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Fast learning without synaptic 
plasticity in spiking neural 
networks
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Wolfgang Maass 1*

Spiking neural networks are of high current interest, both from the perspective of modelling 
neural networks of the brain and for porting their fast learning capability and energy efficiency into 
neuromorphic hardware. But so far we have not been able to reproduce fast learning capabilities of the 
brain in spiking neural networks. Biological data suggest that a synergy of synaptic plasticity on a slow 
time scale with network dynamics on a faster time scale is responsible for fast learning capabilities 
of the brain. We show here that a suitable orchestration of this synergy between synaptic plasticity 
and network dynamics does in fact reproduce fast learning capabilities of generic recurrent networks 
of spiking neurons. This points to the important role of recurrent connections in spiking networks, 
since these are necessary for enabling salient network dynamics. We show more specifically that the 
proposed synergy enables synaptic weights to encode more general information such as priors and 
task structures, since moment-to-moment processing of new information can be delegated to the 
network dynamics.

Modelling and theoretical investigation of learning capabilities of models for neural networks of the brain, in 
particular of networks of spiking neurons, has focused on learning via synaptic plasticity, such as spike-timing-
dependent plasticity (STDP). But experimental data suggest that synaptic plasticity does not capture all learning 
capabilities of neural networks in the brain.

Brains can learn very fast, even in a single  trial1. In contrast, experimentally grounded rules for synaptic 
plasticity such as STDP require numerous repetitions of a  trial2, hence this plasticity rule is not likely to be the 
only mechanisms for fast learning capabilities of brains. A number of other experimental data suggest that brains 
use, in addition to or instead of synaptic plasticity, the dynamics of network states to store new  information3–5. It 
has already been demonstrated that a particular type of artificial neural network, networks of Long Short-Term 
memory (LSTM)  units6–9 can also accomplish this. However this result provides little information about fast 
learning capabilities of networks of spiking neurons since their dynamics is quite different. In particular, LSTM 
units employ registers, similar to digital computers, for rapidly storing information for an indefinite amount of 
time, which LIF neurons cannot do.

However recently it has been shown that a substantial fraction of the functional capability of networks of 
LSTM units can be reproduced by networks of spiking neurons, provided that they also contain neurons with 
spike frequency adaptation (SFA)10,11. SFA means that a neuron increases its firing threshold after firing. SFA has 
already been implicated for quite some while in cellular short-term  memory12,13 and other important features 
of brain  networks14. We show that neurons with SFA endow networks of spiking neurons with the capability 
to learn very fast, even without synaptic plasticity. We focus on two characteristic aspects of the resulting new 
learning theory for networks of spiking neurons: 

1. Synaptic weights are able to encode priors for learning, in particular priors that enable fast learning and 
generalization from few examples by exploiting common structural aspects of related learning  tasks15.

2. Synaptic weights are able to encode instructions for controlling fast learning processes through the network 
dynamics with fixed weights. This perspective enables brains to employ a much larger and functionally more 
powerful repertoire of tow-tiered learning schemes.
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We demonstrate each of these two principles separately in two illustrative tasks (see Figs. 1 and 4) and together 
in applications to standard motor control and navigation tasks that require self-supervised learning and rein-
forcement learning (Figs. 2 and 3).

In line with Refs.8,9,16,17 we focus on a setting where synaptic weights are tuned on a large time-scale that 
conceptually reflects evolutionary and developmental processes as well as prior learning. We show that this 
setup can also be used to elucidate fast learning capabilities of spiking neural networks, i.e. of biologically more 
realistic models for neural networks of the brain.

Results
We consider recurrent networks of spiking neurons (RSNNs) that contain, besides standard leaky integrate-and-
fire (LIF) neurons, also a random subset of neurons with spike-frequency adaptation (SFA)11. SFA is a biologi-
cally motivated mechanism based  on18 for short-term  memory12,13 that can be efficiently simulated and allows 
parameter optimization in a neural network model through gradient descent. It has been previously demonstrated 
that SFA is necessary for spiking neural networks to achieve functional parity with artificial neural  networks11. 
Experimental data from the Allen  Institute19 show that a substantial fraction of excitatory neurons of the neo-
cortex, ranging from 20% in mouse visual cortex to 40% in the human frontal lobe, exhibit SFA. Therefore, we 
endow only a subset of spiking neurons with SFA in line with this data (Also see Fig. 8 in Salaj et al.11 for a plot 
of the distribution).

Figure 1.  Encoding structural priors for learning. (A) Sample spike raster of neurons in the RSNN during an 
episode of learning to predict a previously unseen sinusoidal curve. (B–E) Snapshots of the internal model of the 
network at different inner loop steps, illustration of the prior knowledge acquired by the RSNN containing LIF 
neurons with SFA through L2L for the family F of all sinus functions with different phases and amplitudes, but 
a fixed frequency. Orange curves show the effective internal model of the RSNN at different stages of learning 
from examples of the target function (marked by green crosses). (F) Learning curve showing the loss minimized 
over the outer loop training.



3

Vol.:(0123456789)

Scientific Reports |         (2024) 14:8557  | https://doi.org/10.1038/s41598-024-55769-0

www.nature.com/scientificreports/

Figure 2.  One-shot adaptation of a forward model for an arm (A) The network setup for this and Sect. "Priors 
encoded in synaptic weights can significantly speed up learning" consists of a generic recurrent network of 
spiking neurons some of which exhibit SFA. The network receives, in addition to the input x(t), a delayed target 
feedback signal y(t − τ) , and produces the output ŷ(t) (where y(t) is the actual target). (B) Illustration of the 
two-link arm model with states given by the angle of the links, and the motor command applied on both the 
joints. (C) Sample trajectories generated for the same torque sequence by arms with different masses and lengths 
of the limbs. (D) Sample spike raster of neurons in the RSNN during an episode. The inputs to the network are, 
from top to bottom, the τ = 100 ms delayed states φ1(t − τ) and φ2(t − τ) given as feedback; and the motor 
commands c1(t) and c2(t) . (E) Root mean-squared error over all test episodes during the 1 second of inner loop 
learning. (F) Target trajectories and network prediction for one sample test episode for an arm with new link 
lengths and masses.
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In addition to the input, the network receives either a cue (in the experiment in Sect. "New learning capabili-
ties of recurrent networks of spiking neurons") or a feedback signal (in all other experiments). We set all the 
synaptic weights of the network through an optimization process in the learning to learn paradigm to solve the 
tasks described. See "Methods" Sect. "Details of the learning to learn setup" for more details.

