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A new model for compressor surge 
and stall control
M. J. Shahriyari , A. Firouzabadi , H. Khaleghi  & S. M. Esmailifar *

This paper compares the bifurcations and closed-loop performances of two compressor models, 
Moore-Greitzer (MG) and a developed model based on MG (Shahriyari Khaleghi, SK). First, both 
models are linearized about two equilibrium points (pure surge and fully-developed rotating stall), 
and the perturbed state-space dynamics and input matrices are obtained. The compressor unstable 
regions are then identified using an eigenvalue and global bifurcation analysis. Furthermore, optimal 
LQR controllers are designed, and the performances of closed-loop systems are compared. The LQRs 
are designed to control the compression system near the peak pressure rise by suppressing surge or 
stall. Results reveal that if the initial operating point is in the positive slope region of the compressor 
characteristic and the initial amplitude of the disturbances is small, the LQR controller can stabilize 
the compressor in both models. However, when the disturbances are intensive, the two models 
respond differently: although the SK model damps a fair range of disturbances and predicts instability 
for excessively powerful disturbances, the MG model always damps them, even when extremely 
intense. Without a controller in the MG model, initial disturbances (even very large) can never grow 
and are always damped in the compressor’s negative slope region (obviously, the same applies to 
the controller). However, pending the amplitude of the disturbances (in the absence of a controller), 
the disturbances in the SK model may be damped or grow. The SK model can successfully control the 
instabilities if the disturbances are small. Nonetheless, the controller fails to dampen the instabilities 
for extreme disturbances, which is consistent with reality.

List of symbols
A  The amplitude of the first harmonic disturbance
Ae  The amplitude of fully developed stall cell
a  Time-lag parameter
B  Greitzer parameter
f  The final speed of disturbances relative to the speed of the blade
H  Semi-height of cubic axisymmetric characteristic
lc  Equivalent compressor length
m  Outside compressor lag parameter
r  Phase angle
R  Mean wheel radius
t  Time
U  Wheel speed at mean diameter
W  Semi-width of cubic characteristic
η  Axial disturbances measured in wheel radii
θ  Angular coordinate around the wheel
γT  Throttle coefficient
ξ  Nondimensional time
Φ  Axial flow coefficient in fan, annulus averaged; axial velocity divided by wheel speed
ΦT  Flow coefficient of throttle duct
ψ  Total-to-static pressure rise coefficient
ψc  Axisymmetric pressure rise coefficient
ψ′c  Derivative of axisymmetric pressure rise coefficient
ψc0  Shut-off value of the axisymmetric characteristic
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The main limitation in the operation of aero compressors is the onset of two aerodynamic instabilities, the 
so-called surge and rotating stall, and therefore, it is always desired to postpone the occurrence of these 
instabilities by control methods. Surge is defined as large amplitude oscillations of the annulus flow over the 
whole compression system, whereas rotating stall is a limited disturbance that may be limited to one or some 
compressor stages. There are two patterns for rotating stall inception: modal (long-length scale disturbances) 
and spike (short-length scale disturbances)1,2. Modal-type stall inception was first proposed  by3,4 before being 
experimentally observed and studied by some  researchers5–7. This stall pattern has been observed in low-speed 
as well as high-speed  compressors5,6 and includes the gradual growth of long-length scale disturbances before 
the formation of stall cells and, therefore, can be detected by employing suitable sensors. In contrast, in spike-
type stall inception, the stalling disturbances rapidly lead to the formation of stall  cells8,9. Also, models similar 
to  Moore3 and Moore and  Greitzer4 were developed by many researchers due to their importance in identifying 
parameters affecting  instability10–13.

