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Elucidating hepatocellular 
carcinoma progression: a novel 
prognostic miRNA–mRNA network 
and signature analysis
Fei Wang , Xichun Kang , Yaoqi Li , Jianhua Lu , Xiling Liu  & Huimin Yan *

There is increasing evidence that miRNAs play an important role in the prognosis of HCC. There is 
currently a lack of acknowledged models that accurately predict patient prognosis. The aim of this 
study is to create a miRNA-based model to precisely forecast a patient’s prognosis and a miRNA–
mRNA network to investigate the function of a targeted mRNA. TCGA miRNA dataset and survival 
data of HCC patients were downloaded for differential analysis. The outcomes of variance analysis 
were subjected to univariate and multivariate Cox regression analyses and LASSO analysis. We 
constructed and visualized prognosis-related models and subsequently used violin plots to probe 
the function of miRNAs in tumor cells. We predicted the target mRNAs added those to the String 
database, built PPI protein interaction networks, and screened those mRNA using Cytoscape. The 
hub mRNA was subjected to GO and KEGG analysis to determine its biological role. Six of them were 
associated with prognosis: hsa-miR-139-3p, hsa-miR-139-5p, hsa-miR-101-3p, hsa-miR-30d-5p, 
hsa-miR-5003-3p, and hsa-miR-6844. The prognostic model was highly predictive and consistently 
performs, with the C index exceeding 0.7 after 1, 3, and 5 years. The model estimated significant 
differences in the Kaplan–Meier plotter and the model could predict patient prognosis independently 
of clinical indicators. A relatively stable miRNA prognostic model for HCC patients was constructed, 
and the model was highly accurate in predicting patients with good stability over 5 years. The miRNA–
mRNA network was constructed to explore the function of mRNA.
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HCC  Hepatocelluar carcinoma
miRNA  MicroRNA
DEmiRNAs  Differentially expressed miRNAs
DCA  Decision curve analysis
OS  Overall survival
GO  Gene Ontology
KEGG  Kyoto encyclopedia of genes and genomes
TCGA   The cancer genome database
PPI  Protein–Protein interaction
ROC  Receiver operating characteristic
TNM  Tumor node metastasis
BCLC  Barcelona Clinic Liver Cancer
CLIP  Cancer of the Liver Italian Program
GEO  Gene expression omnibus

Liver cancer is the sixth most common type of cancer that poses a serious threat to human  health1. There have 
been 905,677 new cases reported worldwide. Cancer-related mortality will rank fourth in 2020, with 830,180 
 deaths2. Of all primary liver cancer, about 75–80% are hepatocellular carcinoma (HCC)3,4. The prognosis for 
patients with HCC after a diagnosis is still dismal, despite increased research into early diagnosis and ways to 
improve that  prognosis5. It is reported that the 5-year survival rate after radical surgical surgery for HCC patients 
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remains less than 50%6. This suggests that despite radical resection, the prognosis for HCC is unsatisfactory. At 
present, the published prognostic prediction models are difficult to satisfy and struggle with high certainty  issues7. 
Therefore, it is urgent to discover potential biomarkers and therapeutic targets, construct more accurate and clini-
cally accessible genetic information prediction models to predict patient prognosis and achieve precise treatment.

In recent years, microRNAs (miRNAs) have become a popular area of oncology research. MiRNAs are a group 
of endogenous single-stranded non-coding RNA molecules containing approximately 19–25  nucleotides8,9. They 
have an effect on gene expression at the post-transcriptional  level10. An increasing number of studies have shown 
that miRNAs play a role in promoting tumor development or inhibiting tumor  progression11–13. Meanwhile, 
many studies have also identified the role of miRNAs in tumor  prognosis14. It has been confirmed that miRNA 
has a good predictive ability for patients’ prognosis in cancers such as esophageal  cancer15, colorectal  cancer16 
and breast  cancer17. Studies have found that miRNAs are aberrantly expressed in HCC and are involved in the 
growth, development and metastasis of HCC by acting as oncogenes or tumor  suppressors18. However, there is 
no authoritative model to predict the prognosis of patients and achieve treatment in the prognosis of hepatocel-
lular carcinoma. Therefore, a miRNA-based prognostic model for HCC patients is urgently needed to accurately 
predict the prognosis of patients and achieve targeted therapy to prolong their overall survival.

