVS-based radiomics model in the cur-
rent study was higher than that of the conventional ultrasound-based radiomics model (AUC: 0.826 vs. 0.740)16.

We compared the predictive performance of different classifiers when constructing models of intratumoral, 
peritumoral, and clinical features to select the optimal classifier, optimizing the predictive performance of the 
single data source model to some extent. Because of the important significance of HER2 positivity for breast 
cancer diagnosis and treatment, we optimized the cutoff value of ROC to ensure the high sensitivity of the model.

Figure 7.  ABVS images of HER2-positive breast tumor and ROIs of the breast tumor region and 5 mm 
peritumoral region. Notes: Internal microcalcifications in HER2-positive breast cancer in ABVS images (A 
coronal plane, B axial plane, C sagittal plane; Red arrow identified breast tumor); HER2-positive Breast Cancer 
Aspect Ratio > 1 in ABVS images (D coronal plane, E axial plane, F sagittal plane; Red arrow identified breast 
tumor); ROIs of HER2-positive breast tumor region (white area) and 5 mm peritumoral region (red area) were 
both irregular in shape (G); ROIs of HER2-negavive breast tumor region (white area) and 5 mm peritumoral 
region(red area) were both relative regular in shape (H).
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In the current study, we derived important features for constructing the Tumor, R5mm, and Clinical models. 
In terms of the Tumor model, leukocytes, basic granulocytes, microcalcifications, aspect ratio, and postoperative 
axillary lymph node metastasis status were crucial features that predict HER2 positivity. This coincided with 
previous studies demonstrating that basic granulocytes, monocytes, lymphocytes, and microcalcifications were 
predictors of HER2-positive breast  cancer28–30. Aspect ratio ≥ 1 and axillary lymph node metastasis were the 
manifestations of invasive growth and metastasis of breast cancer, which owned a certain predictive value for 
HER2-positive breast cancer with higher  invasiveness4. For R5mm and Clinical models, Shape_SphericalDis-
proportion, Shape_Compactness 1, Shape_Compactness 2, and Shape_Elongation features representing tumor 
shape could reflect tumor aggressiveness. In addition, GLSZM, GLCM, and GLRLM, as grayscale features, might 
reflect the heterogeneity and complexity of  tumors31.

Given the performance of the single data source model was unsatisfactory in the validation set, we utilized the 
method of model weighted to construct a combined model. At the same time, to obtain the optimal weighting 
coefficient (alpha), we drew an alpha-AUC scatter plot to accurately and intuitively acquire the tendency of the 
AUC of the weighted combined model to change with alpha. The above method fully optimized the prediction 
performance of the weighted combination model.

In the present research, the performance of the weighted combination model was significantly superior to 
that of the feature combination model, but it was not much different from the single data source model. We will 
explore a more effective combination mode to optimize the combination model in the future.

Our study had the following strengths: Firstly, the multicenter test set was acquired to assess the clinical gen-
eralizability of the model. Secondly, combining ABVS radiomics features with relevant clinical and serological 
features greatly enhanced the predictive performance of the model. Thirdly, the optimal combination model was 
constructed by the model weighted combination method based on the idea of model ensemble. Forth, with 3D 
ultrasound data, we’re able to provide more comprehensive tumor information for model construction.

The performance of the proposed model may be influenced by the clarity of the ABVS images, the precision 
of the ROIs, the accuracy of the ABVS ultrasound and the serological features. While the present study showed 
promising results for predicting HER2 status in breast cancer. However, it also had several limitations: First of all, 
further research on breast cancer molecular subtypes and assessment of response to neoadjuvant chemotherapy 
are still needed. In addition, the model should be applied to other ultrasound modalities such as contrast-
enhanced ultrasound and ultrasound  elasticity32,33. Furthermore, future studies should also expand the number 
of cases to include other types of breast cancer, verifying the generalizability of the  modely34,35. Last but not least, 
how to apply the research results to clinical practice was the direction that we should strive for in the future.

In summary, the weighted combination model integrating ABVS imaging features, and clinical and serological 
features could better predict HER2 status in breast cancer patients than the feature combination model and had 
certain clinical generalizations. The current study provided a simple, non-invasive, and preoperative method for 
HER2 status prediction, guiding the individualized clinical decision-making for breast cancer patients.

Data availability
The datasets generated and/or analysed during the current study are not publicly available due to protect the 
privacy of the patients, but are available from the corresponding author on reasonable request.
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