The currently operating strategy used in gas turbine engines is the so-called “surge avoidance”, which is a 
passive approach and maintains stable operation at a sufficient margin from the surge line. In this strategy, the 
compressor cannot work near the surge line, where the pressure rise is  maximum14. Epstein et al14. proposed the 
concept of intelligent engines, in which the compressor is allowed to operate close to the surge line. This leads 
to an active control strategy, the so-called stall detection and control, in which control devices shall detect and 
remove any emerging stall  disturbances15,16. The model developed by Moore-Greitzer4 can model surge and stall 
disturbances and is suitable for compressor control studies. Since then, many researchers have studied MG mode 
to control surge and rotating stall. Liaw and  Abed17 developed a nonlinear controller based on the nonlinear 
characteristics of the MG  model4. They applied bifurcation theory to actively control compressor stall inception 
by eliminating the unwanted jump and hysteresis behavior of the compression system. Most compressor control 
research in the late 20th and early 21st centuries focused on investigating the qualitative behavior and bifurcation 
analysis of the MG model to investigate the impact of the model parameters on the  instabilities17–21. Most of 
these studies have developed stall/surge controllers and addressed the significance of the throttle gain as an MG 
model parameter for bifurcation analysis. During the last two decades, classical and advanced algorithms such as 
linear feedback  stabilization22,23, nonlinear feedback  control24,25, fuzzy  systems26, sliding mode  control27, model 
predictive  control28,29 and passivity  control21,30 have been employed to control the compressor system.

Among classical linear control methods such as PID and pole placement, LQR controllers perform quite well. 
The LQR design method is an optimal full-state feedback control that outperforms the PID controller, showing 
better settling time, rise time, and overshoot  response31,32.

Table 1 reviews the most notable efforts in the active control design of surge and rotating stalls for axial 
compressor systems over the last two decades.

Shahriyari et al41. developed a model based on Moore-Greitzer equations by adding the second-order 
derivative of the flow coefficient to the hysteresis of the compressor pressure rise function. This model has some 
advantages compared to the basic Moore-Greitzer model. It can model the transient behavior of the stall cell. 
Furthermore, the slope of the compressor characteristic curve is included in the governing equations, which 
enables stall inception when the initial operating point is on the negative slope portion of the compressor 
characteristic curve (which might occur in real  applications8, but is not modeled in the basic Moore-Greitzrer, 
MG). The developed model also includes the rate of throttling, which is not included in Moore-Greitzer equations 
(Shahriyari et al41.). Considering the new capabilities of the SK model, and that it has not been studied by 
researchers yet, it is essential to investigate its dynamic behavior and compare it to the MG model, before more 
detailed linear and nonlinear investigations being performed by researchers.

This study aims to examine the effect of refining the accuracy of the Shahriyari et al41. (SK) model on 
the controlled compressor’s closed-loop performance, comparing it to the closed-loop performance of the 
conventional MG model. Additionally, bifurcation analysis is performed on the upgraded model, and the results 
are contrasted with those of the MG model. Equilibrium points, including pure surge and fully developed rotating 

Table 1.  Some of the most notable recent efforts in active control design for axial compressor systems.

Year Author Model Control approach Actuator Controlled phenomenon

1998 Krstic et al.33 MG Back-stepping Throttle Surge/Stall

1999 Gravdahl30 Ext. MG Passivity-Based CCV Surge/Stall

2001 Liaw and  Huang34 MG FOSMC CCV Surge/Stall

2002 Liaw et al.35 MG Lyapunov Throttle + CCV Surge

2003 Ananthkrish et al.36 MG Bifurcation Throttle Surge/Stall

2007 Wang and  Murray25 MG Bifurcation Throttle Surge/Stall

2010 Vepa37 Ext. MG Nonlinear Pressure Stall

2011 Moghaddam and  Madani27 MG NFuzzy + SMC Throttle Surge/Stall

2013 Chen and  Xu24 MG Nonlinear Throttle Surge/Stall

2018 Sari et al.21 Ext. MG Passivity-Based Throttle + CCV Surge/Stall

2020 MFW Chowdhury, MP Schoen, J  Li38 MG Fuzzy Logic Throttle Surge/Stall

2020 Å Neverlien, S Moe, JT  Gravdahl39 MG Lyapunov Neural Networks Throttle + CCV Surge