In this study, we identified differentially expressed miRNAs (DEmiRNAs), constructed a prognostic model to 
predict patient prognosis, and investigated the roles of prognosis-related miRNAs and their associated mRNAs. 
This study will help to understand the role of miRNAs and achieve accurate prognosis prediction in HCC 
patients.

Materials and methods
Data source
miRNA expression profiles and clinical information were downloaded from the cancer genome database (TCGA), 
which includes 372 HCC samples and 50 adjacent normal tissue samples as of February 13, 2022. The external 
validation dataset GSE227378 was obtained from the GEO database and included 32 HCC cases and 32 adjacent 
normal tissue samples. The data in the TCGA and GEO database are publicly available and open access, and this 
study follows the database access policy and publication guidelines.

Screening of differentially expressed miRNAs between HCC tissues and normal tissues
The raw data were corrected, filtered, and normalized using the R package. A total of 2652 miRNAs were included 
after integration. Subsequently, differential analysis was performed using the edgeR package in the environment 
of R4.1.0. The miRNAs with │log2FC│ > 1 and P < 0.05 were identified as DEmiRNAs.

Establishment of the gene-related prognostic model
Data with missing survival data and survival time less than 30 days were excluded. HCC patients were randomly 
divided into a training set and a validation set according to 7:3 using the caret package in the environment of R.

Univariate and multivariate Cox regression analyses and Lasso regression analysis was used to investigate 
the association between DEmiRNA expression levels in HCC tissues and the overall survival (OS) of patients in 
the training set. P < 0.05 was considered significant in the results of univariate and multivariate Cox regression 
analyses. Significant results were then placed into the Lasso-penalized Cox analysis for further screening. Lasso-
penalized Cox analysis with penalty parameter tuning performed via tenfold cross-validation was established to 
further narrow the miRNAs in which we required selected miRNAs to appear over 900 times for a total of 1000 
repetitions. The final result is thought to be related to miRNAs those affect patient survival. Finally, a total of six 
miRNAs were left based on the minimum criteria of coefficients. These miRNAs were reincorporated into the 
Cox regression model for fitting and constructing a prognostic model.

Visualization and validation of prognostic model
A multivariate Cox regression model was used to assess patient survival at 1-, 3-, and 5- years in the training set. 
The results were subsequently presented more visually using nomogram. The receiver operating characteristic 
curves (ROC) and C-index were used to validate the discrimination of the model in the training set, validation 
set, total set, and external validation set GSE227378. Calibration curve was used to assess the accuracy, and deci-
sion curve analysis (DCA) was used to assess the clinical utility of the model at 1-, 3-, and 5- years.

The risk score for each HCC patient was the regression coefficient derived from a multifactorial Cox regres-
sion model multiplied by the miRNA expression level, and the optimal cutoff value was determined using R. The 
optimal cut-off values of HCC patients with survival data in the training set, validation set, total set and external 
validation set GSE227378 were calculated in the environment of R. The predictive model was characterized by 
the linear combination of the expression levels of the six miRNAs weighted by their relative coefficient in the 
multivariate Cox regression. Risk score = (β1 × miRNA1 expression) + (β2 × miRNA2 expression) + … + (βn × miR-
NAn expression). The patients were divided into high-risk and low-risk groups according to the optimal cut-off 
values. The corresponding survival curves and survival state diagrams were plotted in each set according to the 
grouping using the survival package in R language. The difference in prognosis between the two groups of HCC 
patients was determined based on the graphs.

Independence of the prognostic model from other clinical indicators
To determine whether the predictive ability of the model could be independent of other clinical indicators (age, 
gender, grade, stage, T) in HCC patients, univariate and multivariate Cox regression analyses were performed 
with other clinical indicators and the model as independent variables and the OS of patients as dependent 
variables.
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The role of prognosis-related miRNAs in tumor cell proliferation, invasion and metastasis
To explore the possible role of prognosis-related miRNAs in tumor development, we used R to plot the expression 
of these miRNAs in TNM stages of HCC patients as a violin graph. The mean values were compared to determine 
the tumor in expression and thus to speculate the role played by these miRNAs in tumor cell proliferation, inva-
sion, and metastasis. Kruskal–Wallis test was used for T-stage, and Mann–Whitney U test was used for N-stage 
and M-stage. The test level α was taken as 0.05.