Our analysis builds on a key insight from neuroscience and cognitive science: Fast learning capability of brains 
is supported by the fact that brains do not learn a new task starting in a tabula-rasa state. Rather, they build on 
neural circuits, learning skills, and prior knowledge that have been formed throughout evolution, development, 
and prior learning  experiences9,16,17. The capabilities of this prior shaping of neural circuits can be analyzed 
with the help of the formal learning-to-learn (L2L) model  from6–8 as described in "Methods" Sect. Details of the 
learning to learn setup.

Priors encoded in synaptic weights can significantly speed up learning
To demonstrate that synaptic weights can also be used to encode innate or previously learnt priors that can enable 
and/or speed up learning of complex tasks (point 1 of the Introduction), we will use a simple task where the 
RSNN has to learn a mapping f from input values x to output values y from example pairs 〈x, y〉 with y = f (x) . 
Here, each task C corresponds to a mapping f. This learning task requires generalization from mappings f ′ that 
occurred during training to mappings f that did not occur during training. Obviously, this generalization is 
impossible if the learner has no prior knowledge about the function f that is to be learnt. Artificial neural net-
works with continuous activation functions implicitly use a prior that the target function f is smooth. But SNNs 
do not automatically apply a smoothness prior, since they can just as well represent discontinuous input-output 
mappings. We wondered whether the weights of a RSNN could encode a smoothness prior, and possibly further 
structural properties of potential target functions f.

Figure 3.  Reward-based learning of an RSNN without synaptic plasticity. (A,B) Samples of navigation paths 
produced by the RSNN before and after this training. Before training, the agent performs a random walk (A). 
In this example it does not find the goal within the limited episode duration. After tuning the synaptic weights 
of the RSNN in the outer loop of L2L (B), the RSNN had acquired an efficient exploration strategy that uses two 
pieces of abstract knowledge: that the goal always lies on the border, and that the goal position remained the 
same throughout an episode. Note that all synaptic weights of the RSNNs remained fixed during an episode. (C) 
The network dynamics that produced the behavior shown in (B). (D) The architecture of the RSNN, consisting 
of excitatory and inhibitory neurons, with 20% connectivity obeying Dale’s law. Synaptic connectivity was 
optimized within these constraints in the outer loop of L2L. (E) Learning curves showing the variation of the 
number of goals reached and path length through the course of outer loop training.
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We focused on the specific case where it is a priori known that the target function f is a sinus function, but 
with unknown phase and amplitude. In each inner loop episode, the RSNN received a sequence of inputs xk from 
some mapping f, each encoded through the population activity of 100 spiking neurons for 20 ms. In addition to 

Figure 4.  Example of new neural network learning capability that arises when synaptic weights are enabled to 
store details of the learning strategy. (A) The neural network is a generic recurrent network of spiking neurons, 
some of which exhibit SFA. The network was provided cue patterns and pattern deletion signals as input, and 
produced the appropriate completed pattern as outputs. (B) Demonstration of the capability of the network to 
learn 3 new attractors in one shot so that they can be used for input completion, and also to delete one of the 
attractors (here attractor 1) in one shot.
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xk , it received the target output yk−1 = f (xk−1) for the previously presented input (see Methods). In this way, 
the network received a delayed feedback about its desired output which it could use to adapt its behavior in 
accordance with its internal prior on the family of functions f. The weights of the RSNN were kept fixed in the 
inner loop. The network had to predict the target yk = f (xk) at each time step k, and was trained in the outer 
loop using backpropagation-through-time (BPTT) to do so in batches of episodes with a different mappings/
tasks. During testing, previously unseen mappings were used.

Figure 1B–E demonstrates that this prior information can in fact be encoded in the synaptic weights of the 
RSNN, which are determined in the outer loop of L2L. We applied a simple trick for visualization to make the 
prior or internal model of the RSNN at any moment in time visible: see the orange lines in Fig. 1B–E. These 
orange lines show for any potential input value x (in the domain of f) the output y which the RSNN would give if 
this x would occur as the next network input (in a hypothetical experiment, that has no effect on the next steps 
of the (inner loop) learning process for learning the target function f). More precisely, the network state is not 
allowed to change when these test inputs x are shown.

Figure 1B shows the prior or internal model that is engraved into the RSNN through its synaptic weights 
before it has received any training example 〈x, y〉 . One clearly sees that this internal model is in fact a sinus func-
tion. In addition, this internal model already reflects the frequency of the target sinus function f, since this is 
the same for all potential target functions that were considered in the outer loop of L2L. The subsequent panels, 
Fig. 1C–E, show that the internal model is updated when some actual training examples — indicated by green 
crosses — are received by the RSNN. One sees from Fig. 1C that a single training example brings the internal 
model already quite close to the function f from which the training examples are generated. Figure 1D shows that 
the prior of the RSNN has such a strong impact that even when it receives 4 training examples from f that happen 
to lie approximately on a straight line, its internal model (i.e, posterior) still has the form of a sinus function, 
rather than a straight line. Figure 1E shows the internal model once the network has received sufficient number 
of points to fully predict the sinus function. The normal temporal progression of the experiment at each step is 
shown in Fig. 1A, where the network state progresses normally after each example (that were marked by green 
crosses in Fig. 1B–E) is presented to the network. The total test MSE was 0.1968± 0.1469 over 5 runs and the 
linear baseline was 4.0340.

Fast adaptation of motor predictions
The brain is able to adapt its motor control commands very fast, sometimes even in a single  trial5,20. It is unlikely 
that synaptic plasticity can accomplish  that3, and an alternative model has been missing. We show that one-shot 
adaptation of motor prediction can be achieved if synaptic plasticity in the outer loop of L2L is complemented by 
the capability to transiently store salient information in the network state. We demonstrate this for the case of a 
forward model for an arm. The brain needs such forward models to plan movements, and also to take corrective 
actions if  needed21,22. Visual and proprioceptive feedback provide essential feedback for  that23.