2023 Ning Su and Yong  Wang40 MG quadratic feedback Throttle Surge/Stall
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stall, are determined first, followed by the development of linearized models around these points. Bifurcation 
analysis then investigates the behavior and stability of these equilibrium points as a function of throttle valve 
position. Moreover, an LQR controller is designed based on state-space linear models to suppress rotating 
stall and surge limit cycles by throttle valve manipulation. Finally, the control behaviors of the two systems are 
compared in detail.

Given the enhanced capabilities of the SK  model41 compared to the conventional MG model, this study’s 
significance lies in its exploration of bifurcation behavior and closed-loop performance of the improved model. 
The outcomes of this study provide valuable insights for researchers to control dynamic modes that may not be 
adequately captured by the basic MG model, such as initial operating points beyond peak pressure rise or under 
varying throttle rates. However, a significant limitation of this study is the utilization of a linear LQR controller, 
which may not adequately handle the compressor under severe disturbances.

Compressor instability equations
Figure 1 illustrates the compression system used in this study. The flow is assumed to be two-dimensional and 
inviscid throughout the system. The axial and circumferential coordinates are represented by η (axial distance 
divided by fan mean radius) and θ (wheel angle), respectively. Furthermore, the compressor axisymmetric 
characteristic is given in Fig. 2 and Eq. 1. The parameters ψc0 (Compressor pressure rise coefficient at zero mass 
flow rate), H (semi-height of cubic axisymmetric characteristic), and W (semi-width of cubic characteristic) in 
this equation are equivalent to 0.2, 0.18 and 0.25, respectively.

where ψc is the axisymmetric pressure rise coefficient and Φ is the annulus averaged axial flow coefficient of the 
compressor.

in which ξ is the non-dimensional time (U t/R), A is the amplitude of the disturbances,  lc is the equivalent 
compressor length, and m and a are the external and internal compressor lag respectively. In addition, γT 
represents the position of throttle valve that is acted as control signal. γT can be between 0 (closed mode) and 1 
(fully open). In this paper: m = 1.75, 1/a = 3.5, and  lc = 8.

The governing equations of the model proposed by Shahriyari et al41. are given in Eqs. 5–8. According to 
Shahriyari et al41., the proposed model has the advantage of including the rate of throttling and the slope of the 
compressor characteristic. In addition, the transient behavior of the stall cell can be predicted by this model, 
and instabilities can also be simulated if it starts from the negative slope part of the compressor characteristic, 
which is not possible in the basic Moore-Greitzer model.
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Figure 1.  Compression system.
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where Z is defined as follows:

State-space model
Nonlinear dynamic models are typically represented by first-order time differential equations in state space as 
ẋ = f (x, u) , where x is state vector and u is control input. Therefore, to model the dynamic system, it is necessary 
to first define the state variables (components of state vector x). Considering the states of the Moore-Greitzer 
model as x1 = � , x2 = � , x3 = A , and the control input as u1 = γt (represents the throttle valve position, 
γTǫ[0, 1] from closed mode to fully open), Eqs. 10–12 represent the state space of the Moore-Greitzer model.
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Figure 2.  Compressor pressure rise characteristic.
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Considering the states of the modified model as x1 = � , x2 = � , x3 = d�/dξ , x4 = A , x5 = dA/dξ , 
x6 = dr/dξ , and the control input as u1 = γt , the state space of the modified model is as follows:

Equilibrium point
The equilibrium point is the point at which the rate of change for all state variables is zero. Thus, by setting the 
differential Eqs. 13–18 equal to zero and solving them for x, the equilibrium points of the compression system are 
obtained, so the equilibrium region for the Moore-Greitzer equations, according to Eqs. 2–4, is in the following 
interval (Eq. 19), and the locus of the places where rotating stall stops is provided in Eq. 20.