Prediction of target mRNAs for each of the 6 miRNAs
The corresponding mRNAs for the six miRNAs were predicted using the miRDB, Targetscan, and miTarbase 
databases. The predicted results of these three databases were taken as the intersection, and the intersection 
results were displayed as the final results in the form of a Venn diagram.

Screening of target mRNAs to derive hub mRNAs
The target mRNAs were imported into the STRING database to build a protein–protein interaction (PPI) network 
and observe the mRNA relationship. We used Cytoscape V3.7.1 to visually transform the results to investigate 
the link between target mRNAs. The results of the STRING database were imported into Cytoscape database. The 
CytoHubba in Cytoscape software was used to calculate the degree values of genes, and the top 15 genes with the 
highest degree values were selected as the hub genes. Subsequently, the relationship between hub mRNAs and 
mRNAs and up- and down-regulation in tumor tissues were linked by Sankey diagram.

Functional enrichment analysis
To explore the function of hub mRNAs, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG)  pathway19–21 enrichment analyses of hub mRNAs were analyzed using the R language clusterProfiler 
package, and the results were visualized by the SRplot platform.

Results
Differentially expressed miRNAs between HCC and normal tissues
A total of 305 DEmiRNAs between HCC and normal tissues were identified, which containing 258 up-regulated 
miRNAs and 47 down-regulated miRNAs. The top 50 up-regulated DEmiRNAs and 47 down-regulated DEmiR-
NAs were shown in Fig. 1A. The distribution of the DEmiRNAs was shown in Fig. 1B.

Identification of key miRNAs and construction of prognostic model
Univariate Cox regression analysis was performed on the DEmiRNAs in the training set. The results showed that 
18 miRNAs were associated with OS of HCC patients (Fig. 2A). All significant results from the univariate Cox 
regression analysis were included in the multivariate Cox regression model for analysis. As a result, six miRNAs 
were identified (Fig. 2B).

Subsequently, the significant results from the multivariate Cox regression were included in the Lasso-
penalized Cox for further screening. The results showed that six miRNAs, hsa-miR-139-3p, hsa-miR-139-5p, 

Figure 1.  Heatmap (A) and volcano map (B) of differentially expressed miRNAs in HCC samples and normal 
tissue samples. In the volcano map, the vertical axis indicates differentially expressed miRNA. The horizontal 
axis indicates samples. Red represents high expression in HCC and blue represents low expression in HCC.
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hsa-miR-101-3p, hsa-miR-30d-5p, hsa-miR-5003-3p, and hsa-miR-6844, were associated with the prognosis 
of HCC patients (Fig. 2C). The predictive model was characterized as follows: risk score = (0.3444 * expres-
sion level of has-miR-139-3p) + (− 0.4698* expression level of has-miR-139-5p) + (− 0.3556* expression level 
of has-miR-101-3p) + (− 0.2528 * expression level of has-miR-30d-5p) + (0.2608* expression level of has-miR-
5003-3p) + (0.3576 * expression level of has-miR-6844).

Construction of nomogram and validation of the model
The six prognosis-related miRNAs were reincorporated into the Cox regression model for fitting, and the results 
were visualized by nomogram (Fig. 3). The predictive ability of the model was judged by the ROC curves. The 
results showed that all of AUC values 1-, 3-, and 5-year survival were more than 0.7 in the training set (Fig. 4A), 
test set (Fig. 4B), total set (Fig. 4C), and and external validation set GSE227378 (Fig. 4G) suggesting that the 
model had a better predictive performance.

The accuracy of the model was assessed using calibration curves. The results showed that the nomogram 
performed well at 1-, 3-, and 5-year (Fig. 4D–F). The clinical usefulness of the model was assessed by the DCA 
curve. The results showed a high clinical benefit of the model in each set (Fig. 5A,B,C,G), which may help in 
patient counseling, decision making and follow-up.