We address the question of how the brain can quickly adapt its motor predictions for arm movements when 
kinematic or dynamic properties of the arm change. For example, carrying a load changes the distribution of 
masses over the arm, and using a tool in the hand changes its effective length. And yet, neural networks of the 
brain can quickly correct for these changes — without requiring multiple rounds of trial and error. Our goal was 
to produce a model of how RSNNs can achieve this without synaptic plasticity.

Here, we consider the case of a two-link arm as illustrated in Fig. 2B. The tip of the arm is moved by applying 
torques to each of the two joints. Both of its limbs are also subject to gravity. The task was to predict the angles 
of the two joints. But the masses and lengths of the two limbs were different in every episode, leading to very 
different trajectories even when the same torques were applied (Fig. 2C). The RSNN received as input the control 
torques applied to the arm model encoded through the population activity of 100 spiking neurons (see Fig. 2D 
and Methods). No direct information about the masses and lengths of the limbs were provided to the model, only 
the true angles of the limbs were given as feedback to the network with a delay of 100 ms (this feedback was set 
to 0 for the first 100 ms). The RSNN was trained using BPTT in the outer loop to minimize mean-squared error 
between predictions and targets, while the weights of the network were kept fixed in the inner loop. Neverthe-
less the RSNN was able to adapt its predictions for a new arm within about 600 ms while moving it for the first 
time (Fig. 2E,F). This is substantially faster than previous models for adaptation of a forward model based on 
synaptic  plasticity24. Overall, the network with SFA achieved a root mean squared error of 0.0529 m. Essential 
for this fast adaptation was that the RSNN model included neurons with SFA, and that its synaptic weights were 
trained in the outer loop of L2L to enable this very fast adaptation (see Methods for details).

Spiking neural networks can learn extremely fast from rewards — without engaging synaptic 
plasticity
We now demonstrate the ability of synaptic weights to encode innate or previously learnt priors that can enable 
and/or speed up learning of complex reinforcement learning tasks. For this, we use variations of the well-known 
Morris water-maze  task25,26 to define the range F of learning tasks for L2L. Here the subject has to learn to find a 
target in a 2D arena, and to navigate subsequently to this target from random positions in the arena (Fig. 3A,B).

The task consists of episodes that each last 2 seconds. The goal was placed randomly for each episode on the 
border of the arena. When the agent reached the goal, it received a reward of +1 , and was placed back randomly 
in the arena. When the agent hit a wall, it received a negative reward of −0.02 and the velocity vector was trun-
cated to remain inside the arena. The objective was to maximize the number of goal reaches within an episode. 
The Morris water-maze task is related to one of the more challenging demos of Wang et al.8 and Duan et al.7 in 
applying L2L to networks of LSTM units. But it had remained open whether this learning paradigm can also be 
applied to biologically more realistic neural network models. For added biological plausibility, we investigate 
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here to what extent a sparsely connected network of excitatory and inhibitory neurons that observes Dale’ law 
can learn to solve the Morris water-maze task within a few trials. To test this, we not only train the weights, but 
also the connectivity of the network using DEEP  R27.

We are addressing here at the same time point 2 of the Introduction: Can synaptic weights encode common 
structure in this family of task so that the network can use this abstract knowledge for more efficient learning? 
Concretely, there are two pieces of abstract knowledge in the family of water-maze tasks: The fact that goals are 
always on the border of the arena, and the fact that the goal position is constant within each episode. Note that 
we did not allow synaptic plasticity to take place during the short duration of a testing episode, only in the outer 
loop of L2L.

Since RSNNs with just a few hundred neurons are not able to process visual input, we provided the current 
position of the agent within the arena through a place-cell like Gaussian population rate encoding of the cur-
rent position (see orange segment in the top row of Fig. 3C). Note that the lack of visual input already makes 
it challenging to move along a smooth path, or to stay within a safe distance from the wall. The agent received 
information about positive and negative rewards in the form of spikes from external neurons (blue segment 
of the upper row of Fig. 3C). We used the outer loop of L2L to configure the network to solve this task as fast 
as possible — see Methods for details of the optimization process used to configure the network. In this task 
the RSNN had 400 recurrent units (200 excitatory and 80 inhibitory standard LIF neurons, and 120 excitatory 
neurons with SFA) and a synaptic connectivity of 20%. Allowing the network to rewire itself during the outer 
loop of L2L substantially improved the performance. The resulting network diagram and spike raster is shown 
in Fig. 3C. The network achieved a average accumulated reward of 26.76± 6.95 over 10 runs.

The first path in Fig. 3B shows that the RSNN is able to make use of the fact that the goal is located on the 
border of the maze. The second and last paths show that the RSNN also makes use of the abstract knowledge 
that the goal position remains fixed during an episode. Fig. 3C exhibits sample spike trains from excitatory and 
inhibitory LIF neurons without SFA, and of excitatory LIF neurons with SFA.

Altogether this demo shows that RSNN are able to learn very fast from rewards, without engaging synaptic 
plasticity. Furthermore it shows that synaptic weights of SNNs can encode abstract knowledge which makes 
learning of a behaviour substantially more efficient.

New learning capabilities of recurrent networks of spiking neurons
Here, we want to demonstrate point 2 of the Introduction, the substantially enlarged range of learning strategies 
that become available if one integrates dynamic network states into the learning process. We demonstrate this, 
in a limited way, on some of the arguably most important learning goals for recurrent neural networks: learning 
an attractor, using a learnt attractor for input completion, and deleting an attractor for pattern completion. The 
first two learning goals can be achieved through Hebbian learning rules in suitable artificial neural networks 
such as Hopfield  networks28. However the learning of a new attractor typically requires a substantial number of 
trials, whereas the brain is able to learn a new rule or prototype for image classification in one or very few tri-
als. Deleting an attractor for pattern completion corresponds to learning that a specific rule or prototype is no 
longer valid. This can also be accomplished by the human brain in one or few trials, but it is difficult to achieve 
through training of any type of recurrent neural network. But importantly, none of the three mentioned learning 
goals have been demonstrated for more realistic models of neural networks such as recurrent networks of spik-
ing neurons. We demonstrate (Fig. 4), in a limited setting with fixed ordering of inputs, that they can achieve all 
three learning goals very fast, even in a single trial, if one takes into account that synaptic weights can encode a 
much wider repertoire of learning methods than those that are accessible through local rules for synaptic plastic-
ity such as Hebbian rules or STDP. Due to the limitations in generalisation ability achievable through training 
recurrent neural networks with backpropagation through time, the network is only able to handle the phases in 
the order it is trained on.

