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Measuring and classifying IP usage 
scenarios: a continuous neural 
trees approach
Zhenhui Li 1, Fan Zhou 1,2, Zhiyuan Wang 1, Xovee Xu 1*, Leyuan Liu 1 & Guangqiang Yin 1,2

Understanding user behavior via IP addresses is a crucial measure towards numerous pragmatic 
IP-based applications, including online content delivery, fraud prevention, marketing intelligence, 
and others. While profiling IP addresses through methods like IP geolocation and anomaly detection 
has been thoroughly studied, the function of an IP address—e.g., whether it pertains to a private 
enterprise network or a home broadband—remains underexplored. In this work, we initiate the 
first attempt to address the IP usage scenario classification problem. We collect data consisting of 
IP addresses from four large-scale regions. A novel continuous neural tree-based ensemble model 
is proposed to learn IP assignment rules and complex feature interactions. We conduct extensive 
experiments to evaluate our model in terms of classification accuracy and generalizability. Our results 
demonstrate that the proposed model is capable of efficiently uncovering significant higher-order 
feature interactions that enhance IP usage scenario classification, while also possessing the ability to 
generalize from the source region to the target one.

An Internet Protocol (IP) address is a unique identifier assigned to devices interfacing with the Internet, func-
tioning as a means of personal identifiable information and location-based addressing. The detailed examination 
and analysis of IP addresses, which includes the investigation of risk behaviors associated with these addresses 
across various dimensions, is collectively referred to as IP Address Profiling (IAP)1,2, the practice of mapping IP 
addresses to their respective geographical locations. This pivotal step serves as the foundations for a multitude 
of downstream applications, which range from targeted marketing and fraud prevention to restricted content 
delivery and network attack  detection3–7.

In the present study, we investigate a new research problem in IAP – IP usage scenario classification 
(IPUSC)—aiming at predicting the roles of IP address owners, such as data centers and home broadband, by 
scrutinizing the network attributes and behaviors correlated with IPs. This problem is important in various 
network-based applications and online services. Accurately measuring usage scenarios can enhance system 
legality and authenticity, assist companies in mitigating fraudulent risks, improve service management, and 
bolster defenses against online attacks. By probing into the application scenario of IP addresses, advertising 
companies and demand-side platforms can sift out bot-generated IPs, optimizing resource allocation strategies. 
This optimization minimizes online advertising costs directed at non-human traffic, enhances the effectiveness 
of advertisement delivery, and maximizes return on investment. Such an analysis can also aid in identification 
of so-called “wool parties”—these are farms that manipulate application rankings and search outcomes via 
advertisement fraud, used in tandem with other verification technologies during login, transaction, and payment 
processes. Furthermore, predicting IP usage scenario is beneficial in managing financial credit risk, as it enables 
the identification of fraudulent activities and high-risk users, monitoring business credit risks, and verifying 
whether transactions are conducted by bots controlled by malicious  entities8,9.

Specifically, we delve into a new research question: Can IP usage scenarios be effectively classified? To answer 
this question, we extensively extract IP-related features through active Internet measurements (e.g., traceroute, 
GPS, and Wi-Fi) and several open databases (e.g., WHOIS, DNS, and IP geolocations). We design a novel deep 
continuous neural tree-based ensemble model, which takes the advantages of both deep learning and ensemble 
models for classifying IP addresses into one of the four usage scenarios: home broadband, private enterprise, 
cellular network, and data center. The exploration of this classification method adds a new layer of protection 
and understanding to the ongoing dialogue about the dynamics and nuances of IP address utilization.

To the best of our knowledge, this is among the first work towards proposing an effective and efficient method 
to address the IPUSC problem. Our approach leverages rich network measurements and deep continuous neural 
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trees to capture various explicit and implicit IP features and model their complex interactions. We employ 
differentiable boosted decision  trees10,11 to learn interpretable feature transformations and facilitate model dif-
ferentiability into the feature splitting and decision tree routing. Moreover, our method stacks multiple layers of 
ensemble trees through deep continuous neural networks for learning decision rules. Rather than directly using 
neural networks for stacking discrete  layers12 that may undermine the continuous feature learning, we introduce 
neural ordinary differentiable  equations13 to consider the complex dependencies between consecutive layers.