Figure 2.  Differential miRNAs associated with prognosis of HCC patients. Univariate Cox analysis (A) and 
multivariate Cox analysis (B) of differential miRNAs, with red representing risk factors and blue representing 
protective factors. Lasso’s screening process for 6 miRNAs (C).

Figure 3.  Nomogram predicting 1-, 3-, and 5-year survival rates for patients with HCC. The nomogram is 
applied by adding up the points identified on the points scale for each variable. The total points projected on the 
bottom scales indicate the probability of 1-, 3- and 5-year OS.
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The survival curves between the two groups in each set were plotted by grouping the models by the optimal 
cut-off point (Fig. 5D,E,F,H), and the survival status (Fig. 6A–C, G) of the samples in each dataset was plotted by 
risk grouping. The results showed that in each set, the prognosis of the high-risk group was significantly lower 
than that of the low-risk group (P < 0.0001), indicating that the six miRNAs constituting the model were more 
predictive of the prognosis of the samples.

Independent predictive capability of the model
The univariate results showed that stage, T-stage, and the prognostic model could have prognostic value. In the 
multivariate Cox regression model, only the prognostic model could be used as a prognostic-related independ-
ent predictor (Fig. 7).

Differential expression of 6 miRNAs in T-stage, N-stage and M-stage
Violin plots (Fig. 8A–C) were used to examine the expression of the six miRNAs in T-stage and N-stage to 
hypothesize on the pathways in which the six miRNAs might play a role. The results showed that the expression 
of four miRNAs, including hsa-miR-139-3p, hsa-miR-139-5p, hsa-miR-101-3p, and hsa-miR-30d-5p, was sig-
nificantly different at different T-stage. By comparing the mean values, it could be found that the expression of 
hsa-miR-139-3p, hsa-miR-139-5p and hsa-miR-30d-5p decreased gradually with the increase of tumor volume, 
and hsa-miR-101-3p decreased gradually from T1 to T3 phase and increased abruptly in T4 phase. These results 
suggested that these four miRNAs may function as regulators of tumor cell proliferation.

In N stage, the expression of hsa-miR-101-3p gradually decreased and that of hsa-miR-6844 gradually 
increased with the progression of N stage, suggesting that these two miRNAs may influence the lymph node 
metastasis of tumors and play a role in tumorigenesis development.

These six miRNAs showed no changes across M stages. However, the mean levels of these six miRNAs showed 
some variation.

Prediction of target genes
We predicted the mRNAs that would bind to DEmiRNAs and further investigated the functions of these mRNAs 
in humans. There were 436 corresponding mRNAs for the six miRNAs, including 164 for hsa-miR-101-3p, 3 
for hsa-miR-30d-5p, 7 for hsa-miR-139-3p, 17 for hsa-miR-139-5p, 41 for has-miR-5003-3p, and 24 for hsa-
miR-6844 (Fig. 9).

Screening for hub genes
We imported the target genes into the String database and perform PPI analysis to further confirm the hub 
genes in the targeted mRNA and speculate on their function. Sankey diagrams are used to show how hub genes 
and associated miRNAs are related. The result of the analysis in the String database is shown in Fig. 10. The 
results sorted by degree value from most to least showed that the top 15 hub genes were JUN, MAPK8, RAC1, 
NOTCH1, DVL1, PPP2CA, FOS, ARF6, AGO3, RUNX1, TNRC6C, MET, SMARCA4, SRSF1, and TGFBR1 
(Fig. 11). The results of Sankey diagram (Fig. 12) showed that a total of four miRNAs were corresponding to hub 
genes, namely has-miR-5003-3p, hsa-miR-6844, hsa-miR-101-3p, hsa-miR-139-5p, of which has-miR-5003-3p 

Figure 4.  ROC curve and calibration curve of the model. ROC curves of the model in the training set (A), 
validation set (B), total set (C), and external validation set (G) with green representing 1 year, blue representing 
3 years, and red representing 5 years. Calibration curves for 1 year (D), 3 years (E), and 5 years (F). The red line 
indicates the predicted situation and the gray line indicates the actual situation.
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and hsa-miR-6844 were overexpressed miRNAs, and hsa-miR-101-3p and hsa-miR-139-5p were down-regulated 
miRNAs.