The recurrent network we use consisted of 300 spiking neurons, half of which exhibited SFA, was trained in 
the outer loop of L2L to be able to memorize any arbitrary three prototype patterns instantaneously in phase A. 
The patterns were randomly generated 25-bit patterns, and network performance was evaluated for patterns that 
did not occur during training in the outer loop. Then in phase B it could use these stored prototype patterns for 
completing partial network inputs. The network also was able to delete any of the three pattern prototypes (here 
pattern 1) in phase C, and to continue pattern completion with the remaining two pattern prototypes 2 and 3 
(phase D). Note that the same partial network input or cue that lead in phase B to pattern (attractor) 1 is now 
completed in phase D to the next best prototype pattern 3 (with closest hamming distance).

The network was able to perform this four phase task for arbitrary prototype patterns consisting of 25 bits, 
achieving for new patterns a bitwise completion accuracy of 97.34% in phase B and 77.52% in phase D (for an 
average of 87.43% in both phases). See "Methods" for full details.

Discussion
We have revisited the roles of synaptic plasticity and network dynamics for learning in spike-based models of 
recurrent neural networks in the brain. So far most biologically plausible models for learning in RSNNs have 
focused on STDP or other synaptic plasticity mechanisms. Usually it was also assumed that this synaptic plastic-
ity mechanisms becomes immediately effective, which is not consistent with experimental data on  STDP2. Our 
results suggest that such mechanisms for synaptic plasticity are likely to be complemented with other mechanisms 
that especially support fast learning.

One fundamental insight that emerges from this analysis is that learning in RSNNs can be substantially 
more versatile and faster than previously thought. In particular, salient information during learning can also 
be encoded in the hidden variables of neurons if one also includes slower processes of biological neurons in the 
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neuron models. We have considered here only one such slow process, spike frequency adaptation of neurons, and 
shown that it has a remarkable impact on the learning capability of a network of spiking neurons. In particular 
one arrives in this way at the first spiking neural network models that can explain, through a biologically realistic 
neural network model, the capability of brains to learn significant behavioural improvements in very few trials, 
often even in a single trial. Our neural network model is based on data-based models for neurons, such as the 
GLIF  neurons29. Hence we conjecture that our new learning paradigms can also be implemented and tested in 
such large-scale data-based models of brain areas. It particular, it opens the door for modelling concrete fast 
learning processes of the brain that have been analysed in previous  studies3,5. Our model can be used to under-
stand these and related biological phenomena, such as fast adaptation of motor predictions, see Fig. 2.

We have demonstrated two specific advantages of this new model for learning in recurrent networks of spik-
ing neurons: 

1. It substantially enlarges the diversity and power of learning strategies by which recurrent networks of spik-
ing neurons can learn, see for example the demonstration with one shot learning of patterns by a RSNN and 
instantaneous deletion of an pattern in Fig. 4.

2. These networks can learn substantially faster than previously thought by making use of prior knowledge 
that is stored in their synaptic weights, see Figs. 1 and 3. In particular, we have shown in Fig. 1 that, once the 
network has learnt the overall task structure, it is able to ignore misleading information, thereby enabling 
robust learning from few  examples15.

We have also shown in Fig. 3 that an application of our two-tiered learning model can solve the Morris water 
maze task, a well known biological learning  paradigm25,26. This task was modelled as a continuous control prob-
lem, and we applied meta-reinforcement learning to the spiking neural network. This enabled the outer loop to 
extract two abstract pieces of information into the spiking neural network from its interaction with the environ-
ment: that the goals are always on the perimeter of the maze, and that the goal position does not change during 
trials that belong to the same learning episode. The network was able to apply this abstract learnt knowledge in 
order to solve very fast instances of the task that it had never encountered before.

Our new model for learning in neural networks of the brain makes a clear experimentally testable predictions: 
It predicts that traces of fast learning become first apparent in a modified network dynamics, and only later in 
modifications of synaptic strengths. More specifically, our model predicts that very recently acquired informa-
tion can be decoded first from the effective firing thresholds of neurons or other slowly changing variables of 
neurons and synapses. We expect that some of this newly acquired information is transformed and generalized 
during consolidation into synaptic  weights30.

Altogether our results suggest that learning in RSNNs of the brain is likely to engage other neurophysiological 
mechanisms besides synaptic plasticity, and that evolution, development and prior learning are likely to have 
configured and aligned these different processes so that they complement each other when a new learning task 
arises. This perspective opens the door to a much richer and functionally more powerful range of network learn-
ing methods than those which just consider synaptic plasticity. The spiking neural networks that emerged in the 
various tasks we considered, computed and learnt with a brain-like sparse firing activity. This is quite different 
from the dynamics of a spiking neural networks that operates with rate-codes. Hence these paradigms also 
broaden our insight into ways in which brains are able to compute and learn with sparsely active spiking neurons.

Methods
Network models
Neurons were modelled after the standard leaky integrate-and-fire (LIF) model with a proportion of neurons 
in all the networks consisting of LIF neurons with spike frequency adaptation (SFA) as in Bellec et al.10, Salaj 
et al.11 and described here. The use of SFA in spiking neural networks is required to get functionality comparable 
performance with LSTMs

Leaky integrate and fire (LIF) neurons
A LIF neuron j has one state variable – its membrane potential Vj(t) . Between spikes, the membrane potential 
Vj(t) evolved according to:

where Ij(t) is the input, and Rm is the electrical resistance term.
The neuron emitted a spike whenever the membrane potential Vj(t) exceeded the threshold vth . At each spike 

(at time t), the membrane potential Vj(t) was reset by subtracting the threshold value vth . After this, the neuron 
entered a refractory period of τref  time steps during which time it is not allowed to spike.