To sum up, this study makes the following contributions:

• We formally formulate a novel and useful perspective on IP address profiling—exploring the usage scenario 
of an IP address – which can benefit many online services such as risk management and precise advertising.

• We collect and present large-scale benchmark datasets for IP usage scenario classification, which consists of 
a large volume of IP addresses as well as a wide range of corresponding categorical and numerical features 
organized in a format of tabular.

• We propose a novel deep continuous neural trees approach to explore the IP scenario tabular data. Our 
model takes both the advantages of differentiable decision trees and deep neural networks, bridging the gap 
between continuous feature learning and discrete neural ensembles.

• Extensive experiments conducted on four large-scale benchmark datasets demonstrate the effectiveness of 
our model on classifying IP usage scenarios in comparison to strong baselines. Our model can precisely fit 
the IP assignment rules crossing ISPs, showing superior transferring capability without significant perfor-
mance degradation. This is especially useful for regions with data limitations or restrictions. Our method 
may benefit various online services such as risk management and fraud prevention.

Related work
IP profiling
Understanding user behaviors behind IP addresses is important for many real-world applications, e.g., fraud 
detection, malicious behavior detection, and precise positioning. IP address profiling (IAP) aims to represent IP 
hosts from the measured network traffic data and summarize communication behaviors and usage patterns. Many 
IAP tasks, including IP  geolocation2,14,15, network traffic  classification16, and host behavior  profiling17, have been 
studied in literature. For example, IP geolocation maps an IP address to a physical location such as a country, 
a city, or even a street, which has been extensively studied in the community due to its importance on online 
fraud prevention and personalized content  delivery18,19. However, to our knowledge, little effort has been done 
towards identifying the IP usage scenarios, which try to figure out the types of IP addresses. IP scenario predic-
tion can be used as a preliminary for IAP tasks. For example, it can help risk control for credit card business by 
analyzing users’ logins and transaction IP addresses. Zhou et al.20 formulated the IP usage scenario classification 
problem and introduced a benchmarking dataset. Our work builds upon this groundwork and proposes a novel 
deep continuous neural trees approach that outperforms strong baselines. We also conducted model generaliza-
tion experiments that showcase the proposed model has better transferring capability across different regions.

Tabular data learning
Tabular data consist of rows for instances (e.g., IP blocks) and columns for features (e.g., the port and domain 
name). Tree-based ensemble models are widely used for learning informative signals and complex feature inter-
actions from tabular data. They are both efficient and effective, and their predictions are highly interpretable. 
Nevertheless, tree-based models require heavy feature engineering and do not support representation learning 
for end-to-end training.

Recently, there is a growing interest in combining the advantages of deep neural networks and ensemble 
decision trees for learning feature interactions in tabular  data12,21–26. For example,  Autocross22 is an automatic 
feature crossing method designed for tabular data mining and classification which is especially suitable for 
capturing considerable categorical feature interactions.  NON26 is a deep tabular network model by adding an 
auxiliary classifier to each layer of networks. It leverages three different neural networks to exploit the intra-field 
information and explore the non-linear feature interactions for tabular data classification.

Data and problem
Now we describe the details of data and features, and then formally define the IP usage scenario classification 
problem. An illustration of data acquisition is depicted in Fig. 1.

IP block construction
During data inspection, we find that continuous IP addresses are usually used in the same scenario. Therefore, 
we consider IP blocks rather than individual IP addresses when predicting usage scenarios. Besides, features of 
an IP block are more stable and can be easily understood than individual IP addresses.

An IP block is composed of a sequence of continuous IPs. In our data, segmenting IPs into blocks is based 
on the smallest IP subnetwork division in the WHOIS database. If the number of IPs in a subnetwork is more 
than 256, this IP block continues with another 256 IPs.

Feature extraction
Extracting informative IP block features is the key step for IP usage scenario classification problem. Specifically, 
we focus on the following groups of features. The list of features is shown in Table 1. 
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1. Geographic location information: We collect IP geolocation information from devices GPS signals. In an IP 
block, IPs with geolocation records are denoted as landmarks. Other types of geolocation features extracted 
from landmarks are also considered, such as landmark ratios and administration divisions. Meanwhile, since 
terrains and social factors may affect IP distributions, we include the following new features: area, area GDP, 
population, and population density.