As can be observed, the interval of changes in the rotating stall flow coefficient and the locus of the points 
for the start of the rotating stall from various locations are always the same. The equations derived by Shahriyari 
et al41. (Eqs. 5–8), on the other hand, predict the interval of changes in the rotating stall flow coefficient and the 
location of the instability points based on the slope of the characteristic curve and characteristic curve steepness 
(W/H) as follows:

It is worth noting that the Moore-Geitzer (Moore &  Greitzer4) and Shahriyari et al41. Equations are similar 
when the slope of the characteristic curve is zero.

Figure 3 shows the compressor characteristic as well as rotating stall characteristic curves at various initial 
points (different initial slopes). As can be seen, if the instability can start from a point with a negative slope, as the 
slope increases, the rotating stall interval equilibrium point also increases. However, if the rotating stall begins 
in the area between the peak pressure rise and the turning point (note that the slope of the curve is positive), the 
interval between the rotating stall’s equilibrium points reduces as the slope of the characteristic curve increases.

In a fully-developed rotating stall condition, dA/dξ is equivalent to zero. Therefore, from Eq. 4 the final 
amplitude of the stall cell in the MG model becomes  (Ae is the amplitude of the fully developed stall cell):

In the model developed by Shahriyari et al41., however, the final amplitude of the stall cell is obtained by 
equating the terms dA/dξ  and d2A/dξ 2 in Eq. 7 to zero, which gives the following equation:
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Now using Eq. 25, which is the speed of the stall cell, and Eq. 26 (see Shahriyari et al41.), the final amplitude 
of the stall cell becomes Eq. 27.

As this equation shows, the final amplitude of the stall cell is dependent on the value of W/H and the slope 
of the compressor characteristic curve. Figure 4 shows the final stall cell amplitude as a function of the flow 
coefficient. Φ0 is the initial flow coefficient and corresponds to the slope of the compressor characteristic curve. At 
Φ0 equivalent to 0.5, the slope of the characteristic curve is zero. This figure shows that changing the characteristic 
slope from a negative value (Φ0 = 0.55) to a positive one (Φ0 = 0.45), decreases the amplitude of the stall cell.
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Figure 3.  Compressor, stall, and throttle characteristics.

Figure 4.  Final amplitude of the stall cell as a function of flow coefficient.
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Pure surge
The model used in this paper is a modified new model. The usual approach to face such a system is to linearize 
it about the operating points and analyze the local linear behavior of the system inside the domain of attraction 
of the operating point.

Therefore, the SK model is linearized about the pure surge equilibrium point. The linearized model about the 
pure surge represents the system’s dynamic behavior in the neighborhood of xe = [x1e , x2e , x3e]

T.

with

In the neighborhood of pure surge, the local stability of the system is governed by the eigenvalues of the 
system matrix:

Stability analysis of control systems in the form of their state space representation can be determined by 
the locus of eigenvalues of the system matrix. In a linearized state space representation, the eigenvalues of the 
system matrix ( Fsurge ) correspond to the roots of the 

∣
∣�I − Fsurge

∣
∣ , which is called the characteristic equation. 

The characteristic polynomial in controllable canonical form is given by:

where

The general stability rule of continuous time linear systems is based on these principles:

• If all the eigenvalues of the system matrix evaluated at the equilibrium point have negative real parts, the 
system is stable (oscillatory or asymptotic).

• If at least one of the eigenvalues has a positive real part, the system is unstable.

Hopf bifurcation occurs if  s1  s2 =  s0  s3 and  s1/s3 > 0, in which case the eigenvalues are given by �1,2 = ±i
√
s1/s3 

and �3 = −s2/s3.
Although other bifurcations can be analyzed similarly, it is preferred to obtain the bifurcation diagrams using 

numerical techniques in Sect. “Bifurcation analysis of MG and SK”.