In discrete time, the input and output spike trains were modeled as binary sequences xi(t), zj(t) ∈ {0, 1} . 
Neuron j emitted a spike at time t if it was currently not in a refractory period, and its membrane potential Vj(t) 
was above its threshold. During the refractory period following a spike, zj(t) was fixed to 0. In discrete time, 
using timesteps of δt , the neuron was simulated as:

where α = e−
δt
τm  , τm is the membrane constant of the neuron j. The neuron spike is defined as 

zj(t) = H(Vj(t)− vth) , where H(x) is the Heaviside step function i.e. H(x) = 1 if x > 0 and 0 otherwise. In all 
our simulations, δt was set to 1 ms and Rm was set to 1G �.

(1)τmV̇j(t) = −Vj(t)+ RmIj(t),

(2)Vj(t + δt) = αVj(t)+ (1− α)RmIj(t)− vthzj(t),
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The input current Ij(t) in Eq. (2) was defined as the weighted sum of spikes from external inputs ( xi ) and 
other neurons ( zi ) in the network:

where W in
ji  and W rec

ji  denote respectively the input and the recurrent synaptic weights and dinji  and drecji  the cor-
responding synaptic delays from neuron j to neuron i.

More complex neuron models
 It is well-known that LIF neurons do not capture the internal dynamics of biological neurons very well. We 
used a version of generalized LIF neuron models, similar to the GLIF2 neuron model of Teeter et al.18 by using 
LIF neurons with spike frequency adaptation (SFA)10,11. To include SFA into the LIF neuron model described 
earlier, we replaced the fixed firing threshold vth with an activity-dependent adaptive threshold Aj(t) . Whenever 
the membrane potential Vj(t) exceeded this adaptive firing threshold Aj(t) (instead of vth ), the neuron emitted a 
spike zj , and its membrane potential was reset as before. But importantly, the firing threshold Aj(t) was updated 
at every timestep in discrete time as:

The new term a(t) denotes the activity-dependent component of the firing threshold, β > 0 is the relative ampli-
tude of the activity-dependent component. After each spike, aj(t) is increased by a fixed value and then decays 
back to 0. The parameter ρ = e

−δt
τa  controls the speed by which a(t) decays back to 0, where τa is the adaptation 

time constant. This overall amounts to increasing the threshold Aj(t) at every spike, which then decays back to 
the steady state threshold vth over time, the rate of decay controlled by ρ through τa . Adaptation time constants 
τa of neurons with SFA were chosen to match the task requirements. Network setup In all our experiments, we 
used a recurrent network of spiking neurons with a defined fraction of the neurons being LIF neurons (without 
SFA) and the rest being LIF neurons with SFA as shown in Fig. 5B. The specific proportion of LIF neurons with 
and without SFA, as well as the specific values of τa , and other hyper parameters such as size of the network are 
different for each experiment and described in Sect. "Details of the learning experiments in results". The inputs 
were provided to all the neurons, and all the neurons contributed to the output. The output readout was dif-
ferent for different experiments as described in Sect. "Details of the learning experiments in results" (“Output 
decoding” in each subsection).

When the neuron sign were not constrained (all except experiment of Fig. 3), the initial network weights 
were drawn from a Gaussian distribution Wji ∼

w0√
nin

N(0, 1) , where nin is the number of afferent neurons in the 
considered weight matrix (i.e. the number of columns of the matrix), N(0, 1) is the zero-mean unit-variance 
Gaussian distribution and w0 is a weightscaling factor chosen to be w0 =

1Volt
Rm

δt . With this choice of w0 the 
resistance Rm becomes obsolete but the vanishing-exploding gradient  theory31,32 can be used to avoid tuning by 
hand the scaling of Wji . In particular the scaling 1

√
nin

 used above was sufficient to initialize networks with realistic 
firing rates and that can be trained efficiently.

When the neuron signs were constrained (experiment of Fig. 3), all outgoing weights Wrec
ji  or Wout

ji  of a neuron 
i had the same sign. In those cases, DEEP  R27 was used as it maintains the sign of each synapse during training. 
The sign is thus inherited from the initialization of the network weights. To efficiently initialize weight matrices 
for given fractions of inhibitory and excitatory neurons, a sign κi ∈ {−1, 1} is generated randomly for each neuron 
i by sampling from a Bernoulli distribution. The weight matrix entries are then sampled from Wji ∼ κi|N(0, 1)| 
and post-processed to avoid exploding gradients. A constant is added to each weight so that the sum of excitatory 

(3)Ij(t) =
∑

i

Win
ji xi(t − dinji )+

∑

i

W rec
ji zi(t − drecji ),

(4)
Aj(t) = vth + βaj(t),

aj(t + δt) = ρjaj(t)+ (1− ρj) zj(t).

Figure 5.  Schema of the learning architecture that we consider. (A) The two levels of optimization/learning for 
learning-to-learn that is used in the experiments in this paper is illustrated here. Learning by a neural network 
N is enhanced by prior optimization of hyperparameters for a large family of learning tasks. (B) Generic 
architecture of the biologically realistic neural network models N that we consider in all the experiments, 
consisting of LIF neurons both with and without SFA.
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and inhibitory weights onto each neuron j (
∑

i Wji) is  zero33 (if j has no inhibitory or no excitatory incoming con-
nections this step is omitted). To avoid exploding gradients it is important to scale the weight so that the largest 
eigenvalue is lower of equal to  131. Thus, we divided Wji by the absolute value of its largest eigenvalue. When the 
matrix is not square, eigenvalues are ill-defined. Therefore, we first generated a large enough square matrix and 
selected the required number of rows or columns with uniform probabilities. The final weight matrix is scaled by 
w0 for the same reasons as before. To initialize matrices with a sparse connectivity, dense matrices were generated 
as described above and multiplied with a binary mask generated by sampling uniformly the neuron coordinates 
that were non-zero at initialization. DEEP R maintains the initial connectivity level throughout training by 
dynamically disconnecting synapses and reconnecting others elsewhere. The L1-norm regularization parameter 
of DEEP R was set to 0.01 and the temperature parameter of DEEP R was left at 0.