2. Routing information: We use the remote traceroute  method27 to obtain IP routing messages in a block and 
record intermediate routing IPs, round-trip time, and reachable results. Based on the recorded data, we select 
two most indicative features: the proportion of reachable IPs and the proportion of IPs appearing in a rout-
ing path. The rationale behind this two features is that IPs along traceroute paths usually belong to the data 
centers or private enterprises. In contrast, if a majority of IPs in a block cannot be accessed, they are more 
likely to be assigned to home broadband or cellular networks.

3. Port information: We deploy the network scanning tool  ZMap28 to scan and record the opening status of 
reserving ports, e.g., 80/443 used for HTTP/HTTPS, 21 used for FTP, and 22 used for SSH. For example, 
many 80/443 ports used by conventional web services are opened in private enterprises and data centers, 
while their usages are very limited for cellular networks and home broadband. Otherwise, port 53 used by 
DNS is more likely to appear in data centers.

4. Domain and registration information: We take domain names and registration information into account 
by accumulating abundant IP-domain data in DNS. For example, the number of domain ownership in data 
centers and private enterprises is higher than that in home broadband and cellular networks.

IP usage scenario classification problem definition
Now we define the problem studied in this paper. Given a set of IP block features, which is consisted of 46 inde-
pendent variables. We aim to build a data-driven model that classifies an IP block into one of the four typical IP 
usage scenarios: Home Broadband, Private Enterprise, Cellular Network, or Data Centers.

Methods
This section presents the overall framework for addressing the IPUSC problem.

Dataset

IP Block

IP Block

cover_area

ip_has_domain_num

Other statistics 
features

min_ip, max_ip

IP Block Field
Feature 

Processing

Feature 

Processing

IP Block

IP IP

IP IP IP IP

IP Block
IP IP

IP IP IP IP

IP grouped by 
WHOIS information

IP Block

IP Block

Domain Name

WHOIS

Traceroute

Port Information

Geoloaction

IP Field

Figure 1.  Overview of data acquisition.

Table 1.  List of features used in this work.

Group # Features Features

Geolocation 20

Number of IPs, number of landmarks, ratio of landmarks, average number of landmark history locations, 
landmark covered area radius, number of landmark covered districts, number of landmark covered cities, 
number of landmark covered provinces/states, average of the ratios of every landmark history covered area 
to the block covered area, length of IP block prefix (e.g., the 24 in 192.168.0.1/24), block province/state, block 
province/state area, block province/state GDP, block province/state population, block province/state popula-
tion density, block city, block city area, block city GDP, block city population, block city population density.

Traceroute 4 Number and ratio of reachable IPs, number and ratio of IPs appearing in a routing path.

Port 16
Numbers and ratios of alive port for port 80, port 443, port 21, port 22, port 23, port 53, and ports for email 
services (including port 25, port 465, port 143, port 993, port 110, and port 995), number of ICMP alive IPs, 
ratio of ICMP alive IPs.

Domain 3 Average number of block IP main domain names, number of IP domain names, ratio of IP domain names.

WHOIS 3 Number of WHOIS IPs (e.g., 65536 and 32768), WHOIS registration netname, WHOIS registration organiza-
tion name.
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Tree-based classification model
Since real-world IP scenario assignments are usually assigned by flexible rules, we choose tree-based models 
that follow consistent divide-and-conquer rules and can provide interpretable predictions. The tabular data we 
studied contain a large number of numerical and categorical features. Tree-based methods learn tabular data via 
a series of boosting models such as  XGBoost29,  LightGBM30, or  CatBoost31. However, most of them are limited 
to decision trees whose constructions have unconstrained rules. Once the training process finishes, the deci-
sion rules will not change. They can fit data efficiently but may end up with overfitting issues and suboptimal 
classification performance.

To overcome these issues, we propose a novel tree-based neural network named ODTSR that can interactively 
handle tabular data with greater flexibility. Specifically, we use Oblivious Decision Tree (ODT)10,11 as the basic 
learning architecture. It is similar to a regular decision tree but is constrained by the same feature and splitting 
function in all decision nodes at the same depth. These constraints not only enhance our model’s generalization 
capability but also improve model’s efficiency as it allows parallel computing with independent splits—regular 
decision trees, in contrast, requiring sequentially splits.