Fully-developed rotating stall
For analysing the linear behaviour of the compressor about the fully developed rotating stall, the SK model is 
linearized about its equilibrium point ( xe = [x1e , x2e , x3e = 0, x4e , x5e , x6e = 1/3]T):
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ẋ2
ẋ3
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with

Each equilibrium point of the linear model is considered stable or unstable according to the principles of 
stability stated in the previous section.

Bifurcation analysis of MG and SK
This section examines the effects of throttle gain as a parameter for bifurcation analysis of the modified model 
using numerical continuation techniques. Numerical continuation techniques track the equilibrium points of 
the compression system and their global bifurcations in the range of throttle gain variations.

Figure 5 shows the bifurcation diagram of the final amplitude of the stall cell (A) versus the position of the 
throttle valve ( γt ). In this figure, all trajectories starting from an initial point in regions I and IV converge to a 
limit cycle, representing a surge cycle. On the other hand, all trajectories starting from an initial condition in 
regions II and V converge to a fully developed rotational stall and a fully damped rotating stall, respectively. In 
Region III, the compression system might experience a surge or rotating stall.

The bifurcation point (PF) is a subcritical pitchfork bifurcation associated with the hysteresis loop in the 
rotating stall. At this point, the throttle characteristic intersects the compressor map and stall characteristic at 
two points, one of which is the operating point (D). The limit point (LP) represents a throttle gain where the 
throttle characteristic is tangent to the stall characteristic. For all throttle gains greater than LP, the compressor 
system, regardless of the initial perturbation value, ends up at a fully damped rotating stall, which represents the 
stable operating points of the compressor. Stall may be formed or damped out by decreasing the throttle gain to 
a value between LP and PF, depending on its initial value. In this case, operating point (C) is a fully developed 
rotational stall, operating point (A) is a stable operating point and operating point (B) is an unstable operating 
point. The first Hopf bifurcation point (H1) and the second Hopf bifurcation point (H2) promise the inception 
of surge (see for more  details21). Figure 5 also exhibits hysteresis. Assume that the system has entered a fully 
developed stall condition at operating point (C). The stall may be removed by opening the throttle. The mass 
flow rate increases, but the system cannot return to the stable point until the throttle characteristic is tangent 
to the stall characteristic (LP), where the operating point jumps to a completely damped stall corresponding to 
the operating point (A).

Figure 6 shows the bifurcation diagram for three initial operating points ( �0 = 0.45, 0.5 and 0.55) and two 
Greitzer parameters, B = 0.5, 1.5. Note that the diagram corresponding to �0 = 0.5 is the same as that of MG, 
which does not change with the initial flow coefficient.

Comparing Figs. 5 and 6 shows that Bifurcation points H2 and region IV which were described above, appear 
in the bifurcation diagrams only for higher values of B (e.g. B = 1.5). When the B-parameter increases to a higher 
value (e.g. B = 1.5), or the initial operating point moves away from the peak pressure rise point (e.g.�0 = 0.45 and 
0.55), the range of regions I and III increases and the range of regions II and IV decreases.

Control of surge and rotating stall
This section delves into the stability and active control of axial compression systems, focusing on the nonlinear 
phenomena of surge and rotating stall. Linearizing the nonlinear model around operating points is advantageous 
for analysis and control. This enables the investigation of the system’s linear behavior within each operating 
point’s attraction domains. Due to its ease of design, stability guarantees, and optimality, the LQR controller was 
chosen to stabilize the compressor effectively and suppress rotating stall and surge limit cycles through throttle 
valve actuation (Fig. 1 illustrates the position of the sensors and throttle valve actuation as control input signals).
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It is crucial to note that the LQR controller, despite being linear, was validated using the nonlinear dynamic 
model. This section evaluates the impact of nonlinearities on the performance of the LQR controller.