Details of the learning to learn setup
Optimization (learning) is carried out in this model at two levels as shown in Fig. 5A: The “inner loop” involves 
the learning of a single task by a network N , which will be, in our case, a network of spiking neurons. The net-
work parameters are kept fixed in the inner loop in all the experiments, and learning or adaptation happens in 
the dynamics of the recurrent network. The “outer loop” involves optimization of some hyperparameters � of the 
network to support fast learning of the individual tasks in the inner loop. The outer loop optimization proceeds 
on a much larger time scale than the inner loop, and considers a large, in general infinitely large, range of learn-
ing tasks F instead of a single learning task. This outer loop mimics the impact of evolutionary, developmental 
and prior learning processes, as well as prior learning, on parameters of the neural network N . Notably, it does 
not optimize these parameters for a single learning task, but for fast learning of any generic new task C from the 
considered range F of learning tasks. This optimization is carried out in this study through backpropagation 
through time (BPTT) to minimize the loss on batches of different tasks chosen from the given family of learn-
ing tasks F . Note that we use the terms training and optimization interchangeably in this paper. For simplicity, 
we let all synaptic weights of the RSNN N belong to the set of hyperparameters that are optimized in the outer 
loop. Hence the outer loop training shapes the activation dynamics of the RSNN, which include its firing activity 
and short-term memory.

Network simulation in the inner loop
 In each episode of the inner loop, a task C was chosen from the family of tasks F . The RSNN received a sequence 
of inputs xk corresponding to this C, each encoded through the population activity of spiking neurons. In addi-
tion, it received either a cue (experiment in Sect. "New learning capabilities of recurrent networks of spiking 
neurons") or feedback (all other experiments) of what the target output should have been for the previously 
presented input C(xk−1) (The feedback was set to zero in the first time step). The network could use the cue or 
delayed target feedback to adapt its behavior. The network had to predict the target yk = C(xk) at each time step 
k. There was no synaptic plasticity in the inner loop.

Hyperparameter optimization in the outer loop
 The outer loop optimization of learning-to-learn happened in the following way: In each iteration, a batch of 
different random tasks were chosen from the family F and the inner loop is simulated for each of these tasks by 
presenting the corresponding inputs to the RSNN. The predictions from the inner loop were used to compute a 
loss function that compared the prediction to the target for the entire batch of tasks. We used backpropagation 
through time (BPTT) to optimize the hyperparameters in the outer loop of L2L, which were the synaptic weights 
of the RSNN in our experiments.

Since the spike output of a LIF neuron model is not differentiable, we used a pseudo-derivative, but with an 
additional factor γ < 1 that dampens the increase of backpropagated errors through spikes as  in10,11:

where vj(t) denotes the normalized membrane potential vj(t) =
Vj(t)−Aj(t)

Aj(t)
 . A proper choice of the dampening 

factor turns out to be critical in such applications of BPTT to RSNNs, since the gradient needs to propagate 
backwards through many layers (= time slices) of the unrolled RSNN. In neurons with SFA, gradients can be 
propagated efficiently through the hidden variable that denotes the dynamic threshold, without requiring a 
pseudo-derivative or dampening factor like for the backpropagation through spikes.

Details of the learning experiments in Results
Priors encoded in synaptic weights can significantly speed up learning
Task family.  The RSNN was trained to implement a regression algorithm on a family of sinusoidal functions. 
The targets were defined by sinusoidal functions y = A sin(φ + x) over the domain x ∈ [−5, 5] . The specific 
function to be learned was defined then by the phase φ and the amplitude A, which were chosen uniformly ran-
dom between [0,π ] and [0.1, 5] respectively.

Input encoding.  Analog values were transformed into spiking trains in exactly the same way as for the previ-
ous section.

(5)
dzj(t)

dvj(t)
:= γ max{0, 1− |vj(t)|},
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Output decoding.  The output of the RSNN was a linear readout that received as input the mean firing rate of 
each of the neurons per step i.e the number of spikes divided by 20 for the 20 ms time window that constitutes 
the step.

RSNN setup and training schedule.  The standard RSNN model was used, with 100 hidden neurons, of which 
40% were LIF neurons with SFA and the rest were LIF neurons without SFA. We used all-to-all connectivity 
between all neurons.

The network training proceeded as follows: A new target function was randomly chosen for each episode of 
training, i.e. the parameters of the target function were chosen uniformly randomly from within the ranges above. 
Each episode consisted of a sequence of 500 steps, each lasting for 20 ms. In each step, one training example from 
the current function to be learned was presented to the RSNN. In such a step k, the inputs to the RSNN consisted 
of a randomly chosen scalar input xk . In addition, at each step, the RSNN also got the target value C(xk−1) from 
the previous step, i.e. the value of the target calculated using the target function for the inputs given at the previ-
ous step (in the first step, C(x0) is set to 0).

All the weights of the RSNN were updated using our variant of BPTT, once per iteration, where an iteration 
consists of a batch of 100 episodes, and the weight updates were accumulated across episodes in an iteration. 
We used the Adam  optimizer34 with the default parameters with a learning rate of 0.001. The loss function for 
training was the mean squared error (MSE) of the RSNN predictions over an iteration (i.e. over all the steps in 
an episode, and over the entire batch of episodes in an iteration):

where K = 500 is the number of steps i.e. the number of points presented to the network, each lasting for 20 ms, 
ŷk and yk are the network prediction and target respectively at each step k, x is the input to the network, � = 30 
is the coefficient of the regularization term, favg is the average firing rate of the network over the entire episode, 
and f0 = 20Hz is the target firing rate in the regularization term. With the regularization term, we induce the 
RSNN to use sparse firing. We trained the RSNN for 5000 iterations.

Parameter values.  The RSNN parameters were as follows: 5 ms neuronal refractory period, delays of 1 ms, 
adaptation time constants of the LIF neurons with SFA spread uniformly between 1− 3000 ms, β = 1.6mV  for 
LIF neurons with SFA (0 for LIF neurons without SFA), membrane time constant τ = 20ms , 30 mV baseline 
threshold voltage. The dampening factor for training was γ = 0.3.

Analysis and comparison.  The linear baseline was calculated by performing linear regression on the analog 
values of input points and targets in the first half of the episodes (250 steps) and testing it on the points in the 
second half of the episode.