The main drawback of tree-based approaches is that they are based on a divide-and-conquer strategy that 
does not allow end-to-end optimization and local optimization. To make the ODT differential, we introduce 
a stochastic  routing32 into ODT and propose a novel model called ODTSR–ODT with Stochastic Routing. As 
illustrated in Fig. 2 (left panel), there are a set of intermediate nodes and leaf nodes. Different from the decision 
nodes of traditional decision trees that simply conduct routing by a binary number, the node routing directions 
in our proposed ODTSR are the output of a random variable, which provides feasibility for global optimization. 
Moreover, the split in traditional decision trees is determined by the Heaviside function. To make the tree output 
differentiable, we replace the split Heaviside function by a Bernoulli random variable with mean sd(z;�) , where 
z is a specific feature of an IP block, � is a learnable parameter, and function sd(·) is defined as:

where σ is a nonlinear activation function (e.g., sigmoid here). Each leaf node maintains a class-label distribu-
tion, and each hl ∈ R

4 is the probability of each IP block belongs to a specific scenario. At last, the prediction H 
of the ODTSR is the averaged probabilities of all leaves:

where pl(x|�) is the probability that sample x reaches leaf l:

Here 1(·) is an indicator function, D denotes all decision nodes, Lleft and Lright are the sets of decision nodes that 
go to left or right in the routing, respectively. Please refer to Fig. 2 (left panel) for an intuitive illustration for the 
path (S1, S2, S3, l5).

Deep tree ensembles
Now we have defined ODTSR to make the decision trees differentiable and follows an end-to-end structure, 
which enables parameter updating via backpropagation. However, since IP scenario data contains a large number 
of complex features, a single-layer of ODTSR may not be able to accurately explore and capture the intricate 
correlations and interplays among IP scenario features.

To overcome this hurdle, we introduce a deep tree ensemble technique inspired by the recent advances in 
bridging deep learning and gradient-based decision  trees12, which have shown promising performance on learn-
ing tabular data. Specifically, there are m trees in each layer of the neural networks whose output is composed by 

(1)sd(z;�) = σ(�⊺z),

(2)H[x,�, p] =
∑
l∈L

hlpl(x|�),

(3)pl(x|�) =
∏
d∈D

sd(x;�)1(l∈Lleft)(1− sd(x;�))1(l∈Lright).
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Figure 2.  Method overview. (a) Illustration of an ODTSR Tree. (b) The architecture of multiple-layer 
ensembles.
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the concatenation of all tree predictions Hk = [Hk
1 (x),H

k
2 (x), ...,H

k
m(x)] , where Hk denotes k-th layer output. 

In order to realize a deep network, the architecture is designed as a sequence of K layers, as shown in Fig. 2 
(right panel), each layer takes sample x and the concatenation of all previous layers as its input. The relationship 
between each layer can be described as:

where gk(·) is ODTSR function at the k-th layer. In this way, the deep neural ensemble model can learn both 
shallow and deep decision rules while also capturing the interactions among IP blocks.

This deep structure is straightforward to motivate representation transformation, however, its layers have 
many different parameters that are hard to be optimized. Fortunately, the neural  ODE33 implies the existence of 
an optimal network, which allows us to build adaptive deep layers. Following this idea, we transform the deep 
structure into a continuous form and use single ODTSR function to describe the evolution:

where we treat the ODTSR as an ODE block to model continuous layers and obtain representations of each layer 
with single-layer parameters. To solve the ODEs efficiently, we employ the fourth-order Runge–Kutta  method34, 
which has higher precision than a simple Euler method:

where R1,R2 , R3 and R4 denote the derivative at the beginning, midpoint, and end of the interval. In this way, 
we approximate the integration with multi-step discrete processes.

The final prediction of the model is obtained by averaging outputs from all layers:

where Hk ∈ R
|c| is the output of the k-th layer and |c| is the number of classes.

Training
We train our model via mini-batch SGD, which increases the convergence stability on the premise of reducing 
the computational cost. As for the optimizer, we use the method recommended by Ma et al.35 for efficiency. In 
terms of the optimization objective, considering that the output of each layer is a probability vector, we choose 
traditional cross-entropy loss that is usually employed in classification:

where ◦ denotes the Hadamard product, B denotes the set of a mini-batch.