Considering the linear model of the compression system (Eq. 35), the LQR control design aims to compute 
the optimal feedback gain (matrix K) such that the feedback control law (Eq. 36) minimizes a quadratic cost 
function (Eq. 37).

The tuning matrices Q and R, respectively representing the state and control penalty matrices, play a crucial 
role in striking a balance between state tracking accuracy and control effort. Increasing the value of Q expedites 
the convergence of state vector errors, while a similar increment in R leads to reduced control efforts. Striking 

(35)ẋ = Fsurge/stallx + Gsurg/stallu

(36)u = Kx

(37)J =
t∫

0

(

xTQx + uTRu

)

dt

Figure 5.  Final amplitude of the stall cell versus the position of the throttle valve (stable point: solid circles, 
unstable points: hallow circles).
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a balance between these two parameters is essential for achieving desirable performance. Whenever the linear 
model is controllable, the LQR method effectively stabilizes the unstable system by ensuring that all eigenvalues 
of the system possess negative real parts.

The closed loop system is:

And the closed loop cost is expressed by:

Let the optimal  u* be expressed in terms of P

Then P can be solved backward in time (Eq. 41, which is called Riccati algebraic  Equation42.

In an optimal controller, the throttle valve should be able to quickly reach the desired point by detecting the 
growth of disturbances. To achieve this goal, it is necessary to select the control coefficients so that the throttle 
coefficient is greater than the compressor flow coefficient and the compressor flow coefficient is greater than 
the pressure increase coefficient. Therefore, the state and control penalty matrices are set as Q = diag([1, 10, 1]), 
R = 100.

The operating point (OP) of the compression system is the intersection of the throttle characteristic and the 
equivalent compressor map. The task defined for the LQR controller is to bring the compression system states to 
the vicinity of the peak pressure rise point, so that the compressor can operate stably at the highest performance 
(with no disturbance in the compression system). The desired point is located at the negative slope region 
(Φd = 0.51), which is inherently stable. Table 2 indicates the Greitzer parameter, a sign of characteristic slop of 
the initial operating point, and initial disturbance amplitude, for six different simulated scenarios.

According to Table 2, Fig. 7 compares the dynamic behavior of the Moore-Greitzer (MG) model and the 
modified model (SK) with and without the controller in scenario one. The stall characteristic curves for MG and 
SK models are shown in this figure. Without the controller, the system starts from OP (the intersection of the 
throttle characteristic γt = 0.6068 and the compressor map at (Φ0, Ψ0) = (0.45, 0.55), which is in the positive slope 
region. At this point, the initial amplitude of perturbation  (A0) is equivalent to 0.01. As illustrated in this figure, 
both models lead to stall (i.e., in both models the flow coefficient reduces and converges to a fully developed stall 
point on its corresponding stall characteristic). However, the LQR controller effectively stabilizes the rotating 
stall and brings both systems similarly to the desired point  (OPd = 0.51). Figure 8 shows the efforts of LQR control 
(the throttle gain), for MG and SK models. The desired value of the throttle gain is plotted in this figure by solid 
line. As demonstrated, the control effort of both models can rapidly and satisfactorily stabilize the compressor 
to the desired point (Φd = 0.51 in Fig. 7).
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Figure 6.  Two-dimensional bifurcation diagram: solids show the stable and hollows show the unstable 
equilibrium points.
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Table 2.  Simulated scenarios.

Scenario number Greitzer parameter (B) Sign of char. Slops (initial operating point) Initial disturbance amp. (A(0))

1 0.5 (expecting rotating stall) Positive 0.01

2 0.5 (expecting rotating stall) Positive 0.2

3 0.5 (expecting rotating stall) Negative 0.01

4 0.5 (expecting rotating stall) Negative 0.4

5 1.5 (expecting surge) Positive 0.01

Figure 7.  Dynamic behavior of the compression system with and without LQR controller (scenario 1).