For visualizing the internal model of the RSNN, we show, for any potential input value x, the output y which 
the RSNN would give if this x would occur as the next network input (in a hypothetical experiment, that has 
no effect on the next steps of the learning process for learning the target function f). More precisely, to produce 
these panels, we stored the network state (i.e. the membrane potentials and all other dynamic parameters) at 
the corresponding time steps during the inner loop learning process. We then continued the simulation from 
these states with inputs from -5 to 5 and the network predictions were plotted as the orange curve in in panels 
Fig. 1B–E. The network state was not allowed to change when these test inputs x are shown.

Fast adaptation of motor predictions
Task family.  The family of functions was defined by different two-link arms where the length and masses of the 
links were randomly chosen in the range [0.5, 2]. The torques were generated randomly as described  in24. The 
network was trained to predict the arm state, i.e. the angles φ1,φ2 of its two links.

Input encoding.  Analog values were transformed into spike trains to serve as inputs to the RSNN as follows: 
For each input component, 100 input neurons are assigned values c1, . . . , c100 evenly distributed between the 
minimum and maximum possible value of the input. Each input neuron has a Gaussian response field with a 
particular mean and standard deviation, where the means are uniformly distributed between the minimum and 
maximum values to be encoded, and with a constant standard deviation. More precisely, the firing rate ri (in Hz) 
of each input neuron i is given by ri = rmax exp

(
−

(mi−zi)
2

2 σ 2

)
 , where rmax = 200 Hz, mi is the value assigned to 

that neuron, zi is the analog value to be encoded, and σ =
(mmax−mmin)

1000  , mmin with mmax being the minimum and 
maximum values to be encoded.

Output decoding.  The output of the RSNN was a linear readout that received as input the trace of the firing 
of all the neurons in the network. The spiking activity of the neurons was convolved with an exponential kernel 
with time constant 50 ms to generate this trace.

RSNN setup and training schedule.  The standard RSNN model was used, with 600 hidden neurons. Of these, 
50% were LIF neurons with SFA and the rest were LIF neurons without SFA. We used all-to-all connectivity 
between all neurons.

(6)L (�) = EC∼F

[
K∑

k=1

(
yk − ŷk(x;�)

)2
+ �

(
favg(x,�)− f0

)2
]
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The training was as follows: During inner loop training, for each episode, we randomly chose a value for the 
mass and length for each link of the arm. The RSNN received the motor command c(t) = [c1(t) c2(t)]

T , and the 
actual state vector of the arm τ = 100 ms ago, s(t − τ) as inputs. The state vector of the arm s(t) = [φ1(t) φ2(t)]

T 
was defined by the angles φ1,φ2 of its two links. All the inputs were encoded into spikes using a population-rate 
code before being presented to the network (as shown in Fig. 2D top panel). A linear readout on the trace of the 
neural activity was used to generate the predictions of the state of the arm ŝ(t;�) . Each episode lasted for 30 
seconds, where the torque changed every 10 ms.

In the outerloop, the following loss function was minimized using BPTT for spiking networks:

Parameter values.  The RSNN parameters were as follows: 5 ms neuronal refractory period, delays of 1 ms, 
adaptation time constants of the LIF neurons with SFA spread uniformly between 1− 600 ms, β = 1.7mV  for 
LIF neurons with SFA (0 for LIF neurons without SFA), membrane time constant τ = 20ms , 30 mV baseline 
threshold voltage. The dampening factor for training was γ = 0.3 . We used the Adam  optimizer34 with the 
default parameters with a learning rate of 0.001 and a batch size of 80 for training.

Spiking neural networks can learn extremely fast from rewards — without engaging synaptic plasticity
Task family.  The tasks consisted of a family of navigation tasks in a two-dimensional circular arena. For all 
tasks, the arena was a circle with radius 1 and goals were smaller circles of radius 0.3 with centers uniformly 
distributed on the circle of radius 0.85. At the beginning of an episode and after the agent reached a goal, the 
agent’s position was set randomly with uniform probability within the arena. At every timestep, the agent chose 
an action by generating a small velocity vector of Euclidean norm smaller or equal to ascale = 0.02 . When the 
agent reached the goal, it received a reward of 1. If the agent attempted to move outside the arena, it received a 
negative reward of −0.02 and its new position was given by the intersection of the velocity vector with the border.

Input encoding.  Information of the current environmental state s(t) and the reward r(t) were provided to the 
RSNN at each time step t as follows: The state s(t) was given by the x and y coordinate of the agent’s position 
(see top of Fig. 3C). Each position coordinate ξ(t) ∈ [−1, 1] was encoded by 40 neurons which spiked according 
to a Gaussian population rate code defined as follows: a preferred coordinate value ξi , was assigned to each of 
the 40 neurons, where ξi ’s were evenly spaced between −1 and 1. The firing rate of neuron i was then given by 
rmax exp(−100(ξi − ξ)2) where rmax was 500 Hz. The instantaneous reward r(t) was encoded by two groups of 
40 neurons (see green row at the top of Fig. 3C). All neurons in the first group spiked in synchrony each time a 
reward of 1 was received (i.e. the goal was reached), and the second group spiked when a reward of −0.02 was 
received (i.e. the agent moved into a wall).

Output decoding.  The output of the RSNN was provided by five readout neurons. Their membrane potentials 
yi(t) defined the outputs of the RSNN. The action vector a(t) = (ax(t), ay(t))

T was sampled from the distribu-
tion πθ which depended on the network parameters θ through the readouts yi(t) as follows: The coordinate ax(t) 
( ay(t) ) was sampled from a Gaussian distribution with mean µx = tanh(y1(t)) ( µy = tanh(y2(t)) ) and vari-
ance φx = σ(y3(t)) ( φy = σ(y4(t)) ). The velocity vector that updated the agent’s position was then defined as 
ascale a(t) . If this velocity had a norm larger than ascale , it was clipped to a norm of ascale.

The last readout output y5(t) was used to predict the value function Vθ (t) . It estimated the expected dis-
counted sum of future rewards R(t) =

∑
t′>t η

t′−t r(t′) , where η = 0.99 is the discount factor and r(t′) denotes 
the reward at time t ′ . To enable the network to learn complex forms of exploration we introduced current noise 
in the neuron model in this task. At each time step, we added a small Gaussian noise with mean 0 and standard 
deviation 1

Rm
νj to the current Ij into neuron j. Here, νj is a network parameter initialized at 0.03 and optimized 

by BPTT alongside the network weights.