GO, KEGG analysis of hub mRNAs
GO (Table 1) and KEGG enrichment analysis of hub mRNAs showed that in biological processes, hub mRNAs 
were mainly enriched in protein binding, hematopoiesis, regulation of bone marrow cell differentiation, and 
development of liver and hepatobiliary system. In cellular components, hub mRNAs were mainly enriched in 
RNA polymerase II transcriptional regulator complex, cytoplasmic ribonucleoprotein granule. In molecular 
function, the hub mRNAs were mainly enriched in the binding of SMAD, thioesterase, and R-SMAD (Fig. 13A 
and Table 2). KEGG pathway analysis showed that the hub mRNAs were mainly concentrated in colorectal cancer, 
Th17 cell differentiation, and osteoblast differentiation (Fig. 13B).

Figure 5.  DCA curve and survival curve of the model. DCA curves for models 1 year (A, G), 3 years (B), and 5 
years (C). KM survival curves plotted in the training set (D), test set (E), total set (F), and external validation set 
(H) using the optimal cut-off point for each grouping. Blue represents the low-risk group and red represents the 
high-risk group.
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Discussion
HCC is one of the most deadly malignant digestive cancers worldwide, with high morbidity and  mortality22. 
In recent years, the incidence of HCC has been on the rise due to environmental factors, immunizations, and 
changes in people’s  lifestyles23. However, almost 60–80% of patients with HCC are diagnosed at an advanced 
stage and therefore deprived of surgical treatment, with a 5-year survival rate < 12.5%24,25. Although there are 
clinical staging systems such as Tumor Node Metastasis (TNM) staging, Barcelona Clinic Liver Cancer (BCLC) 
staging, Cancer of the Liver Italian Program (CLIP) scoring to predict the prognosis of patients, these systems 
have limited ability and cannot better enable clinicians to stratify management to develop personalized treatment 
plans. Therefore, it is important to identify reliable and valid prognostic biomarkers for HCC.

MiRNAs are widely available in the human body and can be detected in peripheral blood, and therefore have 
considerable advantages in terms of clinical applications. In this study, we downloaded 372 HCC samples and 
50 adjacent normal tissue samples of HCC patients from TCGA and identified six prognosis-related miRNAs 
using bioinformatics approach. The prognostic model was constructed and validated using six prognosis-related 
miRNAs, including hsa-miR-139-3p, hsa-miR-139-5p, hsa-miR-101-3p, and hsa-miR-30d-5p, hsa-miR-5003-3p, 
and hsa-miR-6844. Compared with the AFP  model26, our model has a better predictive ability. The model has 
AUC values above 0.7 at 1, 3 and 5 years in both the training and validation sets. Many studies have identified 
hub mRNAs that play key role in tumor progression and established goodprognostic  models27. Compared with 
mRNA, miRNAs have the advatages of structural stabilityand strong cancer type-specific expression. Our model 
also performs better in the validation set incomparison to published mRNA prediction  models28. In comparison 
to other miRNA-based prognostic  models29,30, the described models frequently only assess the 3-year or 5-year 
C-index, which is insufficient. And our model is stable after 1, 3, and 5 years, with a C index greater than 0.7. 
Meanwhile, the calibration curves of the model were also plotted in this study, showing that the prediction results 
of the model in 1, 3, and 5 years overlap more closely with the actual results, further validating the predictive abil-
ity of the model. In terms of model utilization, compared to the study by Su et al.31, we improved the applicability 
of the model by visualizing the model by drawing nomograms and grouping patients by risk scores. When used 
by clinicians, the prognosis of patients can be predicted visually and precise treatment can be implemented. In 
addition, we evaluated the independent predictive ability of the model. The results showed that the model had 

Figure 6.  Survival state diagram by risk grouping. Survival status plots for the training set (A), test set (B), and 
total set (C). The horizontal coordinates indicate the risk score and the vertical coordinates indicate the survival 
time. The dashed line indicates the optimal cut-off point, red dots indicate that the outcome event has occurred, 
and green dots indicate that the outcome event has not occurred.