Experiments
In this section, we first describe the experimental settings including datasets, baselines and metrics. Then we 
report experimental evaluation results on IP usage scenario classification.

Experimental settings
Data
We evaluate our proposed method using the IP data collected from four regions: Shandong, Sichuan, and Chong-
qing City from China, and Illinois State from USA. We use 46 distinct IP-related features. The data statistics of 
four regions are shown in Table 2. For each region, we use 60% IP blocks for training, 20% for validation, and 
rest 20% for test.

(4)Hk = x + gk(Hk−1;�),

(5)d(Hk)

dk
= ODTSR(k,Hk + x;�),

(6)Hk = Hk−1 +

∫ k

k−1
ODTSR(k′,Hk′ + x;�)dk′,

(7)R1 = ODTSR(k,Hk′ + x) ,

(8)R2 = ODTSR(k + 1/2,Hk + R1/2+ x) ,

(9)R3 = ODTSR(k + 1/2,Hk + R2/2+ x) ,

(10)R4 = ODTSR(k + 1,Hk + R3 + x) ,

(11)
∫ k+1

k
H(k′,Hk′ + x;�) dk′ =

1

6
(R1 + 2R2 + 2R3 + R4) ,

(12)Q(x|�) =
1

K

K∑
k=1

Hk ,

(13)L = −
1

|B|

∑
(x,y)∈B

ln
∑

Q(x) ◦ y,
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Baselines
We evaluate our model against the following baseline methods that can be grouped into three categories: general 
machine learning-based, ensemble learning-based, and deep neural networks-based models.

• Machine learning approaches: Support Vector Machine (SVM)36, Bayesian Networks (BN)37, and Linear 
Discriminant Analysis (LDA).

• Ensemble learning approaches that combine several weak supervision models: Random Forest (RF), 
 XGBoost29, and  CataBoost31.

• Deep learning based approaches: 1)  TabNet21: an efficient and interpretable deep tabular data learning 
model, which takes the raw tabular data as input without any feature pre-processing; 2) Network on Network 
(NON)26: a deep tabular data classifier for intra-field and non-linear feature interaction learning; 3)  AutoInt21: 
an automatic feature interaction learning model using self-attentive neural  networks38. and 4)  NODE12: an 
ensemble tabular learning model that combines oblivious decision forests with dense residual  networks39.

For all methods including ours, we tune model parameters using the validation data and report the best results 
on test set. We use the following three metrics: precision, recall, and area under the ROC curve (AUC). Preci-
sion is the fraction of relevant IP blocks among the retrieved samples, while recall is the fraction of the total 
amount of pertinent IP blocks that were actually retrieved. AUC is computed based on the relative ranking of all 
IP blocks’ prediction probabilities, which is not impacted by any simple scaling of predictions. As a multi-class 
classification problem, we average all confusion matrices to obtain the final results.

Experimental results
We now report and discuss experimental results from four aspects: main comparison results, influence of features, 
model generalization, and parameter sensitivity.

Performance comparison
The overall performance evaluation of all methods are reported in Table 3, where paired t-test was performed 
for statistical significance ( p < 0.001 ). We can see that our model achieves the best IP usage scenario perfor-
mance across all metrics on four datasets. We have the following observations. (a) Traditional machine learning 
approaches (SVM, BN, and LDA) did not show comparable performance since they cannot capture complex 
dependencies among features. (b) Ensemble decision trees (RF, CatBoost, and XgBoost) offer non-trivial per-
formance improvements due to their superior learning ability to fit the underlying decision manifolds and 
boost performance with approximate hyperplane boundaries, indicating that extracting complex decision rules 
from tabular data are important for IPUSC problem. (c) Three deep learning-based approaches have compa-
rable performances compard to ensemble-based methods. They can efficiently encode multiple data types like 

Table 2.  Descriptive statistics of datasets.

Region IP Block IP address Area ( km2) Population (M)

Sichuan 30,029 6,999,780 481,400 83.41

Shandong 67,443 12,731,730 153,800 100.47

Chongqing 18,719 3,304,308 82,300 31.02

Illinois 86,187 2,549,476 149,997 12.67

Table 3.  Performance comparison on the IP scenario prediction.