Figure 8.  Time history of throttle gain (scenario 1).
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In scenario two (as presented in Table 2), the effects of the initial perturbation amplitude on the performance 
of the open-loop and closed-loop systems are studied by significantly increasing  A0 to 0.2. Figure 9 provides a 
comparison of the dynamic behavior of the compressor, similar to Fig. 7. This figure reveals that the uncontrolled 
system becomes unstable in both models.

The Moore-Greitzer model demonstrates that despite the high disturbance of A(0) = 0.2, the controller can 
successfully stabilize the compressor and converge to the desired point. Conversely, in the SK model, although 
the controller initially attempts to stabilize the system at the desired point, it ultimately diverges and converges 
to another point with a lower flow coefficient.

As will be explained, this suggests that the SK model is more realistic in this example because A(0) = 0.2 is a 
very intense disturbance which could not be controlled. In order to justify this claim, it should be stated that in 
SK model (also in  MG43), the disturbance term in the flow coefficient is defined based on the following equation:

The value of the WA(0) shows the amplitude of the initial disturbances (it should be noted that the value of W 
is constant and is equal to 0.25 in this study and only the value of A(0) is variable as the initial value). Therefore, 
with the initial flow coefficient of 0.5 and the initial A(0) = 0.001, 0.01 and 0.1 the amplitude of disturbances will 
be 0.1%, 1% and 10%, respectively. As stated by Greitzer and  Moore39, disturbances with an initial amplitude of 
0.1% correspond to a disturbance of a good wind-tunnel test section, the 1% level is a reasonable estimate for 
the magnitude of disturbances prior to rotating stall. However, the 10% level is far beyond the range of usual 
disturbances before instability occurs. It is expected that the linear controller can control the initial disturbances 
with the amplitude of 0.1% and 1%, but cannot control the disturbances with the level of 10%39. In the above 
scenario, the value of A(0) was equivalent to 0.2 (equivalent to 20% amplitude of disturbance), but the MG model 
controlled the disturbances, which cannot occur in a real application.

The reason is that (despite the MG model) the SK model can simulate the instability initiation when the initial 
operating condition is located in the negative compressor characteristic  slope41. Because the initial disturbance 
is very high, the nonlinear system deviates from the attraction basin of the linear LQR controller. As a result, 
although the controller attempts to converge the system to the desired point, the nonlinear dynamic behavior 
of the system leads it to the equilibrium point of another attraction basin. This highlights the importance of 
the initial condition not being far from the desired point in linear controllers, as the system may end up in the 
attraction basin of another operating point. This phenomenon is not observed in the MG model, which suggests 
that the SK model can describe the compressor’s nonlinear behavior more accurately. Figure 10 also illustrates 
this unstable behavior by showing the control efforts similar, to Fig. 8, confirming the above discussion.

It should be noted that the final operating points in the SK model with and without a controller are slightly 
different (see Fig. 9 top plot), which is due to the difference between the initial and desired throttle gains.

According to the Camp and  Day8, the instability can be initiated from the negative slope region of the 
compressor. To compare the MG and SK models at such conditions, the dynamic behavior of the two models 
with and without controllers are depicted in Fig. 11, similar to Fig. 7. Note that the Greitzer parameter (B) is 
chosen to be 0.5 (scenario 3 according to Table 2), expecting the occurrence of rotating stall. The initial operating 
(OP) is at (Φ0, Ψ0) = (0.55, 0.5485). Furthermore, the initial throttle gain which is obtained by intersecting the 
throttle characteristic and the compressor map at OP, is equivalent to γt = 0.7426. Also, the initial amplitude of 

(42)φ = �(ξ)+WA(ξ) sin
(
θ − f ξ

)

Figure 9.  Dynamic behavior of the compression system with and without LQR controller (scenario 2).
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disturbances is chosen to be 0.01 (A(0) = 0.01). As shown in Fig. 11, with no control both models damp the low 
amplitude disturbances and remain stable. This was expected because the initial operating point was chosen in 
the stable region of the compressor. With the controller, both of the models have effectively reached the desired 
point Φd = 0.51.