Figure 7.  Independent predictive capability for prognostic model. Univariate (A) and multivariate (B) 
regression analyses of prognostic model and clinical indicators with overall survival. P values less than 0.05 were 
considered statistically significant.
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Figure 8.  Analysis of 6 miRNAs in T-stage and N-stage. Expression analysis of 6 miRNAs in T-stage (A), 
N-stage (B) and M-stage (C). Different colors indicate different progressions. *P less than 0.05, ***P less than 
0.001.
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independent predictive ability and could be used to test the prognosis of patients independently of other clinical 
factors. The prediction role of miRNA in tumor prognosis has been investigated in several  studies32,33. However, 
in general, our miRNA prognosis model may be used directly via nomogram, and the C index after 5 years is 
greater than 0.7, indicating superior and more stable prognostic capacity.

There is growing evidence that has-miR-139-5p, hsa-miR-101-3p, and has-miR-30d-5p affect cellular func-
tions and play a part in the emergence and spread of several cancer  types34–38. In HCC, in agreement with 
previous  reports39–43, our results showed that downregulation of hsa-miR-139-5p, hsa-miR-101-3p, and has-
miR-30d-5p was significantly associated with poor survival in HCC patients. The levels of these three miRNAs 
gradually decreased with the aggravation of T-stage in HCC patients. The expression level of hsa-miR-101-3p 

Figure 9.  Prediction results of 6 miRNAs corresponding to mRNA. The three circles in red, green and blue 
indicate the predicted results in each of the three databases. The part where the three circles cross is the final 
result.
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gradually decreased in the N stage. This suggests that hsa-miR-139-5p and hsa-miR-30d-5p may influence the 
prognosis of patients by affecting the proliferation of tumor cells, and hsa-miR-101-3p influences the disease 
process of HCC patients by affecting both the proliferation and migration of HCC cells. Therefore, these three 
miRNAs may be effective targets for the treatment of HCC.

Currently, there are relatively few studies on hsa-miR-6844 and hsa-miR-5003-3p in HCC patients. Ele-
vated expression levels of hsa-miR-6844 and hsa-miR-5003-3p have been found in breast and cervical cancers, 
 respectively44,45. Similarly, our study found that the expression of these two miRNAs was significantly elevated 
in the tumor tissues of HCC patients, and the increased expression levels were associated with a poor prognosis. 
At the TNM stage, the expression level of hsa-miR-6844 increased with the progression of N stage, implying that 
this miRNA may influence patient prognosis by affecting cell migration. In addition, hsa-miR-5003-3p expres-
sion levels failed to demonstrate statistically significant results. In future studies, increasing the sample size may 
allow significant differences to occur.

In recent years, many studies have reported the role of hsa-miR-139-3p in cancer. Our study found that this 
miRNA was highly expressed in HCC patient tissues compared to normal tissues, and the high expression was 
accompanied by a poor prognosis. In contrast to our findings, Qin et al.46 found that low expression of hsa-miR-
139-3p was associated with a poor prognosis. Further studies are needed in the future to explore the relationship. 
In our study hsa-miR-139-3p showed differences in T-stage of HCC patients, suggesting that this miRNA acts 
mainly by affecting cell proliferation, which is similar to the results of other  studies47.

Most miRNAs exhibit strong correlations. To avoid such problems, we performed univariate and multivari-
ate Cox regression analyses, followed by a LASSO analysis to screen hub miRNAs in the current study. When 
compared to a stepwise regression, LASSO regression can keep variables that have impacts on the dependent 
variable that are both significant and non-significant, reducing the estimation  deviation48. In actuality, prognostic 

Figure 10.  PPI plotted corresponding to mRNA. The circles represent the different mRNAs, and the richer the 
line indicates the higher the degree value.
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modeling of HCC patients in current research heavily relies on LASSO, one of the developing research meth-
odologies. Liang et al.49 successfully built prognostic-related models by using LASSO to search patients for OS-
related ferroptosis-related genes. Using LASSO, Yang et al.50 searched gene models relevant to macrophages and 
mapped the nomogram. Thus, it is obvious that LASSO has special benefits for research involving genes. Similar 
to the previous studies, we used LASSO to screen prognosis-related miRNAs, which increased the accuracy of 
the model.