RSNN setup and training schedule.  To train the network we used the Proximal Policy Optimization algo-
rithm (PPO)35. For each training iteration, K full episodes of T timesteps were generated with fixed parameters 
θold (here K = 10 and T = 2000 ). We write the clipped surrogate objective of PPO as OPPO(θold , θ , t, k) (this is 
defined under the notation LCLIP  in35). The loss with respect to θ was then defined as follows:

where H(πθ ) is the entropy of the distribution πθ , f 0 is a target firing rate of 10 Hz, µv , µe , µfiring are regulariza-
tion hyper-parameters, favg is the average firing rate of the network over the entire episode. Importantly probabil-
ity distributions used in the definition of the loss L (i.e. the trajectories) were conditioned on the current noises, 
so that for the same noise and infinitely small parameter change from θold to θ the trajectories and the spike trains 
were the same. At each iteration this loss function L was then minimized with one step of the ADAM  optimizer34.

(7)L (�) = EC∼F

[ ∫

t

(
s(t)− ŝ(t;�)

)2
dt

]

(8)L (θ) =−
1

KT

∑

k<K

∑

t<T

OPPO(θold , θ , t, k)+ µv(R(t, k)− Vθ (t, k))
2

(9)− µeH(πθ (k, t))+ µfiring

(
favg(x,�)− f0

)2
,
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Parameter values.  In this task the RSNN had 400 hidden units (200 excitatory LIF neurons, 80 inhibitory 
LIF neurons and 120 LIF neurons with SFA with adaptation time constants τa = 1200 ms) and the network 
was rewired with a fixed global connectivity of 20% using DEEP  R27. DEEP R provides a way to train a sparsely 
connected neural network directly using BPPT, while maintaining a fixed overall sparsity in the network and 
fixed sign for each of the connections. The latter ability allows us to train a network that obey Dale’s law with 
fixed excitatory and inhibitory neurons. The membrane time constants were similarly sampled between 15 and 
30 ms. The adaptation amplitude β was set to 1.7. The refractory period was set to 3 ms and delays were sampled 
uniformly between 1 and 10 ms. The regularization parameters µv , µe and µfiring were respectively 1, 0.001, and 
100. The parameter ǫ of the PPO algorithm was set to 0.2. The learning rate was initialized to 0.01 and decayed by 
a factor 0.5 every 5000 iterations. We used the default parameters for ADAM, except for the parameter ǫ which 
we set to 10−5.

New learning capabilities of recurrent networks of spiking neurons
Task family.  In each task C from the family of tasks F , three 25-bit randomly generated patterns were shown 
in the first phase referred to as phase A (see Fig. 4 for illustration of phases). Each of these three patterns were 
presented to the network for 100 ms. In the next phase B, partial versions of the same three patterns were shown. 
The partial patterns were generated by setting each non-zero bit in each pattern to zero with 40% probability. 
The targets for this phase were the full patterns from phase A. In phase C, a cue signal was given to denote to the 
network which of the three patterns should be “deleted” by index. In the last phase D, the same partial patterns 
as in phase B were shown again. The targets were the full patterns for the two patterns that were not “deleted”. 
For the pattern that was “deleted”, the target was one of other two patterns that was closest to the deleted pattern 
measured by hamming distance.

Input encoding.  The patterns were generated as 25-bit vectors, and the cue as a 3-bit vector. In both cases, each 
bit was represented by 5 spiking neurons, which fired at a high rate of 200 Hz when the bit was 1, and at a lower 
rate of 2Hz when it was 0.

Output decoding.  The output of the RSNN was a linear readout that received as input the trace of the firing 
of all the neurons in the network. The spiking activity of the neurons was convolved with an exponential kernel 
with time constant 100 ms to generate the trace.

RSNN setup and training schedule.  The standard RSNN architecture was used, with 300 hidden neurons. Of 
these, 50% were LIF neurons with SFA and the rest were LIF neurons without SFA. We used all-to-all connectiv-
ity between all neurons.

The network training proceeded as follows: In each episode, a new set of three random patterns were chosen 
along with the pattern that was to be excluded from the output. These were presented to the network as described 
above.

All the weights of the RSNN were updated using our variant of BPTT, once per iteration, where an iteration 
consists of a batch of 100 episodes, and the weight updates were accumulated across episodes in an iteration. 
We used the Adam  optimizer34 with the default parameters with a learning rate of 0.001. The loss function for 
training was the bit-wise cross-entropy loss of the RSNN predictions:

where C E is the cross-entropy loss, yk and pk are, respectively, the target 25-bit vector and vector of predicted 
probability of each of the N = 25 bits being 1 at step k.

The overall loss was given by:

where K = 3 is the number of patterns shown in each phase, and the subscripts B and D denote phase to which 
the target and prediction vectors correspond, � = 5 is the coefficient of the regularization term, favg is the aver-
age firing rate of the network over the entire episode, and f0 = 20Hz is the target firing rate in the regularization 
term. With the regularization term, we induce the RSNN to use sparse firing. We trained the RSNN for 100,000 
iterations.

Parameter values.  The RSNN parameters were as follows: 5 ms neuronal refractory period, delays of 1 ms, 
adaptation time constants of the LIF neurons with SFA were spread uniformly between 1− 1000 ms, β = 1.7 mV 
for LIF neurons with SFA (0 for LIF neurons without SFA), membrane time constant τ = 20ms , 30 mV baseline 
threshold voltage. The dampening factor for training was γ = 0.3. 

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author on 
reasonable request. All datasets are generated programmatically, and the details of how to generate the data are 
included in the manuscript.

(10)C E (yk , pk) = −
1

N

N∑

n=1

(
yk,n log(pk,n)− (1− yk,n) log(1− pk,n)

)

(11)L (�) = EC∼F

[
1

K

K∑

k=1

C E (ykB, p
k
B(x,�))+

1

K

K∑

k=1

C E (ykD , p
k
D(x,�))+ �

(
favg(x,�)− f0
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Code availability
All the code for the experiments is available in the Supplementary Information, and will be made public on 
publication at the following url: https:// github. com/ anand trex/ fast- snn- learn ing.
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