Region Sichuan Shandong Chongqing Illinois

Metric Precision Recall Auc Precision Recall Auc Precision Recall Auc Precision Recall Auc

SVM 0.8315 0.8735 0.9705 0.9560 0.9289 0.9916 0.9132 0.8956 0.9819 0.8977 0.8183 0.8902

BN 0.6112 0.6818 0.8944 0.8071 0.8074 0.9765 0.7492 0.8039 0.9524 0.4413 0.5613 0.8980

LDA 0.7719 0.7872 0.9553 0.7927 0.8768 0.9810 0.8186 0.8646 0.9717 0.5902 0.8816 0.9554

RF 0.8646 0.8159 0.9771 0.9614 0.9188 0.9936 0.9541 0.8602 0.9904 0.9852 0.5734 0.9250

XgBoost 0.8767 0.8683 0.9732 0.9548 0.9375 0.9947 0.9470 0.9273 0.9913 0.9851 0.8922 0.9708

CatBoost 0.8746 0.7616 0.9226 0.8710 0.9412 0.9805 0.7630 0.7711 0.9464 0.9216 0.7234 0.9003

TabNet 0.8425 0.8143 0.9623 0.9489 0.9275 0.9878 0.9423 0.8952 0.9757 0.8834 0.6128 0.9109

NON 0.7958 0.8483 0.9664 0.9274 0.9172 0.9917 0.9246 0.9152 0.9790 0.9346 0.7415 0.9303

AutoInt 0.8210 0.7704 0.9591 0.9535 0.9358 0.9926 0.9513 0.9006 0.9820 0.9619 0.8896 0.9661

NODE 0.8443 0.8147 0.9762 0.9601 0.9165 0.9904 0.9525 0.8591 0.9901 0.9843 0.5721 0.9239

ODTSR 0.8997 0.8759 0.9822 0.9629 0.9458 0.9954 0.9558 0.9368 0.9922 0.9861 0.9012 0.9876
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numerical and categorical features along with the tabular data in an end-to-end manner, reducing the effort for 
hand-crafting features. (d) NODE did not bring additional improvements, Although NODE takes the advantages 
of both decision trees and neural networks, it does not bring additional improvements. This may be explained 
by the differentiable splitting functions are not well fitted with the discrete residual networks. In contrast, our 
method considers the continuous neural networks and learns continuously differentiable information flow in 
the consecutive neural layers and, as a result, smoothing the feature interactions for IP classification.

Interestingly, all models perform relatively well on Shandong, Chongqing, and Illinois regions but worse 
on Sichuan region. We speculate this is due to the topography differences among these regions. For example, 
Shandong’s population density is much higher than Sichuan, which implies that IP geographical distributions are 
much closer in Shandong than Sichuan, and the IP block discrimination task is easier for the Shandong region.

Influence of features
Recall that there are five groups of 46 features. To better understand their influence on IPUSC task, we conduct 
an ablation study to examine each group’s contribution to overall classification performance. Specifically, we 
shuffle the attributes of samples (IP blocks) in a group to observe the performance change, which could effectively 
reflect the relative importance of a specific group, e.g., a group’s influence is trivial if the result does not signifi-
cantly changed. Figure 3 depicts the importance of each group—averaged by the performance changes in four 
regions. We can see that geographical information, e.g., coverage, distributions, and the number of landmarks, 
play an essential role in IPUSC task. This result is intuitive since IP geolocation is a strong signal to distinguish 
different scenarios. We also note that the landmark data is very sparse for certain scenarios. For example, the 
ratios of landmarks in home broadband and cellular networks are around 70% and 34%, respectively, due to the 
widely used GPS-required apps in these two scenarios. In contrast, only 0.2% of data center scenario IP blocks 
have landmarks. Routing information and domain names are also useful for identifying IP usage scenarios, 
while registration (WHOIS) and available port information are relatively less important. This is because the 
registration information is too general to distinguish real IP usage scenarios. This finding indicates that IPUSC 
requires data-driven methods since openly available databases cannot provide accurate usage type information.

Model generalizability
We conduct transfer learning experiments to investigate models’ abilities to learn general IP assignment rules 
across different regions. Towards this goal, we train our model as well as baselines on a source region and test 
model’s performance on a target region. For example, Sichuan → Chongqing denotes that the model is trained 
on Sichuan and evaluated on Chongqing. Table 4 reports IPUSC transfer learning results. Besides, we show the 
ROC curves of two groups of separate transfer learning experiments in Fig. 4.