Another advantage of this paper is to predict of the targeted mRNAs of miRNA. Using the PPI protein inter-
action network analysis of target genes, we finally screened out the 15 most important mRNAs and visualized 
their relationships with corresponding miRNAs by ranking them from highest to lowest degree values. The 15 
mRNAs are: JUN, MAPK8, RAC1, NOTCH1, DVL1, PPP2CA, FOS, ARF6, AGO3, RUNX1, TNRC6C, MET, 
SMARCA4, SRSF1, TGFBR1. The relationship between most of hub mRNAs and HCC has been reported by 
previous studies. The roles of mRNAs such as  JUN51,  MAPK845 and  FOS52 in HCC, for example, have been 
experimentally validated. Furthermore, studies on SMARCA4, SRSF1, and TNRC6C mainly focused on breast 
 cancer53, cervical  cancer54, and thyroid  cancer55,56, and their roles in HCC have been less studied. The prognosis 
of HCC patients may also be influenced by these less-researched mRNAs.

Figure 11.  Hub genes based on Cytohubba calculations. A total of 15 hub genes were selected, with more red 
colors indicating more important genes in the reciprocal network.
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However, this study has some limitations. The study sample is primarily white and black, which may mean 
that other ethnic groups are underrepresented, among other drawbacks. Additionally, we solely used data from 
the TCGA without any outside validation because there were generally not enough clinical data in the Gene 
Expression Omnibus (GEO) dataset, which may have caused some partial bias in the results. Cohort studies will 
be used to validate the model in later research, and more accurate statistical techniques will be used to improve 
model accuracy.

Conclusions
In conclusion, we developed a regression model utilizing miRNAs to predict the prognosis of HCC patients over 
5-years with high model sensitivity and strong predictive capacity. Moreover, we enhanced the practical usability 
of the model by building a nomogram. We also built a network of miRNAs and mRNAs and investigated the 
role of targeting mRNAs.

Figure 12.  Sankey diagram of hub genes, miRNAs and up- and down-regulation relationships. Each rectangle 
represents a gene. The relationship between each gene and miRNA and miRNA up- and down-regulation is 
visualized based on the size of the rectangle and the relationship between the line segments.
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Table 1.  GO analysis of hub mRNAs.

ID Description Count p value

Biological process

 GO:0051098 Regulation of binding 6 2.25E−07

 GO:0043393 Regulation of protein binding 5 4.58E−07

 GO:1903706 Regulation of hemopoiesis 6 1.34E−06

 GO:0045637 Regulation of myeloid cell differentiation 5 1.36E−06

 GO:0071276 cellular response to cadmium ion 3 3.37E−06

 GO:0001889 Liver development 4 3.83E−06

 GO:1902895 Positive regulation of pri-miRNA transcription by RNA polymerase II 3 3.95E−06

 GO:0061008 Hepaticobiliary system development 4 4.16E−06

 GO:0035567 Non-canonical Wnt signaling pathway 4 5.03E−06

 GO:0007265 Ras protein signal transduction 5 5.2E−06

Cellular component

 GO:0090575 RNA polymerase II transcription regulator complex 3 0.000232

 GO:0036464 Cytoplasmic ribonucleoprotein granule 3 0.000683

 GO:0035770 Ribonucleoprotein granule 3 0.000772

 GO:0055038 Recycling endosome membrane 2 0.001889

 GO:0000932 P-body 2 0.002023

 GO:0098978 Glutamatergic synapse 3 0.002406

 GO:0005667 Transcription regulator complex 3 0.003521

 GO:0043197 Dendritic spine 2 0.007742

 GO:0044309 Neuron spine 2 0.007914

 GO:0001726 Ruffle 2 0.008087

Molecular function

 GO:0046332 SMAD binding 3 3.37E−05

 GO:0031996 thioesterase binding 2 3.42E−05

 GO:0070412 R-SMAD binding 2 0.000156

 GO:0001046 Core promoter sequence-specific DNA binding 2 0.000632

 GO:0001102 RNA polymerase II activating transcription factor binding 2 0.00066

 GO:0061629 RNA polymerase II-specific DNA-binding transcription factor binding 3 0.001217

 GO:0019199 Transmembrane receptor protein kinase activity 2 0.001899

 GO:0033613 Activating transcription factor binding 2 0.001899

 GO:0140297 DNA-binding transcription factor binding 3 0.002575

 GO:0031490 Chromatin DNA binding 2 0.003304
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