To investigate the possibility of the occurrence of a rotating stall from the negative slope region of the 
compressor, the initial amplitude of the disturbances was chosen to 0.4, which is dramatically high (scenario 4). 
If the controllers are deactivated (Fig. 12), the MG model spuriously remains stable, but the SK model predicts 
a fully developed rotating stall. Furthermore, while the controller stabilizes the MG model (even at a high level 
of disturbances), it cannot prevent the instability in the SK model (Fig. 12). As previously explained, because of 
the difference between the initial and desired throttle gains, the final operating points in the SK model with and 
without controller are a bit different (see Fig. 12 top plot).

The Greitzer parameter (B) is shown to be a key parameter for determining whether the compressor exhibits a 
surge or rotating stall (4,39). To compare the two models in predicting surge phenomena, the Greitzer parameter 
has been increased to 1.5 (scenario 5). The initial operating point is similar to scenario 1 and is equal to (Φ0, 
Ψ0) = (0.45, 0.55) and the initial amplitude of the disturbances is chosen to be 0.01. As Fig. 13 shows, the dynamic 

Figure 10.  Time history of throttle gain (scenario 2).

Figure 11.  Dynamic behavior of the compression system with and without LQR controller (scenario 3).
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behavior of these two models is similar during surge, when the controller is deactivated. Furthermore, the 
developed controllers can stabilize the deep surge in the two models.

It should be noted that if the operating point is in the positive slope region, the MG model with the controller, 
stabilizes the compression system having a surge, even with a very high initial amplitude of the disturbances 
(similar to the rotating stall discussed in scenario 2). Furthermore, similar to scenarios 3 and 4 if the initial 
operating point is located in the negative slope region MG model always damped the disturbances regardless of 
the initial amplitude of the disturbances (with or without a controller). However, it seems that the SK model can 
give a more realistic prediction at such conditions (i.e., in the SK model the control effort might be successful or 
unsuccessful, depending on the initial amplitude of disturbances).

Figure 12.  Dynamic behavior of the compression system with and without LQR controller (scenario 4).

Figure 13.  Dynamic behavior of the compression system with and without LQR controller (scenario 5).
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Conclusion
This paper compared the bifurcations and LQR controller for two compressor post-stall models, namely MG and 
SK. First, MG and SK perturbed linear state-space models about equilibrium points, pure surge, and rotating 
stalls were developed. Also, the unstable part of the compression system was identified by eigenvalue and global 
bifurcation analysis. In addition, the closed-loop performances of these models (with optimal model-based LQR 
controllers) were investigated. The following conclusions can be drawn from this work:

When the amplitude of the disturbance is small and the initial operating point is located at the positive slope 
portion of the compressor characteristic, the two models lead to instability without a controller. Furthermore, 
when the LQR controller is activated, it can perfectly stabilize both models.

With an intensive disturbance and a positive slope initial point, the two models predict instability without a 
controller. With the controller, however, the models behave differently. While the SK model damps a reasonable 
range of disturbances and predicts instability for very intensive disturbances, the MG model always damps the 
disturbances even when extremely intense.

In the compressor negative slope region, initial disturbances (even very intense) can never grow and are 
always damped when there is no controller in the MG model (obviously the same happens with the controller). 
In the SK model, however, the disturbances might be damped or grown, depending on the amplitude of the 
disturbances (without a controller). With the controller, if the disturbances are small, the SK model can effectively 
control the instabilities. Nonetheless, for very intense disturbances the controller fails to dampen the instabilities 
which is in line with reality.

The most important issues that are not foreseen in the proposed model are the analysis of the sensitivity of the 
modified model against uncertainties, the robustness of the control model and the design of a robust nonlinear 
controller for the modified compressor model. We will address these issues in our future work.

Data availability
All data generated or analyzed during this study are included in this published article.
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