Figure 3.  Illustration of feature importance.

Table 4.  Model’s generalization capability between different regions.

Region Sichuan → Chongqing Chongqing → Sichuan Shandong → Sichuan Shandong → Chongqing

Metric Precision Recall Auc Precision Recall Auc Precision Recall Auc Precision Recall Auc

SVM 0.6714 0.6725 0.8885 0.7993 0.7457 0.9382 0.8671 0.7530 0.9390 0.9114 0.7777 0.9645

NB 0.5641 0.5655 0.8650 0.6524 0.6590 0.8861 0.6726 0.6167 0.8928 0.7575 0.6547 0.9270

LDA 0.6809 0.6412 0.8208 0.6621 0.6417 0.8701 0.6606 0.5824 0.8878 0.8036 0.6134 0.9258

RF 0.6246 0.7799 0.9377 0.7709 0.7059 0.9106 0.8777 0.7098 0.8928 0.8930 0.7984 0.9632

XgBoost 0.6051 0.7543 0.9376 0.7360 0.6628 0.9118 0.8770 0.7065 0.9431 0.9001 0.8125 0.9468

CatBoost 0.6137 0.7697 0.9038 0.6136 0.4891 0.8345 0.7400 0.6616 0.8387 0.7589 0.7403 0.8876

TabNet 0.6336 0.7797 0.9158 0.7326 0.6936 0.9054 0.8063 0.7327 0.9097 0.8261 0.7920 0.9349

NON 0.6838 0.7384 0.8825 0.7097 0.7264 0.9041 0.8096 0.7639 0.9191 0.8013 0.8164 0.9267

AutoInt 0.5887 0.7402 0.8250 0.6802 0.6232 0.7333 0.8618 0.6741 0.7856 0.8384 0.7623 0.8212

NODE 0.6315 0.7778 0.9145 0.7321 0.6920 0.9034 0.8051 0.7319 0.9025 0.8245 0.7911 0.9335

ODTSR 0.7295 0.8042 0.9462 0.8409 0.7714 0.9444 0.8817 0.7679 0.9582 0.9322 0.8654 0.9763
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We can observe that all methods’ performances are degraded when transferring from the source region to the 
target region. Nevertheless, our model’s performance degradation is the least compared to baselines, which shows 
that our proposed model can better learn general IP usage rules across different regions. This trait of ODTSR is 
especially useful for regions with limited or restricted data. This result also suggests that the IP assignment of 
different IP management agencies or IP service providers may follow similar allocation rules that can be learned 
to enable in-depth analysis for many downstream tasks, e.g., targeted advertising, user behavior profiling, and 
“wool-party” detection.

Parameter sensitivity
Our model has two critical parameters, i.e., the number of network layers and the tree depth. Figure 5 illustrates 
the influence of these two parameters, where we can see that a few network layers and moderate tree depth are 
enough for our model to achieve the best performance. Note that we did not observe significant overfitting 
problem if further increasing the network and tree depths, which is also the primary difficulty in combining 
deep learning and ensemble decision trees in the  community12,32. The improvement attributes to our continuous 
deep ensemble learning method that models discrete ensembles with continuous layers, which bridges the gap 
between differentiable trees and discrete neural layers.

Conclusion
In this work, we initiated the first attempt to study IP usage scenario classification, a new paradigm of IP address 
profiling that can benefit many downstream applications. We proposed a deep continuous ensemble learning 
approach based on differentiable decision trees and multi-layer neural networks. Our model stacks deep ensem-
ble decision trees to capture both complex feature interactions and decision rules. Meanwhile, it incorporates 
numerical methods to solve the discrete stacking problem and provides continuous ensembles. Extensive experi-
ments conducted on four regions demonstrate the effectiveness of our model on identifying IP usage scenarios 
by apprehending the IP address assignment rules. Moreover, the new designed model consistently outperforms 
both shallow ensemble learning methods and deep neural networks in IP-related tabular data learning. Empirical 
findings in this study may motivate future research on other IP-related network services such as traffic forecast-
ing, IP geolocation, and network topology analysis.

Figure 4.  Performance evaluation on the models’ ability to fit the general IP assignment rules in different 
regions.
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Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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